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An adaptive clamping method (SGD-MS) based on the radius of curvature is designed to alleviate the local optimal oscillation
problem in deep neural network, which combines the radius of curvature of the objective function and the gradient descent of the
optimizer. 1e radius of curvature is considered as the threshold to separate the momentum term or the future gradient moving
average term adaptively. In addition, on this basis, we propose an accelerated version (SGD-MA), which further improves the
convergence speed by using the method of aggregated momentum. Experimental results on several datasets show that the
proposed methods effectively alleviate the local optimal oscillation problem and greatly improve the convergence speed and
accuracy. A novel parameter updating algorithm is also provided in this paper for deep neural network.

1. Introduction

Deep neural network has made great achievements in the
field of computer vision, such as face recognition [1] and
object detection [2]; by deepening the network depth and
enriching the datasets constantly, deep neural network has
significantly improved the recognition accuracy. However,
the improvement of the network framework and the con-
tinuous enrichment of the datasets have certain limits for the
improvement of the performance of the image classification
task, which not only costs a lot of computing costs but also
has great difficulty in general applicability and operation. As
a key part of neural network training, the optimizer defines
the method of updating the parameters of the depth model,
which produces different effects in the training process.
Compared with other improved methods, the improved
optimizer has the advantages of simple replacement and
wide application range. According to the learning rate,
optimizers can be divided into two categories: one is a
manually adjusted learning rate optimizer, such as SGD [3],
SGD-M [4], and NAG [4], and the other is an automatically
adjusted learning rate optimizer, such as AdaGrad [5],
RMSProp [6], and Adam [7]. 1e auto-tuning learning rate
optimizer automatically adjusts a separate learning rate for

each parameter so that training can converge faster. How-
ever, Wilson et al. [8] found that the auto-tuning optimizer
might converge to different local minima [9] due to its poor
generalization effect. Otherwise, the experimental results of
the auto-adjusting learning rate optimizer [10, 11] are ul-
timately difficult to match the manually adjusting learning
rate optimizer. 1erefore, the manual adjustment is targeted
to improve the learning rate optimizer. SGD-M, as a widely
used manual-tuning optimizer, would get better perfor-
mance in many deep neural networks.

SGD-Mupdates network parameters by taking into account
both past and present gradients. However, SGD-M has the
problem of local optimal oscillation [12], which hinders the
progress of gradient decline and requires more training time
and training data. In addition, the instability of the model at the
initial stage of training brings great oscillation to the system.
SGD-M has different problems at different stages of gradient
descent, so it is of great significance to design a new optimizer
that can maintain good precision and converge faster. An
adaptive clamping optimization algorithm (SGD-MS) is pro-
posed in this paper based on the curvature radius, which adds
themoving average term of future gradient on the basis of SGD-
M.1e thresholds are set to adaptively separate the momentum
term and the future gradient cumulative term by considering
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the internal relationship between the curvature radius of the
objective function and the gradient descent of the optimizer
[13]. 1ree switching modes are introduced in our SGD-MS,
including V (velocity) model with momentum term only, D
(difference)modewith the future gradientmoving average term
only, and S (sum) mode with both terms, which effectively
alleviates the problem of local optimal oscillation caused by the
accumulation of momentum term and the instability of the
system caused by the large future gradient at the beginning of
training. In addition, SGD-MA, an accelerated version of SGD-
MS, is designed based on the aggregated momentum [14] to
realize adaptive change of the damping coefficient, which
greatly accelerates the convergence rate.

1e main contributions of this paper are as follows. (1) It is
effective to alleviate the problem of instability in the initial stage
by adding the term of future gradient moving average. (2) An
adaptive switching method based on radius of curvature is
proposed. 1e proposed SGD-MS algorithm will switch
adaptively in three modes to adapt to different training stages
and effectively alleviate the problem of optimal oscillation. (3)
An accelerated version SGD-MA is proposed with the adaptive
damping coefficient, which further accelerates the convergence
speed. (4) 1e method in this paper is systematically evaluated
on PASCAL VOC, CIFAR10, CIFAR100, and MNIST minia-
ture datasets, which demonstrates the effectiveness of our
proposed optimizer.

2. Related Work

1e following introduces several typical principles and
improvement methods of the manual adjustment learning
rate optimizer.

SGD optimizer is the most basic algorithm for deep
neural network optimization, whose update rule is shown as
follows:

θt+1 � θt −
rzLt

zθt

, (1)

where t is the current update step, θ represents the model
parameters to update, and zLt/zθt means the back propa-
gation gradient of θ. 1e parameter r represents the learning
rate of SGD, which determines the size of the updates in the
current step.

However, SGD update direction is completely dependent
on the current batch, which makes the update unstable. 1e
SGD-M optimizer adds a momentum term on the basis of
the SGD optimizer. 1e momentum algorithm accumulates
the moving average of the past gradient with exponential
attenuation, which makes the direction of the movement
consistent. 1e update rules for the SGD-M optimizer are
proposed in

Vt+1 � αVt +
zLt

zθt

,

θt+1 � θt − rVt+1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where the momentum termV represents the moving average
attenuation over the past gradient. 1e parameter α is the

moving average decay rate, which is generally set at 0.9.
Formula (2) is rewritten as follows:

θt+1 � θt −
rzLt

zθt

− r 􏽘
t−1

i�0

zLi

zθiα
t−i

􏼠 􏼡⎛⎝ ⎞⎠. (3)

It is evident that the parameters in formula (3) are
updated based on the current gradient r zLt/zθt and the
cumulative of past gradients r(􏽐

t−1
i�0(zLi/zθiαt−i)).

1e NAG optimizer is a variant of momentum algorithm
driven by the Nesterov acceleration gradient method [13].
1e update rules of the NAG optimizer are given by the
following formula:

Vt+1 � αVt +
zLt

z θt + αrVt( 􏼁
,

θt+1 � θt − rVt+1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

1e following results are obtained by substituting 􏽢θt �

θt + αrVt into formula (4):

Vt+1 � αVt +
zLt

z􏽢θt

,

􏽢θt+1 � 􏽢θt − α2rVt −
(1 + α)rzLt

z􏽢θt

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

From the above formula, it is concluded that the NAG
optimizer adds a correction factor to the momentum term
on the basis of the SGD-M optimizer, which advances half a
step forward in the process of parameter updating to achieve
faster convergence. However, in the case of stochastic
gradient, Nesterov’s momentum has little effect on the
convergence rate. Besides, it is unable for the algorithm to
update different parameters according to their importance.

In order to solve the overshoot problem in the SGD-M
optimizer and the NAG optimizer, the PID optimizer
[15–17] imitates the principle of the PID controller to add a
differential term in SGD-M. 1e update rules of the PID
optimizer are as follows:

Vt+1 � αVt +
zLt

zθt

,

Dt+1 � αDt +(1 − α)
zLt

zθt

−
zLt−1

zθt−1
􏼠 􏼡,

θt+1 � θt − rKiVt+1 − rKdDt+1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where V and D are regarded as the integral term and the
differential term of the PID controller, respectively. Ki and
Kd are the adjustment coefficients for the integral term and
the differential term, which is similar to the PID adjustment
method and needs to be adjusted manually in the experi-
ment. 1e design structure of the PID algorithm provides
inspiration for our optimizer.
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3. The Design of the Improved Optimizer

Since only the past and present information are used in the
SGD-M optimizer during parameter update, a derivative
term is added in the SGD-M optimizer to introduce future
information transformation. 1e training of the deep model
is usually based on small batch, which may introduce noise
in gradient calculation.1emoving average termD of future
gradient part is proposed to alleviate this problem. 1e rules
of the parameter update in (t+ 1) iterations are shown as
follows:

Vt+1 � αVt +
zLt

zθt

,

Dt+1 � αDt +(1 − α)
zLt

zθt

−
zLt−1

zθt−1
􏼠 􏼡,

θt+1 � θt − rVt+1 − rDt+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

It is seen from equation (7) that the SGD-M optimizer
with D term is very similar to the PID optimizer. 1e dif-
ference is that the PID optimizer introduces super param-
eters Ki and Kd. Although Kd is initialized by using Laplace
transform theory and Ziegler Nichols tuning method, it still
needs to be adjusted manually to achieve good results.
Moreover, the objective function obtains the same con-
vergence rate in different directions with fixed moving av-
erage decay rate α, which hinders the gradient descent
process. 1e internal relationship between the curvature
radius and optimizer gradient descent will effectively solve
this problem.

3.1.'e Relationship between the Radius of Curvature and the
Gradient Descent. In mathematics, curvature usually indi-
cates the curvature degree of a curve at a certain point. 1e
radius of curvature is usually expressed as the reciprocal of
curvature, which is used to describe the curvature degree of a
curve at a certain point. 1erefore, it is considered that the
curvature at each point of the uneven curve is usually dif-
ferent from each other. 1e mathematical formula of the
radius of curvature is written as follows:

K �
􏽢∇L

1 + ∇L2
􏼐 􏼑

3/2|, ρ �
1
K

,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(8)

where 􏽢∇L is the second derivative, ∇L is the first derivative,
and ρ is the radius of curvature.

It is shown the linear convergence of curvature changes
robustness in SGD-M, which means the linear convergence
of nonconvex objects with variable curvature. In addition,
curvature is the only feature that describes the convergence
of gradient descent [18]. Based on this feature, the proposed
SGD-MS optimizer takes the radius of curvature as the
evaluation criterion for the degree of convergence. Figure 1
shows the result of 20 iterations for the SGD-M optimizer to
find the minimum value of the Rosenbrock function [19].
1e initial point is set as (1,0). According to equation (8), it is

seen from the three-dimensional figure that the closer the
gradient descent is to convergence, the smaller the mean
curvature radius is. With this in mind, our algorithm takes
the radius of curvature of the objective function as the
threshold to switch modes according to the degree of
convergence.

In the deep learning network, the parameter space has a
more complex structure than the vector of Euclidean space.
1e parameters constitute a m∗ n matrix, where m is the
number of features and n is the number of classes. 1e
number of input nodes in the neural network is the sum of
input nodes in each layer. 1e parameter space of the image
convolutional neural network is a set of four-dimensional
tensors of input depth, width, height, and output depth [20].
1erefore, gradient processing in our algorithm is carried
out in the form of matrix. SGD-MS algorithm makes dif-
ferent treatment for each parameter in the matrix and judges
whether V term or D term should be separated according to
the radius of curvature. Since SGD-MS algorithm only uses a
small batch of data in each optimization step, the gradient
direction of two different batches is greatly different at the
beginning of training, and high-frequency noise is generated
in the optimization process. 1e future gradient is calculated
based on derivative and is very sensitive to noise, so the
separation rules are shown as follows: when the curvature
radius is large, it switches to V mode. When the radius of
curvature is small, the accumulated gradient produces local
optimal oscillation, and D mode is switches. When the
situation is between the above two, S mode is adopted.

3.2. SGD-MS Optimizer Algorithm. 1e SGD-MS algorithm
uses the internal relationship between the curvature radius
of the objective function and the gradient descent of the
optimizer. According to the gradient descent convergence,
SGD-MS algorithm switches to V, D, and S modes adap-
tively. Pseudocode is provided in Algorithm 1.

In our algorithm, V and D represent the past gradient
and the future gradient, respectively, and a moving average
attenuation is added. It considers the historical value of the
current step and calculates the weighted average value of
these values. In the calculation result of function ge, the
position where the curvature radius is less than ρ1 and the
momentum term matrix is set to 0. Similarly, the calculation
result of function le sets the position of curvature radius
greater than ρ2 in the future gradient-moving average term
matrix to 0. 1e formulas of ge and le are as follows:

ge(V, ρ1) � 0.5∗V∗mask1 + 0.5∗V, (9)

le(D, ρ2) � 0.5∗D∗mask2 + 0.5∗D, (10)

where mask1 and mask2 represent the values in the matrix
of the corresponding position after adaptive clamping of the
radius of curvature, which are set to 1 within the threshold
range and −1 without the range.

1e algorithm first initializes the past and future gra-
dients to 0, then clamps the past and future gradients with
the curvatures ρ1 and ρ2 of the descending gradient, and
finally smooths the clamped parameters by moving average
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attenuation. 1e process is iterated successively. 1e specific
calculation method has been shown in the pseudocode.

In order to obtain the widely applicable values of ρ1 and
ρ2, we have done several groups of comparative experiments
on different datasets and networks. Taking the training
results of CIFAR100 on Resnet as an example, the com-
parison results are shown in Table 1. 1e learning rate
decreases from 0.1, 0.01, and 0.001 and training for 10, 100,
and 150 epochs, respectively. It can be found from the table
that when ρ1 � 30 and ρ2 � 40, higher accuracy can be
obtained. We change the values of ρ1 and ρ2, respectively,
and the comparison results are shown in Figure 2.

1rough the theoretical support in the previous section
and the experimental results in Figure 2, it is concluded that
the smaller the ρ1, the more similar performance of the
optimizer with SGD-M. With the increase of ρ1, the per-
formance of SGD-MS will gradually deteriorate after
reaching the peak. 1e smaller ρ2 is, the closer it is to V
mode. Similar to ρ1, with the increase of ρ2, the optimizer
performance first improves and then decreases. Fine tuning
will be made according to this feature. In this paper, we set
ρ1 and ρ2 as 30 and 40, respectively.

Equations (9) and (10) correspond to the operation of
momentum term separation and future gradient-moving
average term separation. In momentum separation, the
position of curvature radius less than the threshold value in
parameter matrix V is treated as 0. It is equivalent to re-
moving momentum term, while the position with curvature
radius greater than the threshold value remains unchanged,
which will alleviate the local optimal oscillation problem and
improve the dynamic performance. 1e separation of gra-
dient moving average terms disposes the position of cur-
vature radius greater than threshold value in matrix D in the
same way to reduce the interference of outliers, and the
position less than threshold remains unchanged, which
greatly weakens the fluctuation problem.

3.3. Accelerated Version of SGD-MS Optimizer (SGD-MA).
Momentum is a simple and widely used technique that allows
gradient-based optimizers to speed up in the direction of low
curvature. Its performance mainly depends on the damping

coefficient α. Larger values of αmay lead to greater acceleration,
but are prone to oscillations and instability; therefore, smaller
values are usually used. In this paper, the idea of aggregated
momentum [14] is used, which is a kind of momentum variable
combining multiple velocity vectors and different α parameters.
It has the advantages of small α value and large α value: large α
value allows significant increase of velocity along the direction
of low curvature, while small value restrains oscillation and
stabilizes the algorithm. It is related to the principle of physical
resonance: when the system is driven at a specific frequency,
resonance will occur. Passive damping will solve this problem
by using different materials with unique resonance frequency.
However, the damping coefficient of thismethod is a fixed value
set in advance and is not able to change automatically according
to the gradient descent process. It has poor adaptability to
different super-parameter settings in the iterative process.

We improve the gradient descent algorithm after sep-
arating partial momentum terms and future gradient-
moving average term. 1e damping coefficient changes
dynamically according to the gradient descent process. In
each optimization step, the momentum and future gradient
are updated, and then, the final momentum and future
gradient used to update the parameters is obtained by av-
eraging. 1e iteration process is written as follows:

Vt+1 � αVt +
zLt

zθt

,

Dt+1 � αDt +(1 − α)
zLt

zθt

−
zLt−1

zθt−1
􏼠 􏼡,

θt+1 � θt − αr Vt+1 + Dt+1( 􏼁 −
rzLt

zθt

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Equation (11) is interpreted as the weighted average
value of gradient update and momentum update. Compared
with each iteration, the damping coefficient is understood as
a change form so that the damping coefficient is updated
dynamically. α is initialized to 0.9, and the damping coef-
ficient updating equation is as follows:
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Figure 1: Iteration path of SGD-M algorithm.
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αt+1r Vt+1 + Dt+1( 􏼁 +
rzLt

zθt

� αtr αtVt +
zLt

zθt

+ αtDt + 1 − αt( 􏼁
zLt

zθt

−
zLt−1

zθt−1
􏼠 􏼡􏼠 􏼡 +

rzLt

zθt

,

αt+1 �
α2t Vt + Dt( 􏼁 + 2αt zLt/zθt( 􏼁 − α2t zLt−1/zθt−1( 􏼁

Vt+1 + Dt+1( 􏼁
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Rastrigin function [21] is a nonconvex function, which
has a global minimum at (0.0, 0.0). As shown in Figure 3,
since the function has a large search space and a large
number of local minima, it is quite difficult to find the
minimum value of the function. Figure 4 shows how SGD-
M, SGD-MS, and SGD-MA perform 501 optimization steps
on the Rastrigin function in the form of top view. 1e
minimum loss values of the three algorithms are 0.95, 0.37,
and 0.33, respectively.

It is seen from Figure 4 that SGD-M has the problem of
local optimal oscillation, and it is difficult to reach the global
minimum after 501 steps. SGD-MS algorithm can effectively
escape from the local optimum to find the global optimum.
SGD-MA’s iterative path is faster, which further speeds up
the process of reaching the global optimum on the basis of
SGD-MS algorithm. SGD-MA not only accelerates the
convergence at low curvature but also achieves stable
convergence at high curvature by setting adaptive damping
coefficient.

4. Experiments

In this paper, MNIST handwritten numeral datasets are
trained by using LeNet network to show the advantages of
the SGD-MS optimizer and the SGD-MA optimizer.
1en, the PASCAL VOC dataset is tested on Resnet
models with different depths, highlighting that the im-
proved algorithm effectively solved the problem of local
optimal oscillation. Finally, CIFAR datasets are tested on
Resnet [22] and Densenet [23]. All super parameters (the
damping coefficient is 0.9, and the learning rate is
specified in the experiment part) in the SGD-MS opti-
mizer are set to be the same as SGD-M, which proves that
the SGD-MS optimizer is superior to SGD-M in precision
and has faster convergence speed. 1e SGD-MA opti-
mizer further improves the convergence speed of the
SGD-MS optimizer. 1e computer configuration used in
the experiment is Intel Core i7-9700u, 32 GB RAM, and
GPU is GeForce RTX 2080Ti.

Input: initialization parameter θ, learning rate rt􏼈 􏼉
T
t�1, moving average decay rate α, and objective function f(θ0)

(1) initialization V0 � 0, D0 � 0
(2) for t� 1 to T do
(3) gt � zLt/zθt

(4) K � |(gt − gt−1)/(1 + g2
t )3/2|

(5) ρ � 1/K
(6) mask1 � threshol d(ρ, ρ1)

(7) mask2 � threshol d(ρ, ρ2)

(8) Vt � ge(Vt−1, mask1)

(9) Dt � le(Dt−1, mask2)

(10) Vt � αVt−1 + gt

(11) Dt � αDt−1 + (1 − α)(gt − gt−1)

(12) θt � θt−1 − rtVt − rtDt

(13) end for

ALGORITHM 1: SGD-MS.

Table 1: Comparison results of different curvature radii as thresholds.

Epochs 10 100 150
SGD-M 36.37 65.94 72.62
ρ1 � 20 ρ2 � 40 43.11 68.47 73.11
ρ1 � 30 ρ2 � 40 42.89 68.79 73.71
ρ1 � 40 ρ2 � 40 46.09 68.07 72.42
ρ1 � 30 ρ2 � 30 47.15 68.03 73.3
ρ1 � 30 ρ2 � 50 43.3 67.58 72.43
ρ1 � 30 ρ2 � ∗ 46.63 68.29 73.28
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4.1.MNISTDatasetExperimentalResults. 1eMNISTdataset
[24] is 0 to 9 handwritten data containing 60000 training
samples and 10000 test samples. 1e image is a grayscale image
with 28× 28 pixels. In the experiment, the SGD-MS optimizer
and the SGD-MA optimizer are used to train LeNet network on
MNISTdataset and compared with the SGD-M optimizer. 1e
training is carried out in small batch with 128 images for 30
epochs, and the learning rate is set to 0.01. 1e comparison
results are shown in Figure 5. From the figure, it is evident that
the accuracy and loss values of the optimizer training set ba-
sically overlap. Comparedwith SGD-M, the SGD-MS optimizer
significantly reduces the loss and accuracy oscillation in the test
set, and the average accuracy rate exceeds SGD-M after the 8th
epoch. From the loss figure, SGD-M algorithm has overfitting
phenomenon after the 15th epoch, and the accuracy rate re-
mains basically unchanged in the subsequent iterations, while

SGD-MS algorithm performs well. SGD-MA algorithm im-
proves the convergence speed based on SGD-MS, and the
accuracy continues to rise steadily. It is concluded that the SGD-
MS optimizer not only has small loss and high precision but also
has high generalization ability, and the SGD-MA optimizer
accelerates the convergence speed while maintaining the per-
formance of SGD-MS.

4.2. PASCAL VOC Dataset Experimental Results. 1e PAS-
CAL VOC dataset is the standard image dataset and stan-
dard evaluation system provided by the PASCAL VOC
challenge for detecting algorithms and learning perfor-
mance. 1e dataset has good image quality and complete
annotation, including a total of 20 classes. With the con-
tinuous development of computer vision technology, small-
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and medium-sized datasets are becoming more and more
popular in the research field. In order to obtain a better
image classification effect, the existing research usually
adopts the pretraining method, which can not only save the
calculation time but also improve the recognition effect.
1erefore, it is necessary to use this method to verify the
improved optimizer. In order to obtain more image features,
the pretraining parameters from the Imagenet dataset were
applied to the Resnet model with the depth of 18, 34, and 50,
respectively, in this experiment. During the training process,
the PASCAL VOC dataset was trained by means of pa-
rameter fine tuning. 1e backbone learning rate is set to
0.001, the FC learning rate to 0.05, the batch size to 32, and
15 epochs to be iterated. 1e final test accuracy and loss
values trained by the SGD-M, SGD-MS, and SGD-MA
optimizer are shown in Table 2, where the maximum ac-
curacy and minimum loss are shown in bold.

It can be clearly seen from Table 2 that the performance of
the proposed improved algorithm is better than SGD-M. Under

the same parameter setting, SGD-M shows the phenomenon of
training failure, but the two proposed improved optimizers still
perform well. We can make a specific analysis of this phe-
nomenon through Figure 6.

As can be seen from Figure 6, during the training of Resnet
models with different depths, the SGD-M optimizer has serious
local optimal oscillation phenomenon in the gradient
descending process, which makes it difficult to improve the
accuracy and ultimately leads to the training failure. Two im-
proved algorithms, SGD-MS and SGD-MA, have overcome this
problem and achieved good results. 1e pretraining mode was
adopted in this experiment, which can be understood as saving a
large period of pretraining time, which made the acceleration
function of SGD-MA not fully reflected. 1e next experiment
provided supplementary demonstration.

4.3. CIFARDataset Experimental Results. In order to test the
generality of our method to deeper model and larger dataset,
we choose two widely used datasets CIFAR10 and CIFAR100
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Figure 5: Comparison of experimental results of MNIST dataset. (a) Train loss. (b) Valid loss. (c) Train accuracy. (d) Valid accuracy.
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Table 2: Test results.

Algorithm (SGD-M/MS/MA) Resnet18 Resnet34 Resnet50
Accuracy 64.00/91.70/90.00 46.60/92.60/91.50 54.60/93.30/92.60
Loss 3.58/1.68/1.79 4.80/1.67/1.76 3.98/1.59/1.61
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Figure 6: Comparison results of different algorithms for PASCAL VOC dataset under the Resnet model. (a) Resnet18 accuracy.
(b) Resnet18 loss. (c) Resnet34 accuracy. (d) Resnet34 loss. (e) Resnet50 accuracy. (f ) Resnet50 loss.
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and model Resnet and Densenet. CIFAR10 and CIFAR100
datasets [25] are composed of 60000 RGB color images with
a resolution of 32× 32, including 10 and 100 classes, re-
spectively, and are divided into 50000 training images and
10000 test images. In the experiment, Resnet and Densenet
models are used to compare SGD-M, SGD-MS, and SGD-
MA algorithms on CIFAR10 and CIFAR100, respectively, to
highlight the importance of adaptive mode switching. 1e
initial learning rate of the experiment was 0.1, and it de-
creased to 0.01 at the 10th epoch and to 0.001 at the 100th
epoch, totally 150 epochs. 1e results are summarized in
Table 3 (iteration stage is represented by the model/epoch
number). 1e second column in the table shows the depth of
these networks. 1e third, fourth, and fifth rows show the
average accuracy of cifar10 after 10 epochs, 100 epochs, and
150 epochs. 1e sixth, seventh, and eighth rows list the
average accuracy rates of cifar100 after 10 epochs, 100
epochs, and 150 epochs, and the optimal value is expressed
in bold.

1e data in Table 3 can reflect that, for the two models
used on the two CIFAR datasets, SGD-MS and SGD-MA
optimizers are all higher than or equal to SGD-M except
for the experimental results of the 150th epoch in
Densenet, which are slightly lower than SGD-M. 1e
result may be related to the Densenet dense connection
structure, which can mitigate the gradient disappearance.
When the learning rate is small, the gradient decline

decreases, and the influence of network structure is
dominant, and the effect of network is offset with the
effect of the improved optimizer to reduce the oscillation.
Although the threshold and initial parameters of the two
improved optimizers are tested with default values, on the
whole, they achieve a fairly good effect, which further
proves the wide applicability of the threshold value and
saves a lot of adjustment time in practice. Figure 7 shows
the experimental results of CIFAR100 for 150 epochs in
an optional experimental test set iteration on Resnet. All
models achieve nearly perfect accuracy on the training
set, so we will not explain it. It can be seen from the figure
that compared with SGD-M, SGD-MS algorithm always
performs well and has significantly less fluctuation in the
process of gradient decline, which effectively alleviates
the problem of local optimal oscillation, and the loss can
be reduced to a lower level and the accuracy can reach a
higher level. It is clear that the SGD-MS algorithm is
superior to SGD-M in comparison. 1ough the validation
set accuracy of the SGD-MA optimizer in some datasets’
training models is slightly lower than that of SGD-MS, it
is still much higher than SGD-MA, and it can converge on
the training target quickly, especially in large learning
rate iteration. Although SGD-MA could not compete
with SGD-MS in test accuracy, it showed better training
performance and faster convergence in higher learning
rate.
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Figure 7: Comparison results of different algorithms for CIFAR 100 dataset under the Resnet model. (a) Loss. (b) Accuracy.

Table 3: Results’ summary.

Model/epoch number Algorithm (SGD-) Resnet Densenet
Depth ∗ 116 100
CIFAR10/10 M/MS/MA 70.79/77.21/73.15 79.60/81.87/87.23
CIFAR10/100 M/MS/MA 90.70/91.10/90.89 91.16/91.32/91.37
CIFAR10/150 M/MS/MA 93.67/93.67/93.44 94.00/93.84/93.81
CIFAR100/10 M/MS/MA 36.37/42.89/44.87 46.68/51.70/49.99
CIFAR100/100 M/MS/MA 65.94/68.79/67.82 68.88/69.01/68.46
CIFAR100/150 M/MS/MA 72.62/73.71/73.31 74.87/71.85/71.98

Computational Intelligence and Neuroscience 9



5. Conclusions

SGD-MS and SGD-MA optimizers proposed in this paper
are good substitutes for the SGD-M optimizer. SGD-MS uses
the internal relationship between curvature radius and
gradient descent and takes radius of curvature as threshold
to realize automatic switching of V, D, and S modes, which
improves the local optimal oscillation, shortens the con-
vergence time, and increases training accuracy. 1e SGD-
MA algorithm introduces the adaptive damping coefficient
on this basis, which improves the convergence speed while
maintaining the good verification accuracy of the SGD-MS
optimizer. As the introduction of additional parameters,
each iteration of this algorithm will take a little more time
than SGD-M algorithm. However, due to the weakening of
local optimum oscillation, the system converges faster, the
total iteration time is shortened, the learning process is
accelerated, and the labour and time cost are greatly saved.
In future work, we will investigate how to associate SGD-MS
and SGD-MA optimizers with adaptive learning rates and
maintain good generalization performance.
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