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-emost advanced method for crowd counting uses a fully convolutional network that extracts image features and then generates
a crowd density map. However, this process often encounters multiscale and contextual loss problems. To address these problems,
we propose a multiscale aggregation network (MANet) that includes a feature extraction encoder (FEE) and a density map
decoder (DMD). -e FEE uses a cascaded scale pyramid network to extract multiscale features and obtains contextual features
through dense connections. -e DMD uses deconvolution and fusion operations to generate features containing detailed in-
formation. -ese features can be further converted into high-quality density maps to accurately calculate the number of people in
a crowd. An empirical comparison using four mainstream datasets (ShanghaiTech, WorldExpo’10, UCF_CC_50, and SmartCity)
shows that the proposed method is more effective in terms of the mean absolute error and mean squared error. -e source code is
available at https://github.com/lpfworld/MANet.

1. Introduction

Crowd counting technology is widely used in video sur-
veillance, crowd management, traffic control, and other
fields as well as at sporting events and political meetings
[1, 2]. Crowd counting methods can also be extended to
indirectly related fields, such as medical image analysis and
animal group behavioral analysis [3]. Although the relevant
research has achieved good results, considerable challenges
persist owing to large-scale variations, heavy occlusion,
background noise, and perspective distortion (Figure 1).

Researchers have proposed different approaches to solve
these problems. For example, numerous multicolumn net-
works have been proposed. Multicolumn architectures in-
volve several columns of a convolutional neural network
(CNN) with different receptive fields to accommodate
multiscale crowds [4–7]. Although these methods have
achieved good results, the multicolumn structure induces a
considerable increase in parameters and computational
costs. Furthermore, the similarity of column networks re-
sults in a high redundancy of learning features [8–10]. -e
goal of our architecture is to retain more multiscale

contextual features. -e proposed network comprises an
encoder that can extract and retain the required features and
a decoder that gradually recovers the image resolution and
interprets the encoded features.

A feature contains different information at different
layers of the neural network. Most crowd counting methods
use a 1× 1 convolution to transform the feature of the last
layer of the network into a density map. However, these
methods ignore the relation between different layer features.
We use dense connections to improve the structure and
integrate the features of different layers.

Dilated convolution can effectively expand the receiving
field without increasing the number of parameters and
computational costs [11–13]. Li et al. [8] proposed a con-
gested scene recognition network (CSRNet) by combining
VGG-16 and dilated convolution layers to aggregate mul-
tiscale contextual features. Chen et al. [14] proposed a scale
pyramid network, which contains different dilated convo-
lution rates in parallel for multiscale information extraction.
Although these methods show good performance in many
tasks, the design of dilated convolution modules usually has
excessive memory size requirements.-erefore, the modules
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must consider efficiency and effectiveness through pro-
cessing operations.

In this study, we propose a multiscale aggregation
network (MANet) for crowd counting (Figure 2). -e
proposed MANet is an encoder-decoder network that uses a
densely connected multiscale aggregation module in the
encoder, referred to as a cascade scale pyramid network
(CSPN). -e CSPN contains four parallel dilated convolu-
tions with different dilated rates for capturing the features of
different receptive fields. -e features obtained using the
four dilated convolutions are further fused in a cascade
manner to improve the ability of the network to handle
multiscale features and anti-interference. Furthermore, the
dimension reduction operation reduces redundant com-
putations that are typical of deep convolution networks. To
restore the resolution of the features, we use deconvolutions
with different parameters to act on the features of different
layers in the decoder. -e loss function contains a Euclidean
loss and a mean squared error loss, which form a valid
training loss function. We conduct experiments using four
major datasets (ShanghaiTech [7], SmartCity [9], Worl-
dExpo’10 [15], and UCF_CC_50 [16]), achieving excellent
results.

2. Related Work

A series of excellent crowd counting methods have been
proposed [1, 17]. -ese methods can be categorized as
detection-based, regression-based, and CNN-based
approaches.

2.1. Detection-Based Approaches. Earlier, detection-based
methods used a sliding window for target detection, in-
cluding the manual extraction of the features of the human
body or specific parts [18], such as the Haar wavelet [19] and
histogram of oriented gradients [20]. To improve detection
accuracy, researchers have analyzed crowd scenes by
detecting specific body parts rather than the entire body [21].
Recently, researchers have attempted to employ CNN-based

object detectors to count objects, such as YOLO [22], SSD
[23], and faster RCNN [24]. However, even if only a pe-
destrian’s head or smaller body parts are detected, these
methods often cannot handle high-density crowd scenes
owing to occlusion and illumination in crowded scenes.

2.2. Regression-Based Approaches. Regression-based ap-
proaches for crowd counting cannot accurately locate pe-
destrians. However, they can provide more accurate count
estimates in crowded scenes. In particular, the regression-
based approaches include feature-based regression ap-
proaches and density estimation-based regression
approaches.

2.2.1. Feature-Based Regression Approaches. Feature-based
regression approaches attempt to extract various features
from local image blocks [25–27]. Foreground or textural
features are used to generate low-level information. Similar
methods have been formulated based on Fourier analysis,
SIFT [28], and interest points [29]. Feature-based regression
methods handle occlusion and clutter effectively. However,
they ignore scale information.

2.2.2. Density Estimation-Based Regression Approaches.
Density estimation-based regression methods consider the
relation between image features and data regression. Lem-
pitsky and Zisserman [30] proposed a linear mapping
method considering local region features and density maps.
Pham et al. [31] attempted to use random forest regression to
realize a nonlinear map. Based on these studies, many
density estimation-based regression methods for crowd
counting have been developed [17, 32, 33].

2.3. CNN-Based Approaches. CNN-based approaches have
achieved good results in crowd counting. A detailed CNN-
based counting survey can be found in the literature [17].
Sam et al. [4] adopted a density classifier to classify image

Figure 1: Images and ground truth density maps using the ShanghaiTech dataset [11].
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patches into appropriate CNN columns as inputs. A pre-
vious study proposed a CP-CNN [6] that involves two-
column networks to extract both global and local contextual
information. -e network maps the input data to a high-
dimensional feature map and then inputs the previously
extracted contextual information set into the final fusion
network to obtain a high-quality density map. In SAANet
[34], global and local attention weights are used to capture
variations in the crowd density between and within images.
-is proposed attention mechanism for network usage can
automatically focus on local and global scales. SANet [10]
attempted to extract multiscale head information from each
image using a similar front-end network module. Further-
more, the final density map is obtained by deconvolution
using different-sized convolution kernels in each layer.
Although these CNN-based methods show good crowd
counting ability, they have several disadvantages. -ese
networks with redundant parameters and slow convergence
are difficult to train to solve the problems of multiscale and
occlusion.

Some studies have proposed crowd counting methods.
DecideNet [35] used detection-based methods to count
crowds in sparse crowd scenes and regression-based
methods to count crowds in dense scenes and adopted an
attention mechanism to regulate the use of the two methods.
Sam et al. [36] proposed locating each person in a dense
crowd using a bounding box to size the identified heads and
then counting them. Another study proposed an adaptive
dilated convolution that can learn a continuous hole rate at
different positions in the image to effectively match changes
in the scale at different positions [37]. PACNN [38]
framework eliminates the need for a density regression
paradigm. -e specific operation involves encoding the
input as perspective perception layers and adaptively
combining multiscale density maps. Using ASNet [39],
intermediate-density maps and scaling factors are first
generated and then multiplied by the attention mask to

output multiple density maps at different density levels
based on the attentional mechanism.-e final density map is
obtained by combining these density maps.

3. Proposed Approach

An overview of the proposed model is shown in Figure 2. In
this section, we describe the proposed model. In Section 3.1,
we introduce the cascaded scale pyramid network (CSPN).
In Sections 3.2 and 3.3, we describe the feature extraction
encoder (FEE) and density map decoder (DMD), respec-
tively. Network parameters are introduced in Section 3.4.

3.1. Cascaded Scale Pyramid Network (CSPN). -e scale
often varies continuously across the image and shows a large
range. A network structure that achieves better results
usually contains more complex designs. Considering these
challenges, we propose a CSPN, which can balance efficiency
and effectiveness. -e standard convolution can be divided
into two steps [40]. In the first step, pointwise convolution is
used to reduce the dimension. In the second step, multiscale
features are extracted using the spatial pyramid of dilated
convolution. Motivated by this idea, we define the com-
putational process of our module (Figure 3).

First, an M-dimensional input is reduced to a
d-dimensional input using d convolution kernels of
1× 1×M. -en, four dilated convolutions with different
dilated rates are used to parallel compute the feature output
from the previous step; subsequently, four features of the
same size are obtained. Finally, these four features are
cascaded, and the result is added to the original input
features to obtain the final output.

(1) Pointwise convolution converts high-dimensional
features into low-dimensional features, realizing the
fusion of cross-channel information and increasing
the nonlinearity of the network

�e middle layer Encoder

SPPNet

Decoder
DeConv

1*1 Conv 1*1 Conv 1*1 Conv 1*1 Conv 1*1 Conv

CSPM

Figure 2: Architecture of the proposed MANet for crowd counting.
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(2) -e low-dimensional features are calculated using
the parallel dilated convolution with different dilated
rates (d1� 1, d2� 4, d3� 8, and d4�16), which can
rapidly increase and capture multiple receptive field
information. Each dilated convolution in the CSPN
possesses the same number of channels. For a given
feature, the size of the receptive field is 3× 3, 9× 9,
17×17, and 33× 33 for the features extracted using
four dilated convolutions

(3) -e outputs are fused to eliminate the “gridding
issue,” and the output of the scale pyramid is ob-
tained as follows:

M
(s+1)
ot � M

s
ot + M

(s+1)
ot , S> 1, (1)

where Ms
ot represents the fused features of the s-th

layer. -e features are spliced together to obtain the
output of the scale pyramid Mot ∈ RH∗W∗

4
s�1 Cs,

whereW andH represent the width and height of the
feature map, respectively, and Cs represents the
number of output channels for different columns.

3.2. FeatureExtractionEncoder (FEE). We employ SPPNet as
the front-end network of the encoder and input the generated
feature to the CSPN. Four CSPNs, which are connected using
specific rules, are used (Figure 4).-e current CSPN improves
information flow within the underlying network by sharing
the features of the previous CSPN.

If the dense connection method is adopted and each
layer produces k features, k0 + k(i − 1) features will be input
to the i-th layer. Here, k0 is the number of channels in the
input layer and the hyperparameter k is the growth rate of
the network. A larger k value signifies that the amount of
information that flows in the network increases, the ability to
extract features becomes stronger, and the number of model
calculations increases.

Since each layer of the network will receive the features
of all previous layers as inputs, there is a middle layer behind
each densely connected block for dimensionality reduction.
We set the compression factor θ(0< θ≤ 1) for dense con-
nections. When θ � 1, the channel number of output fea-
tures does not change. In the middle layer, all θ values are
considered to be 0.5, implying that the middle layer reduces
the number of output channels to half the number of inputs.

3.3. Density Map Decoder (DMD). CNN-based methods
generate a low-resolution density map during continuous
convolution and pooling, owing to which details of the
crowd are usually lost [10, 14]. We use four fusion layers to
progressively refine the details of the features to obtain a
high-quality density map. Four deconvolutions are used to
restore the image map resolution. When using deconvolu-
tion operations, the number of input channels is the same as
the number of output channels. Finally, we adopt a 1× 1
convolution to generate a high-resolution density map,
which has the same resolution as the input image.

3.4. Loss Function. -e Euclidean distance is used to assess
the difference between the training density map and the
model output density map. Based on this assessment, model
parameters are adjusted to produce a density map that
closely depicts the ground truth.-e Euclidean loss function
can provide an estimation error at the pixel level. -e loss
function is expressed as follows:

LE �
1
2N



N

i�1
F Xi; θ(  − Fi

����
����
2
2, (2)

where F(Xi; θ) denotes the output of MANet, θ represents
the variable model parameters, Xi denotes the input image,
and Fi represents the ground truth result.

In addition, the mean absolute error (MAE) loss func-
tion is introduced to determine the count and estimated
values as follows:

Lc �
1
N



N

i�1
C Ii(  − C′ Ii( 



2
2, (3)

where Ii represents the density map generated usingMANet,
C(Ii) represents the estimated count, and C′(Ii) denotes the
label value. To weigh the loss, the final loss function is
expressed as follows:

Loss � LE + αLc, (4)

where α is the super weight parameter, which was set to 0.01.

4. Experiments

We evaluate the proposed MANet using four datasets
(ShanghaiTech [7], SmartCity [9], WorldExpo’10 [15], and
UCF_CC_50 [16]). First, we introduce the evaluation
metrics, ground truth generation, and training details. -en,
we compare the proposed method with state-of-the-art
methods using these datasets. Finally, we demonstrate the
effectiveness of our module via ablation experiments. -e
experiments were implemented in Pytorch, and the detailed
network configuration is shown (Figure 5).

4.1. Evaluation Metrics. Based on the existing literature, the
evaluation metrics are the MAE and mean squared error
(MSE), which can be used to evaluate the performance of
crowd countingmethods.-eMAE indicates the accuracy of
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Figure 3: Computational process of the cascaded scale pyramid
network.

4 Computational Intelligence and Neuroscience



the count, and the MSE represents the robustness of the
model. -e MAE and MSE are calculated as follows:

MAE �
1
N

Zi − Zi
′


,

MSE �

�������������

1
N



N

i�1
Zi − Zi
′( 
2




,

(5)

where N represents the number of test images, Zi denotes
the actual number of people in the i-th test image, and Zi

′
denotes the corresponding estimated count, i.e., the model
output.

4.2.GroundTruthGeneration. We follow the scheme used in
previous studies [7, 8, 14] to prepare a ground truth density
map. To ensure that the density map adapts to various
conditions of crowd images, it can be expressed as F(x) with
N heads. F(x) is obtained by convolving the delta function
δ(x − xi) with a Gaussian kernel Gσi

(x) normalized to 1:

F(x) � 
N

i�1
δ x − xi(  × Gσi

(x), with σi � βd
i
, (6)

where xi represents per pedestrian head in a pixel, σi rep-
resents the crowd distribution of all the images in the
dataset, β is a constant, and di represents the average dis-
tance of k nearest neighbors of the target. In our experi-
ments, we follow a previously proposed configuration [8].
Certain parameters are set to fixed values
(β � 0.3 and k � 3). -e parameter settings for different
datasets are listed in Table 1.

4.3. Training Details. MANet has an end-to-end structure.
-e training process is very simple. We set the training
batch size to 1. MANet uses standard SGDwith momentum
(0.9) as the optimization method. Furthermore, we employ
a random Gaussian initialization with a 0.01 standard
deviation. -e initial learning rate is set to 1e− 5. -e
learning rate decreases as the number of iterations
increases.

Figure 5: Network configuration. Convolution layer parameters are described as Conv (kernel size)_(number of filters)_(dilated rate),
except Conv1-1 without the dilated rate. TML represents the middle layer. We assign a sequence number to identify each module. For
example, 1-Concat (1-2 CSPN) represents the connection between 1-CSPN and 2-CSPN. 2-TML (48, 24) represents the second TMLmodule
with an input/output channel count of 48 and 24.

CSPN TML CSPN TML CSPN TML CSPN TML

Figure 4: Dense connections in cross-layer connections.
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4.4. Comparisons with State-of-the-Art (SOTA) Methods.
We illustrate the result of our method using four challenging
datasets. -ese datasets include different crowd situations,
such as dense and sparse scenes. We present the density
estimation results generated using MANet and discuss the
problems in the model based on the results.

4.4.1. ShanghaiTech Dataset. ShanghaiTech [7] has 1198
crowd images captured in sparse scenes. -e images are
divided into two datasets: Part_A and Part_B. Part_A
comprises 300 training images and 182 testing images.
Part_B comprises 400 training images and 316 testing
images. -e number of people in the image varies from 9 to
578.

-e test and visualization results obtained using the
ShanghaiTech dataset are listed in Table 2 and illustrated in
Figure 6. On Part_A, our approach outperforms PACNN
[38], the most recently proposed method, by 1.49% and
10.2% in terms of MAE and MSE, respectively. -ese are
good, although not exceptional results. Compared to the
results obtained using PACNN [38], the results obtained
using the proposed method on Part_B are not as good as
those obtained on Part_A. -is is because the image sources
differ. -e images in Part_A were downloaded randomly
from the Internet, and the crowd density is very high. -e
images in Part_B were obtained in street scenes with a low
crowd density and relatively complex backgrounds com-
pared with images in Part_A. Our proposed network handles
the multiscale problem well; however, it does not completely
solve the problem of complex backgrounds. Many latest
studies have added an attentionmechanism, which improves
the effect in some cases [14, 38].

4.4.2. UCF_CC_50 Dataset. UCF_CC_50 [16] contains 50
crowd images with a total of 63974 people. -e number of
annotated people ranges from 94 to 4543 (an average of

1280). Fivefold cross-validation is the most commonly used
method on this dataset.

-e test and visualization results obtained using the
UCF_CC_50 dataset are presented in Table 3 and illustrated
in Figure 7. UCF_CC_50 is a very challenging dataset. It is a
small dataset, and the resolution of the images is not high.
-e images are of pedestrians captured from different
perspectives; therefore, scale variations are obvious. -e
MAE and MSE values obtained using the proposed method
are 240.8 and 311.5, respectively; these values are 7.09% and
7.26% higher than those obtained using SPN [14]. Only some
images in this dataset have background interference. -ese
findings also prove that the proposed method achieves good
results when handling small datasets with large-scale
changes and dense crowds.

4.4.3. WorldExpo’10 Dataset. WorldExpo’10 [15] includes
images captured using 108 different surveillance cameras,
containing 3,980 training frames in 1,132 video sequences,
which can provide the cross scene to evaluate a model. -e
regions of interest are provided for all scenes.

-e test and visualization results obtained using the
WorldExpo’10 dataset are provided in Table 4 and illustrated
in Figure 8. -e dataset is divided into five different scenes
with different degrees of background interference. We tested
each of them, and the average score is 7.86.-e best results are
obtained in S1 and S5, i.e., 2.1 and 3.0, respectively. However,
our results are not as good as those obtained using SOTA in
other scenes [12, 38]. Relative to other datasets, the shooting
distance is long, the crowd does not show obvious multiscale
changes, and the background interference is higher. In this
case, our approach still shows good performance.

4.4.4. SmartCity Dataset. SmartCity [9] contains 50 images.
When collecting data, the shooting angle was high. -e
dataset includes ten scenes such as scenes of a sidewalk and a

Table 1: Parameter settings for different datasets.

Datasets Parameter settings
ShanghaiTech part_A σi � 4
ShanghaiTech part_B σi � 15
WorldExpo’10 σi � 3
UCF_CC_50 Geometry-adaptive kernels
SmartCity σi � 15

Table 2: MAE and MSE results using various methods (ShanghaiTech dataset).

Methods
Part_A Part_B

MAE MSE MAE MSE
Zhang et al. [15] 181.8 277.7 32.0 49.8
MCNN [7] 110.2 173.2 26.4 41.3
CP-CNN [6] 73.6 106.4 20.1 30.1
CSRNet [8] 68.2 115.0 10.6 16.0
SANet [10] 67.0 104.5 8.4 13.6
SPN [14] 61.7 99.5 9.4 14.4
PACNN [38] 66.3 106.4 8.9 13.5
MANet 65.31 95.54 10.2 16.5
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shopping mall. -e images are divided into indoor and
outdoor scenes and contain few pedestrians. -e number of
pedestrians ranges from 1 to 14 (an average of 7.4).

-e test and visualization results obtained using the
SmartCity dataset are presented in Table 5 and illustrated in
Figure 9. -e MAE and MSE values are 8.2 and 9.6, re-
spectively; these values are 4.65% and 17.24% higher than
those obtained using SaCNN [9]. Differing from
UCF_CC_50, the SmartCity dataset is small and the images
have complex backgrounds, which are usually easy to
identify. -e results demonstrate that the proposed model

shows good performance on small datasets with images of
sparse crowds.

As shown in the table, our method obtains the lowest
MAE and MSE values on multiple datasets. -ese results
demonstrate the effectiveness of the proposed method, par-
ticularly in the case of a high-density crowd in an image. -is
observation not only proves the effectiveness of our method
but also demonstrates its robustness. We compare the vi-
sualization results of the proposed method with those ob-
tained using SOTA methods. -e density map produced by
our model is of higher quality and closer to the original map

Figure 6: Comparison of visual results using the ShanghaiTech database. -e first, second, and third columns contain test samples, the
corresponding ground truth, and generated density map, respectively.

Table 3: MAE and MSE results using various methods (UCF_CC_50 dataset).

Methods MAE MSE
Zhang et al. [15] 467.0 498.5
MCNN [7] 377.6 509.1
Switch-CNN [4] 318.1 439.2
CP-CNN [6] 295.8 320.9
CSRNet [8] 266.1 397.5
SANet [10] 258.4 344.9
SPN [14] 259.2 335.9
MANet 240.8 311.5

Computational Intelligence and Neuroscience 7



(Figure 10). -is also proves that our model can retain more
multiscale and contextual information. However, our results
also indicate that the proposed model has some limitations.
Occasionally, objects in the background of an image are
mistakenly classified as pedestrians in a crowd. -ese
phenomena are indicated by boxes outlined in red (Figures 7
and 8). -is type of problemmay lead to other problems with
our model under the background of similar goals, and we
must address this issue through certain mechanisms.

4.5. Ablation Experiments. In this section, we describe
several ablation studies, including the CSPN and dense
connection operations, to demonstrate the effects of dif-
ferent modules in our proposed MANet.

4.5.1. Effectiveness of CSPN. To prove the effectiveness of
the CSPN structure, we conduct multiple ablation exper-
iments. (1) -e last convolution layer in the MCNN is
replaced with the CSPN (MCNN+CSPN). (2) -e last
convolution layer in the MCNN network is replaced with
the SAN of SANet (MCNN+ SAN). (3) -e backend of
CSRNet is replaced with the CSPN (CSRNet + CSPN). (4)
-e CSPN in MANet is replaced by an ordinary convo-
lution (CNet) (Table 6).

Our experiment on MCNN proves that the CSPN is
effective. -e MSE of MCNN is reduced from 110.2 to 92.4,
and the MSE is reduced from 173.2 to 157.5. However, our
effect is similar to that of SAN. Compared with CSRNet, the
results are similar. Moreover, the self-ablation experiment
proved its effectiveness.

Figure 7: Comparison of visual results on UCF_CC_50. -e first, second, and third columns show test samples, the corresponding ground
truth, and the generated density maps, respectively.-e box outlined in red represents an area where we mistook the background for a head.

Table 4: MAE and MSE results using various methods (WorldExpo’10 dataset).

Methods S1 S2 S3 S4 S5 Avg.
Zhang et al. [15] 9.8 14.1 14.3 22.2 3.7 12.9
MCNN [11] 3.4 20.6 12.9 13.0 8.1 11.6
Switch-CNN [7] 4.4 15.7 10.0 11.0 5.9 9.4
CP-CNN [10] 2.9 14.7 10.5 10.4 5.8 8.9
CSRNet [12] 2.9 11.5 8.6 16.6 3.4 8.6
PACNN [38] 2.3 12.5 9.1 11.2 3.8 7.8
MANet 2.1 13.5 9.3 11.4 3.0 7.86
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4.5.2. Effectiveness of Dense Connections. To clarify the
contributions of our proposed dense connections, the fol-
lowing two architectural configurations are evaluated: (1) the
structure with added dense connections is called MANet-1
and (2) the structure without added dense connections is
called MANet-2. -e final results are shown in Table 7.

-e results demonstrate that the incorporation of dense
connections provides better results than not including the
connections. More connections help the model retain fea-
tures; however, the disadvantage is that a large number of
features require more computational resources and training
time.

Figure 8: Comparison of visual results onWorldExpo’10.-e first, second, and third columns show test samples, the corresponding ground
truth, and the generated density map, respectively.-e box outlined in red represents the area where we mistook the background for a head.

Table 5: MAE and MSE results using various methods (Smart City dataset).

Methods MAE MSE
Zhang et al. [15] 40.0 46.2
Sam et al. [4] 23.4 25.2
SaCNN [9] 8.6 11.6
MANet 8.2 9.6

Computational Intelligence and Neuroscience 9



Table 6: CSPN validation results.

Methods ShanghaiTech Part_A
Evaluation MAE MSE
MCNN [7] 110.2 173.2
MCNN+CSPN 92.4 157.5
MCNN+ SAN 95.3 155.7
CSRNet [8] 68.2 115.0
CSRNet +CSPN 66.5 108.6
CNet 96.7 132.3
MANet 65.31 95.54

Table 7: Comparison of different structures using a benchmark dataset.

Methods ShanghaiTech part_A
Evaluation MAE MSE
MANet-1 87.31 108.89
MANet-2 65.31 95.54

Figure 9: Comparison of visual results on Smart City. -e first, second, and third columns contain test samples, the corresponding ground
truth, and the generated density map, respectively.

Image Ground truth MCNN DSNet Ours

Figure 10: Comparison of the visualization results obtained using our method and those obtained using SOTAmethods. From left to right,
test samples, ground truth, and visualization results were obtained using MCNN [7], DSNet [41], and MANet.
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5. Conclusion

In this study, we proposed MANet, an innovative encoder-
decoder structure for crowd counting. MANet comprises a
FEE and a DMD. FEE uses dense connections to integrate
the features extracted from the CSPN, a multiscale aggre-
gation network, to obtain multiscale and contextual infor-
mation. -e DMD adopts deconvolutions and fusion
operations to obtain features containing detailed informa-
tion to realize high-quality density maps. We conducted
numerous experiments on the model using the four datasets.
Experimental results show that the proposed MANet per-
forms well on MAE and MSE. -e focus of future work will
be on increasing the attention mechanism for an improved
distinction between crowds and backgrounds.
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