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High-quality and high-fidelity removal of noise in the Electrocardiogram (ECG) signal is of great significance to the auxiliary
diagnosis of ECG diseases. In view of the single function of traditional denoising methods and the insufficient performance of
signal details after denoising, a new method of ECG denoising based on the combination of the Generative Adversarial Network
(GAN) and Residual Network is proposed. The method adopted in this paper is based on the GAN structure, and it restructures
the generator and discriminator. In the generator network, residual blocks and Skip-Connecting are used to deepen the network
structure and better capture the in-depth information in the ECG signal. In the discriminator network, the ResNet framework is
used. In order to optimize the noise reduction process and solve the lack of local relevance considering the global ECG problem,
the differential function and overall function of the maximum local difference are added in the loss function in this paper. The
experimental results prove that the method used in this article has better performance than the current excellent S-Transform
(S-T) algorithm, Wavelet Transform (WT) algorithm, Stacked Denoising Autoencoder (S-DAE) algorithm, and Improved
Denoising Autoencoder (I-DAE) algorithm. Experiments show that the Root Mean Square Error (RMSE) of this method in the
Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) noise pressure database is 0.0102, and the Signal-to-
Noise Ratio (SNR) is 40.8526 dB, which is compared with that of the most advanced experimental methods. Our method
improves the SNR by 88.57% on average. Besides the three noise intensities for comparison experiments, additional noise
reduction experiments are also performed under four noise intensities in our paper. The experimental results verify the scientific
nature of the model, which is that our method can effectively retain the important information conveyed by the original signal.

1. Introduction

As one of the main components of cardiovascular diseases,
heart disease is extremely harmful, affecting patients’ normal
life, and can be fatal. Electrocardiogram (ECG) is one of the
main techniques for heart disease diagnosis [1, 2], which
mainly reflects the electrical activity of the heart. When the
heart is in good condition, it will show a regular ECG signal
curve. Doctors can make a quick judgment on the heart con-
dition by observing the shape, amplitude, and interval of con-
tinuous heartbeats of the waveform. This is the most effective
and quickest method of monitoring [3, 4], classification [5,
6], and treatment of heart diseases. In practical application,
we find that the collected ECG signal is often mixed with a
lot of noise, which is not conducive to signal analysis. There-
fore, the most important step in data processing is to denoise

the collected signal so as to improve the usability of the
signal.

Traditional noise removal methods do have certain limi-
tations in practical applications. The noise reduction
methods and the types of noise removal are often in a one-
to-one relationship, which cannot meet the actual needs of
ECG signal noise reduction. For example, the Fourier Trans-
form method [7] is usually used in the overall analysis of the
signal. This method can reveal the correlation between the
time domain and frequency domain signals. But at the same
time, there are some requirements that cannot meet the local
detailed analysis of the ECG signal. This Filtering method [7]
can eliminate noise to a certain extent, but sometimes, the
results of the Filtering effect are not satisfactory because the
denoised ECG signal loses its medical value. Traditional ECG
noise reduction methods include Spectrum Decomposition
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[8–10], Fourier Decomposition [11, 12], Filtering [13–15],
Empirical Mode Decomposition [16], and Wavelet Transform
(WT) [17, 18]. Obviously, the traditional noise reduction
methods have poor adaptability to the type of noises, and their
ability to capture local signals is also weak. Compared with
other technologies, Filtering technology has a simpler noise
reduction capability [19]. For example, a low-pass filter can
only allow waveforms below a certain frequency to pass, and
its true noise reduction capability is relatively simple.

Deep learning has attracted more and more in-depth
research studies in the field of ECG noise reduction. The rep-
resentative ones are the Functional Link Neural Network
(FLNN) [20], Wavelet Neural Network (WNN) [21], and
Denoising Autoencoder (DAE) [22]. Among them, FLNN
and WNN are the most widely used, but they can remove
only one type of ECG signal. The Improved Wavelet Neural
Network and WT have improved the single problem of the
abovementioned noise reduction function and can remove
the three kinds of noises of the ECG signal. However,
through the observation of the experimental images, we
found this method will make the ECG signal lose its medical
value, thus not worth further studies. In addition, the Three-
Hidden-Layer Feedforward Neural Network has achieved
good results since the adaptability of the network to other
noises is not discussed, but the experiment is only conducted
on the electrocardiographic signal containing electromag-
netic noise.

We know through research that the current adversarial
denoising is mainly applied in the direction of image noise
reduction [23–25]. The more mature methods include the
Conditional Generative Adversarial Network (CGAN) [26],
Wasserstein Generative Adversarial Network (WGAN)
[27], and Cyclic Generative Adversarial Network (Cycle-
GAN) [28]. Research institutions adopt the adversarial idea
to establish the image noise model. What is representative
is that Divakar and Babu have a lot of thought on the image
denoising work of GAN [29, 30]. Based on GAN, Fu et al.
[31] and Zhao et al. [32] conducted in-depth research studies
on image superresolution, which has been studied many
times in recent years. Through experimental analysis, the
advantages and disadvantages of different networks have

been summarized, and a lot of work on visual images was
done. DAE is an Autoencoder (AE) [33] input that imposes
sparse constraints on hidden units. The advantage of the
deep learning method is that it can learn features from the
data itself without manual intervention, which is worth
learning from.

The Residual Network was proposed by He et al. [34]
through the use of residual blocks to successfully train 152
layers of neural networks. The main idea of ResNet is to
add a direct connection channel which is named Skip-
Connecting [35]. Skip-Connecting can solve the problem of
gradient disappearance in the case of a deep network layer
and, at the same time, help the backpropagation of the gradi-
ent and speed up the training process. The entire model is
trained with an end-to-end method, which simplifies the dif-
ficulties of model training.

In terms of current research, the existing noise reduction
methods have achieved satisfactory results, but there are still
three shortcomings. One is the single function of the existing
denoising methods, and their adaptability to various noises is
not good enough. Second, the existing denoising methods
tend to treat pathological information as noise in the denois-
ing process, which may lose a lot of useful information and
cause serious signal distortion. Third, the existing noise
reduction network ignores the importance of the local corre-
lation and global correlation of the ECG signal.
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Figure 1: A complete heartbeat cycle diagram.
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Figure 2: Normal clean ECG signal graph.
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This article is organized as follows. The second part lists
the contributions. The third part describes the related work.
In the fourth part, the denoising methods of ECG signals
are discussed. The fifth part introduces the Generative
Adversarial Residual Network denoising method in detail,
and the sixth part shows the summary of this paper.

2. Contributions of This Article

This article summarizes the three shortcomings of current
noise reduction technology and uses this as a research point
to conduct the following research studies.

Contributions of this paper are as follows.
Firstly, a new method of ECG noise reduction is pro-

posed. Based on the ability of adversarial networks to learn
differences, we propose a method to use adversarial methods
to establish a new ECG noise reduction view. The network
designed with Residual Network in this paper can greatly
improve the computing speed of GAN, and the Skip-
Connecting structure in the residual block is used to promote
the gradient disappearance during GAN training.

Secondly, we have designed a new model that can remove
multiple mixed noises, which overcomes the problem of the
single function of traditional denoising methods. The pro-
posed model has strong adaptability to various noises. It
can remove the three common noise interferences and mixed
noises in the ECG signal.

Finally, in view of the shortcomings of the existing denois-
ing methods that it is easy to treat pathological information as
noises in the denoising process, the global difference function
and maximum difference function are added to the loss func-
tion to improve the current situation. The local difference
function can greatly capture the original local characteristics
of the signal so that the medical features of the signal to be
reduced can be preserved by adding the maximum difference
function to capture the global features with good performance.

3. Problem

The performance of a complete heartbeat cycle on the ECG is
shown in Figure 1. The ECG signal contains six different
types of waveforms: P, Q, R, S, T, and U [36]. However,
noises are often included in the process of ECG signal acqui-
sition, which will affect doctors’ diagnosis.

Common ECG noises include Electrode Motion Artifacts
(EM), Muscle Artifacts (MA), and Baseline Wander (BW)
[37, 38]. Figure 2 is a waveform diagram of a normal ECG signal
(signal 213 in the MIT-BIH database as an example). Figure 3
shows the ECG signal image after adding three common noises.

We know that the problem of one-dimensional signal
noise reduction can be described as

X ið Þ = S ið Þ +N ið Þ, i ≥ 0, ð1Þ

inspired by [39], where XðiÞ represents a noisy signal, SðiÞ is a
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Figure 3: ECG after adding EM, BW, and MA noise, respectively. (a) MA. (b) EM. (c) BW.
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clean signal, and NðiÞ represents a noise. The purpose of
noise reduction is to suppress noise NðiÞ so that the signal
component in XðiÞ tends to be SðiÞ. Since the ECG signal is a
one-dimensional signal, we can derive the following equation:

S i½ � = X i½ � −N i½ �, i = 0, 1, 2,⋯ð Þ, ð2Þ

where X½i� = ðx1, x2,⋯,xkÞ, S½i� = ðs1, s2,⋯,skÞ, and N½i� = ðn1
, n2,⋯,nkÞ. They represent the noisy signal, clean signal, and
noise represented by a one-dimensional vector. i represents
the number of samples, and k represents the length of a
sample. The idea of ECG noise reduction in this paper is
to obtain high-quality clean signals S½i� from noisy signals
X½i�.

Table 1: Important mathematical symbols and their meanings in this paper.

Mathematical
symbol

Description

X ið Þ A signal containing noise

S ið Þ Clean signal

N ið Þ Noise

X i½ � A signal with noise represented by a one-dimensional vector

S i½ � A clean signal represented by a one-dimensional vector

N i½ � Noise represented by a one-dimensional vector

i Number of samples

k The length of a sample

Pdata Distribution of the original clean data

Pg The distribution of the generated data for the generator

S Original clean signal

S′ The signal generated by the generator

X A signal containing noise

N Noise

G Xð Þ The signal generated by the generator

D G Xð Þð Þ The discriminator network determines the probability that the G Xð Þ signal comes from the original clean signal rather
than the signal generated by the generator

Loriginal Generate the original loss function of the network

Ldist The global difference function represents the global difference between the generated signal and the original signal

Ldist−max
The local maximum difference function represents the maximum difference between the generated signal and the

original clean signal to represent the local difference

α Coefficient of Ldist
β Coefficient of Ldist−max

D Sð Þ The probability that the signal S is the original clean signal is obtained from the discriminator network

LG The loss function of the generator network

LD The loss function of the discriminator network

H xð Þ The underlying mapping value of the expected output

F xð Þ Residual

x The input of the residual block

W Convolved with 1 ∗ 1 operation, to adjust the dimensions of x

Si Original clean signal

S′i The signal generated by the generator

I Number of samples

Normalized Min-Max scaling

Xmax The maximum value of x

Xmin The minimum value of x
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4. Methodology

In this section, we will introduce the experimental ideas of
this article in three parts. Section 4.1 describes the overall
network framework used in this article. Section 4.2 intro-
duces the loss function of this article. Section 4.3 systemati-
cally introduces the Generative Adversarial Residual
Network used in this article. Table 1 is summarized for
references.

4.1. Overall Structure. GAN is proposed by Goodfellow [39].
It consists of a generator network and a discriminator net-
work [37]. With noise from the signal generator into the net-
work, the generator generates pseudorandom samples from
close to the true input. The action discriminator is generated
by the generator to distinguish true and false. The overall
structure is shown in Figure 4. Like the original GAN paper
[39], the green line represents the distribution of the
denoised ECG data, the black dashed line represents the

(a) (b)

(c)

. . .

(d)

Figure 4: The adversarial learning process of the GAN model. This figure can be understood as (a) an adversarial pair close to convergence,
similar to Pg and Pdata. The discriminator is used to judge whether the two distributions are the same. Then, the discriminator is trained. As
shown in (b), the discriminator is continuously improving the ability to identify a clean ECG signal and denoising the raw ECG signal. In (c),
as the adversarial progresses, the signal generated by the generator gradually approaches the original clean signal received in the
discrimination. In (d), through enough feedback, the generator has the ability to compete with the discriminator.

Noisy
signals 

Noise
reduction 

De-noised
signals 

ResNet

De-noised signals/original clean signals

ResNet

Real/fake?
Loss backward 

Loss backward 

Generator

Original clean signals

Discriminator

Loss LD 

Loss LG 

Figure 5: The overall structure of the method in this paper.
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distribution of the original clean ECG data, and the blue
dashed line represents the discriminator.

We use the figure (Figure 2) in [39] to explain the princi-
ple of signal noise reduction in this article. S is the original

clean signal. S′ is the denoising ECG data generated by the
generator. We will define the distributionPg of the generated
data and the distribution Pdata of the clean raw data.

In Figure 5, we show this article’s proposed method. In
this article, we add the residual block structure to the gener-
ator network, and in the discriminator network, we use the
full ResNet architecture.

4.2. Loss Function. The smaller the difference between the
original clean signal S and the signal S′ obtained after noise
reduction by the generator, the more similar the denoised
signal is to the original clean signal, which can be expressed
as

G Xð Þ = S′ →
a:c:a:p

S = X −N: ð3Þ

X is the signal with noise, S is the original clean signal, N
is the noise, and S′ is the signal generated by the generator.
According to the characteristics of the adversarial network,
the generator and the discriminator learn the distribution
of ECG noise through continuous games. The denoising of
the ECG signal is completed through adversarial training.
Then, the above formula is rewritten as

G Xð Þ = S′ →
a:c:a:p

S = X −N: ð4Þ
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Figure 6: The overall structure of the generator network.
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The original loss function of the generator is expressed as

Loriginal = log 1 −D G Xð Þð Þð : ð5Þ

GðXÞ means that the noisy signal X is used as the input
signal. DðGðXÞÞ represents the probability that the discrimi-
nator network will determine the GðXÞ signal that comes
from the original clean signal instead of the generator
denoised signal.

Considering that the difference between the signal gener-
ated by the generator network and the original clean signal
reflects the noise reduction effect, it can be added to the loss
function. Use Ldist to represent the overall difference between
the generated signal and the original signal. The overall dif-

ference function formula can be expressed as

Ldist =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
I

i=1
S′k − Sk
�� ��2

vuut : ð6Þ

Local features play an important factor in measuring the
effectiveness of denoising. Define the maximum generated
difference signal with the original clean signal to a partial dif-
ference. The local maximum difference function is repre-
sented by Ldist−max to be added to the loss function of the
generating network. When Ldist−max is smaller, it means that
the denoising ECG signal retains more original useful
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Figure 8: The four-layer expansion structure of the discriminator network. (a) Schematic diagram of the layer 1 structure. (b) Schematic
diagram of the layer 2 structure. (c) Schematic diagram of the layer 3 structure. (d) Schematic diagram of the layer 4 structure.
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Figure 9: Continued.
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9Computational and Mathematical Methods in Medicine



information. The formula is

Ldist−max = max S1′ − S1
�� ��, S2′ − S2

�� ��,⋯, Sk′ − Sk
�� ��� �

: ð7Þ

Therefore, the loss function LG of the generator is defined
as

LG = Loriginal + αLdist + βLdist−max, ð8Þ

where α = 0:7 and β = 0:2. The discriminator network is used
to classify the generated signal from the original signal.
Therefore, the definition uses the crossover loss function to
represent the loss function of the discriminator network,
which is expressed as

LD = log 1
1 +D Sð Þ

� �
+ log 1 − 1

1 +D G Xð Þð Þ
� �

: ð9Þ

DðSÞ represents the probability that the signal S obtained
by the discriminator is the original clean signal. In the gener-
ator network loss function, by joining the local difference
function to capture the signal local features and save useful
medicine and by joining the overall difference functions to

capture the performance of good stable global features and
use the training process, the noise reduction of ECG signal
partial correlation is solved and the noncomprehensive
global correlation problem is considered. The generator
may better understand the overall distribution of noise in
the signal and local noise. Meanwhile, the ECG denoised sig-
nal is kept as the original clean signal as much as possible.

4.3. Generative Adversarial Residual Network. Figures 6 and 7,
respectively, describe the network structure of the generator
and the discriminator. In this article, ten original clean signals
are added to the SNR of 0dB, 1.25dB, and 5dB to generate
the noisy data needed for our experiment. For the entire Resid-
ual Network of the discriminator, the first layer of convolution
uses a 3 ∗ 3 size template, the step size is 2, the padding is 3, and
then Batch Normalization (BN), Rectified Linear Unit (ReLU),
and Max pooling are performed. These constitute the first part
of the convolution plate. From the first floor to the fourth floor,
each floor is different, which is shown in detail in Figure 6.
From Figure 8, we can see the residual Skip-Connecting struc-
ture in the Residual Network, some of which are solid lines and
a small part are dashed lines. The solid line connection part
means the number of channels is the same; that is, the figures
are 3 ∗ 3 ∗ 64 feature maps. Since the number of channels is
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Figure 9: The effect of removing three types of single noise in the ECG signal. (a) The effect diagram of the ECG signal to remove MA noise.
(b) The effect diagram of the ECG signal to remove BW noise. (c) The effect diagram of the ECG signal to remove EM noise.
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Figure 10: Continued.
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Figure 10: Continued.
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Figure 10: Continued.
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the same, the calculation method can be used as follows:

H xð Þ = F xð Þ + x: ð10Þ

The dashed link part indicates that the number of channels
is different. The feature map is connected from 3 ∗ 3 ∗ 64 to
3 ∗ 3 ∗ 128. Since the number of channels is different, the cal-

culation method is

H xð Þ = F xð Þ +Wx: ð11Þ

What is particularly important here is that the input of the
residual block is x. After the first layer is linearly changed and
activated, the residual FðxÞ is the output. After the second layer
is linearly changed, before activation, FðxÞ is added to the input
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Figure 10: The effect of removing four types of mixed noise in the ECG signal. (a) The effect diagram of the ECG signal to remove BW+EM
noise. (b) The effect diagram of the ECG signal to remove BW+MA noise. (c) The effect diagram of the ECG signal to remove EM+MA noise.
(d) The effect diagram of the ECG signal to remove BW+EM+MA noise.

Table 2: The average SNR and RMSE of the denoising results of different noise types.

Original SNR EM BW MA EM+BW EM+MA BW+MA EM+BW+MA Average

0 dB
SNR 28.4265 30.8755 36.4455 28.3683 28.3405 28.6274 27.8639 29.8497

RMSE 0.0176 0.0058 0.0087 0.0132 0.0037 0.0132 0.0128 0.0107

1.25 dB
SNR 32.8632 33.7478 31.1670 31.7310 31.9113 32.3009 31.7726 32.2134

RMSE 0.0121 0.0101 0.0157 0.0112 0.0089 0.0151 0.0145 0.0125

5 dB
SNR 60.0185 66.9607 57.6807 58.4480 59.5482 62.5019 58.8453 60.5719

RMSE 0.0109 0.0046 0.0065 0.0058 0.0068 0.0088 0.0076 0.0073
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value x of this layer, and then the output is activated after acti-
vation. The path added to x before the activation of the second
layer output is what we call Skip-Connecting. The underlying
mapping value of the expected output is HðxÞ. When the net-
work has learned a more saturated accuracy, the so-called
residual FðxÞ =HðxÞ − x. Then, we can say that the input x is
similar to the output HðxÞ, and the learning goal of this phe-
nomenon is transformed into identity mapping learning. In
formulas with different numbers of channels, W is a convolu-
tion operation with 1 ∗ 1, which is used to adjust the dimension
of x.

The Residual Network forms a basic residual block by add-
ing Skip-Connecting on the original convolutional layer so that
the learning ofHðxÞ is expressed asHðxÞ = FðxÞ +Wx. At the
same time, the accumulation of the residual block structure
solves the problem of small gradients or gradient explosions
to a certain extent. The Skip-Connecting in the Residual Net-
work breaks the layer-by-layer transfer characteristic of the tra-
ditional network. It is about learning the error rate for the

entire model by superimposing a multilayer network problem
rather than fall, but rise provides a new direction.

5. Results and Discussion

In this section, we will introduce the experiment in four
parts. We explain in Section 5.1 that we have an experimental
environment, experimental parameters, and experimental
datasets. In Section 5.2, we use different types of noise and
different intensities to conduct experiments. Section 5.3 is a
comparison between the experimental method of this paper
and the results of the four most advanced methods. In Sec-
tion 5.4, we did a verification experiment to prove that our
method can achieve denoising efficiently and accurately.

5.1. Experimental Environment

5.1.1. Experimental Configuration. This experiment is con-
ducted on a workstation. There are 8 GPU nodes on this

Table 3: Noise reduction results of removing MA noise.

D-N 103 105 111 116 122 205 213 219 223 230 Average

S-T

0 dB
SNR 10.41 10.02 8.21 8.19 9.2 8.32 8.79 10.05 9.95 8.7 9.184

RMSE 0.302 0.316 0.389 0.389 0.347 0.384 0.363 0.314 0.318 0.367 0.3489

1.25 dB
SNR 10.89 10.42 8.66 8.51 9.67 8.61 9.67 10.61 10.56 9.01 9.661

RMSE 0.286 0.301 0.369 0.375 0.328 0.371 0.329 0.295 0.297 0.355 0.3306

5 dB
SNR 12.63 12.76 9.94 9.75 11.69 9.91 12.53 12.89 13.44 10.15 11.569

RMSE 0.234 0.23 0.318 0.325 0.26 0.32 0.236 0.227 0.213 0.311 0.2674

WT

0 dB
SNR 19.66 22.09 20.02 12.44 6.71 21.23 11.83 7.33 18.58 18.03 15.79

RMSE 0.044 0.040 0.050 0.100 0.182 0.044 0.096 0.149 0.055 0.066 0.083

1.25 dB
SNR 16.87 22.49 19.69 14.40 7.43 20.24 13.27 8.68 20.32 18.86 16.23

RMSE 0.060 0.039 0.052 0.080 0.167 0.049 0.081 0.127 0.045 0.060 0.076

5 dB
SNR 15.79 24.11 18.81 19.15 11.14 16.51 18.94 14.55 21.41 21.14 18.16

RMSE 0.067 0.032 0.057 0.046 0.109 0.075 0.042 0.065 0.040 0.046 0.058

S-DAE

0 dB
SNR 18.92 22.97 22.90 17.92 17.96 20.03 18.18 16.18 20.29 21.11 19.65

RMSE 0.046 0.036 0.036 0.053 0.047 0.050 0.044 0.049 0.043 0.046 0.045

1.25 dB
SNR 19.07 23.30 22.88 18.48 18.09 20.03 18.70 17.66 21.21 21.22 20.06

RMSE 0.045 0.035 0.036 0.049 0.042 0.050 0.041 0.044 0.039 0.045 0.043

5 dB
SNR 19.31 24.12 22.95 20.61 21.73 20.14 20.15 20.05 23.69 21.33 21.41

RMSE 0.044 0.032 0.035 0.038 0.031 0.050 0.036 0.033 0.029 0.044 0.037

I-DAE

0 dB
SNR 21.38 24.72 23.15 19.22 19.57 24.23 19.59 18.80 22.91 22.58 21.62

RMSE 0.034 0.030 0.035 0.045 0.040 0.031 0.038 0.039 0.032 0.038 0.036

1.25 dB
SNR 22.41 24.86 23.27 20.22 20.02 24.49 19.78 19.63 23.41 22.60 22.07

RMSE 0.031 0.029 0.034 0.040 0.038 0.030 0.037 0.034 0.030 0.038 0.034

5 dB
SNR 23.33 25.13 23.33 22.41 20.63 24.67 20.63 21.97 24.21 22.63 22.89

RMSE 0.027 0.028 0.034 0.031 0.036 0.030 0.034 0.027 0.028 0.038 0.031

P-M

0 dB
SNR 37.2055 34.0517 31.8193 34.9030 43.2030 42.8721 34.2109 34.0860 35.6879 36.4056 36.4445

RMSE 0.0052 0.0033 0.0138 0.0052 0.0009 0.0076 0.0104 0.0090 0.0085 0.0227 0.0087

1.25 dB
SNR 32.3036 29.0673 26.9470 29.2554 39.6230 31.5070 33.2954 29.2394 29.0645 31.3678 31.1670

RMSE 0.0137 0.0167 0.0165 0.0141 0.0168 0.0035 0.0205 0.0116 00141 0.0296 0.0157

5 dB
SNR 59.5742 56.4896 53.6625 56.7139 51.5972 58.6631 58.9455 57.7230 63.8640 59.5742 57.6807

RMSE 0.0155 0.0004 0.0071 0.0005 0.0062 0.0010 0.0092 0.0058 0.0039 0.0155 0.0065

15Computational and Mathematical Methods in Medicine



workstation, and each node is configured with 1 Tesla V100
(32GB) and 48GB of memory. Each node is a Compute Uni-
fied Device Architecture (CUDA) 10.1 environment. We are
experimenting with code in py3.5-pytorch1.5.1-gpu. The
computer model used in the experiment was Lenovo Legion
Y7000P2020H. The CPU configuration is Intel i7-10750H
2.60GHz. GPU is RTX2060. RAM is 16.0GB. Storage is
1TB SSD. The battery has 4 cells, and a 64-bit operating sys-
tem, as well as an x64 processor, is adopted. The operating
system is the home version of Windows 10.

5.1.2. Performance Metrics. The evaluation index is based on
the Root Mean Square Error (RMSE) and Signal-to-Noise
Ratio (SNR), defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
i
〠
I

i=1
Si′− Si

� �2

vuut , ð12Þ

SNR = 10 lg ∑I
i Sið Þ2

∑I
i=1 Si′− Si
� �2 : ð13Þ

Si represents the original clean signal, S′i is the ECG sig-
nal after noise reduction processing, and i represents the
number of sample points. RMSE describes the degree of sim-
ilarity between the two data. The smaller the RMSE value, the
smaller the difference between the two. SNR represents the
ratio between the signal and the noise contained in the signal.
The larger the SNR, the better the noise reduction effect.

5.1.3. Datasets. The ECG signals used in this study are
derived from the MIT-BIH arrhythmia database jointly
established by the Massachusetts Institute of Technology
and Beth Israel Hospital and the MIT-BIH noise stress test
database of PhysioBank as the experimental dataset. The
MIT-BIH arrhythmia database is the data for diagnosing
arrhythmia. The library contains 48 fully labeled two-lead

Table 4: Noise reduction results of removing EM noise.

D-N 103 105 111 116 122 205 213 219 223 230 Average

S-T

0 dB
SNR 6.41 6.13 5.45 5.47 5.87 5.59 5.83 6.05 6.21 6.29 5.932

RMSE 0.478 0.493 0.534 0.533 0.509 0.525 0.51 0.498 0.489 0.484 0.5053

1.25 dB
SNR 7.47 7.35 6.4 6.32 6.96 6.47 7.06 7.17 7.45 7.48 7.013

RMSE 0.423 0.429 0.478 0.483 0.449 0.475 0.444 0.438 0.424 0.423 0.4466

5 dB
SNR 10.32 10.4 8.54 8.32 9.60 8.55 10.12 10.04 10.74 10.45 9.708

RMSE 0.305 0.302 0.374 0.384 0.331 0.374 0.312 0.315 0.290 0.300 0.3287

WT

0dB
SNR 9.51 21.47 9.34 9.63 9.71 18.29 15.02 13.15 18.11 11.99 13.62

RMSE 0.138 0.044 0.171 0.138 0.128 0.063 0.067 0.076 0.058 0.132 0.102

1.25 dB

SNR 10.37 23.08 9.65 10.56 9.51 20.30 15.80 13.85 21.10 12.93 14.72

RMSE 0.125 0.037 0.165 0.124 0.132 0.050 0.061 0.070 0.040 0.119 0.092

SNR 13.07 28.37 14.96 13.77 8.65 21.36 19.20 16.20 21.05 15.91 17.55

5 dB RMSE 0.091 0.020 0.090 0.086 0.145 0.043 0.040 0.054 0.029 0.084 0.068

S-DAE

0 dB
SNR 18.94 23.45 22.33 19.18 17.87 20.08 19.20 17.53 22.66 20.79 20.20

RMSE 0.047 0.035 0.038 0.046 0.047 0.050 0.039 0.045 0.033 0.048 0.043

1.25 dB

SNR 19.07 23.82 22.43 19.69 18.98 20.11 19.74 18.32 23.20 20.91 20.63

RMSE 0.046 0.033 0.038 0.043 0.042 0.049 0.037 0.041 0.031 0.047 0.041

SNR 19.30 24.56 22.66 21.00 21.16 20.24 20.98 20.08 21.39 21.40 21.58

5 dB RMSE 0.041 0.030 0.037 0.037 0.033 0.049 0.033 0.034 0.027 0.044 0.037

I-DAE

0 dB
SNR 22.75 23.70 23.390.034 21.34 17.70 23.47 19.33 18.38 23.17 22.40 21.56

RMSE 0.029 0.033 0.035 0.050 0.033 0.040 0.041 0.031 0.039 0.037

1.25 dB

SNR 22.97 23.94 23.57 21.82 18.76 23.57 19.79 19.07 23.55 22.54 21.96

RMSE 0.029 0.033 0.033 0.033 0.042 0.033 0.037 0.038 0.030 0.038 0.035

SNR 23.45 24066 23.65 23.08 20.81 23.66 20.69 21.01 24.00 22.81 22.78

5 dB RMSE 0.027 0.030 0.033 0.030 0.035 0.030 0.034 0.030 0.028 0.037 0.031

P-M

0 dB
SNR 28.6703 27.5628 24.2700 28.5737 35.9686 30.8198 26.7305 25.0369 25.0499 31.5824 28.4265

RMSE 0.0120 0.0344 0.0204 0.0117 0.0136 0.0079 0.0314 0.0110 0.0128 0.0205 0.0176

1.25 dB
SNR 35.4617 31.2446 27.0822 32.8933 39.5386 35.5220 30.2365 29.8235 31.0589 35.7703 32.8632

RMSE 0.0085 00035 0.0166 0.0110 0.0135 0.0044 0.0193 0.0114 0.0139 0.0186 0.0121

5 dB
SNR 62.7194 53.7522 57.0236 59.0236 64.4991 6739579 58.7358 60.0746 55.3242 60.8227 60.0185

RMSE 0.0030 0.0102 0.0229 0.0229 0.0077 0.0107 0.0011 0.0100 0.0010 0.0178 0.0109
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ECG datasets with a duration of 30 minutes. The record is
digitized with a sampling frequency of 360Hz per channel,
and its resolution is 11 bits, indicating that the range exceeds
10mV. This experiment selects EM, BW, and MA noise
records from the MIT-BIH noise stress test database as noise
data. These three categories represent the three main types of
ECG noise. In the experimental part of this article, by setting
different Signal-to-Noise Ratios, noise data is added to the
original ECG signal for training and testing for subsequent
experiments. In this experiment, ten groups of ECG records
in MIT-BIH will be selected for the experiment; their num-
bers are 103, 105, 111, 116, 122, 205, 213, 219, 223, and 230.

Taking into account the learning characteristics of the
neural network, the ECG signal is normalized by the normal-
ization method:

Normalized Xkð Þ = Xk − Xmin
Xmax − Xmin

: ð14Þ

Xmax and Xmin represent the maximum and minimum
values of x, respectively.

According to the periodicity of the ECG signal, we can
reasonably divide and use the recording of the ECG signal.
Select 10 groups of original ECG signal data; each group of
data has 2 ∗ 650000 data points. In this article, we use the
upper signal data for analysis and verification. When divid-
ing samples, we consider that in order to ensure that each
sample contains at least one ECG cycle (one ECG cycle has
310 sample points), the data is divided with 512 sample
points as a cycle. The segmented data is added to 0 dB,
1.25 dB, and 5dB noise intensity EM, MA, BW, EM+MA,
EM+BW, BW+MA, and BW+EM+MA noise signals to form
the training test required for the experiment. A total of 26649
experimental data, according to the training set ðtraining set +
validation setÞ: test set = 9 ð9 : 1Þ: 1 for the experiment.

In the same way, the signal datasets numbered 103, 105,
111, 116, 122, 205, 213, 219, 223, and 230 under EM noise
are constructed in sequence.

Table 5: Noise reduction results of removing BW noise.

D-N 103 105 111 116 122 205 213 219 223 230 Average

S-T

0 dB
SNR 11.4 11.56 9.22 9.01 10.58 9.31 11.57 11.55 12.14 11.68 10.802

RMSE 0.269 0.264 0.346 0.354 0.296 0.342 0.264 0.265 0.247 0.261 0.2908

1.25 dB
SNR 12.06 12.23 9.61 9.35 11.17 9.7 12.22 12.22 12.95 12.35 11.38

RMSE 0.249 0.245 0.331 0.341 0.276 0.327 0.245 0.245 0.225 0.241 0.2725

5 dB
SNR 13.54 13.77 1041 10.04 12.38 10.46 13.77 13.65 14.8 13.89 12.672

RMSE 0.21 0.205 0.302 0.315 0.24 0.3 0.205 0.208 10.182 0.202 0.2369

WT

0 dB
SNR 14.87 31.53 18.41 20.00 9.12 22.64 20.83 18.69 17.34 22.23 19.57

RMSE 0.074 0.014 0.060 0.042 0.138 0.037 0.034 0.040 0.063 0.041 0.054

1.25 dB

SNR 14.88 31.91 18.42 20.06 8.54 22.73 20.47 20.22 17.40 22.22 19.69

RMSE 0.074 0.013 0.060 0.042 0.147 0.037 0.036 0.034 0.063 0.041 0.055

SNR 14.90 32.71 18.43 20.10 8.22 22.91 19.11 21.44 17.51 22.18 19.75

5 dB RMSE 0.074 0.012 0.060 0.041 0.153 0.036 0.042 0.029 0.062 0.041 0.055

S-DAE

0 dB
SNR 20.38 24.90 23.04 18.84 19.48 20.08 19.92 19.30 22.94 20.53 20.94

RMSE 0.038 0.029 0.035 0.047 0.040 0.050 0.036 0.037 0.031 0.049 0.039

1.25 dB
SNR 20.55 23.27 23.07 19.53 19.90 20.12 20.32 19.83 23.74 20.67 21.30

RMSE 0.038 0.028 0.035 0.043 0.038 0.049 0.035 0.035 0.029 0.048 0.038

5 dB
SNR 20.77 25.47 23.03 21.30 21.00 20.30 21.34 21.15 25.41 21.03 22.11

RMSE 0.037 0.027 0.035 0.034 0.034 0.048 0.031 0.030 0.024 0.046 0.035

I-DAE

0 dB
SNR 23.78 25.40 23.31 23.51 20.07 20.07 21.30 23.02 24.25 22.72 22.74

RMSE 0.026 0.028 0.034 0.027 0.050 0.050 0.032 0.024 0.027 0.037 0.034

1.25 dB

SNR 23.82 25.42 23.32 23.59 20.08 20.08 21.36 23.31 24.41 22.74 22.81

RMSE 0.026 0.028 0.034 0.027 0.050 0.050 0.032 0.023 0.027 0.037 0.033

SNR 23.89 25.45 23.35 23.76 20.08 20.08 21.46 24.08 24.64 22.79 22.96

5 dB RMSE 0.025 0.027 0.034 0.026 0.050 0.050 0.031 0.021 0.026 0.004 0.033

P-M

0 dB
SNR 29.7683 29.6663 28.3794 29.7951 38.2541 28.5087 33.0877 27.3092 30.1730 33.8132 30.8755

RMSE 0.0043 0.0033 0.0093 0.0029 0.0031 0.0064 0.0067 0.0088 0.0067 0.0066 0.0058

1.25 dB

SNR 36.0105 34.6248 31.5593 33.9729 41.2726 28.5956 33.6194 30.7387 32.2545 34.82944 33.7478

RMSE 0.0135 0.0032 0.0111 0.0087 0..0147 00183 0.0093 0.0075 0.0075 0.0069 0.0101

SNR 67.7912 62.1766 63.4736 62.2024 69.2484 70.6564 70.0779 64.3347 68.2729 71.3725 66.9607

5 dB RMSE 0.0013 0.0020 0.0007 0.0105 0.0004 0.0013 0.0006 0.0103 0.0007 0.0172 0.0040
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In the same way, construct a dataset of single noise (BW,
MA), double noise (EM+MA, BW+MA, and BW+EM), and
three noise (EM+MA+BW) superimposed in sequence.

5.1.4. Training Parameters. After each convolutional layer in
this article, BN is used before the activation function. The
batch size is 64, and the learning rate is set to 0.1. When
the training error is not shrinking, reduce the learning rate
to one-tenth of the original and continue training. The train-
ing process is carried out for 200 rounds. When designing the
building block for the residual function, we use a three-layer
stack, which uses 1 ∗ 1, 3 ∗ 3, and 1 ∗ 1 convolutions. Among
them, 1 ∗ 1 convolution is used to reduce dimensionality and
then increase dimensionality; that is, use 1 ∗ 1 convolution to

solve problems with different dimensions. 3 ∗ 3 corresponds
to a bottleneck; that is, fewer input and output dimensions
can be achieved. In the experiment, the number of training
samples of each type of noise is 23984; the total number of
test samples is 2664.

5.2. Noise Reduction of Different Noise Types. Select 103, 105,
111, 116, 122, 205, 213, 219, 223, and 230 records in theMIT-
BIH arrhythmia database. Select EM, BW, and MA noise sig-
nals from the MIT-BIH noise stress test database and add
them to each record with a SNR of 0 dB, 1.25 dB, and 5dB.
In addition, considering the mixing of multiple noise types,
they are classified and named as EM+BW, EM+MA, BW
+MA, and EM+BW+MA.
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Figure 11: Comparison of SNR of different methods for BW noise with a SNR of 1.25 dB.
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Figure 12: Comparison of SNR of different methods for EM noise with a SNR of 1.25 dB.
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Figure 9 is the result of ECG denoising in our Generative
Adversarial Residual Network model, including EM noise,
BW noise, and MA noise. In the subpicture, the first row is
the noisy ECG signal, the second row is the original clean
ECG signal, and the third row is the clean signal after noise
reduction. For a more intuitive comparison, we stack the
effect pictures together, as shown in the fourth row of effect
pictures. It can be seen from the figure that the denoised
ECG signal can coincide well with the original ECG signal.
These results show that our method has a very good effect
on removing single noise.

Figure 10 depicts the result of ECG noise reduction used
to remove mixed noise. The ECG signal types of mixed noise
are divided into seven types in this article. The top line is the
noise signal, the next is the original clean ECG signal, the bot-
tom is the denoised ECG signal, and the last line is the visual
superimposition effector graph. As shown in Figure 7, the
signal after noise reduction can be highly coincident with
the original signal. The experimental results show that our
method has a good effect on the denoising of mixed noise.

Table 2 shows the average SNR and RMSE of the denois-
ing results for different noise types. Ten groups of ECG signals
are added to the noise reduction effect of 0 dB, 1.25dB, and
5dB under 7 kinds of noises. It can be seen from Table 2 that
our model has achieved impressive results by adding different
intensities of noise to the same noise environment with differ-
ent types of noises. For a signal containing only one type of
noise, our method can achieve a SNR of up to 66.9607dB.
For signals with mixed noises, this method can achieve a
SNR of 62.5019dB. When 0dB noise is added, the highest
SNR after noise reduction can reach 36.4455dB. When SNR
= 1:25 dB, the noise can reach 33.7478dB after noise reduc-
tion. When SNR = 5 dB noise is added, the highest SNR after
noise reduction can reach 66.9607dB.

5.3. Comparison with Existing Methods. The S-T algorithm
[40], WT algorithm [41], S-DAE algorithm, and I-DAE algo-

rithm [22] are compared with our proposed method (P-M).
Tables 3–5 show the result of SNR and RMSE of the different
noise types (i.e., MA noise, EM noise, and BW noise) of the
10 records mentioned in Section 5.1. We observe that our
proposed method achieves the highest SNR and the lowest
RMSE average in all cases. The average SNR result of MA
and BW can be above 30dB; for EM noise, the average SNR
result is more than 28dB.

In Figures 11–13, we assume that the input signal con-
tains MA noise, EM noise, and BW noise, and the SNR is
1.25 dB. From Figures 9, 10, and 14, we can see that our pro-
posed method all achieves the highest SNR. Specifically, most
of the average SNR reached 28dB.

In order to verify the network model, the following two
sets of verification experiments are carried out. The experi-
mental results are shown in Figures 15 and 16. Figure 15
shows the noise reduction effect of different ECG signals with
the same noise type under different noise intensity interfer-
ences. Figure 16 is a graph of the noise reduction effect for
the same ECG signal with different types and different inten-
sities of noises. As shown in Figures 15 and 16, we can see
that our network model performs well in removing single
noises or mixed noises. It shows good performance for vari-
ous noises and multiple intensity types of noises. Our model
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Figure 13: Comparison of SNR of different methods for MA noise with a SNR of 1.25 dB.
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overcomes the singularity of traditional noise reduction func-
tions, and the method proposed in this article can remove
multiple noises.

5.4. Model Noise Reduction Effect Verification. In addition to
adding the traditional 0 dB, 1.25 dB, and 5dB, this article also
has data of 1 dB, 2 dB, 3 dB, and 4dB for effect verification,
and the experimental results are all good. The experimental
data is shown in Table 6. It can be seen that the model in this
article has a good noise reduction effect on noise with differ-
ent SNR and is applicable to data with different noise types.

Previous work used the methods of Decomposition,
Transformation, and Filtering to denoise the ECG signal.
However, these studies have three shortcomings. First, the

existing noise reduction methods do not take into account
the locality and global correlation of ECG signals. Second,
the adaptability to various noises is not good enough. Third,
it may trigger severe signal distortion in the course of this
research. We have established our experimental methods in
accordance with the above three shortcomings. This paper
establishes a new point of view with adversarial methods; that
is, adversarial methods have the ability to learn the difference
between input and output. This view makes it possible to
denoise ECG signals with adversarial methods. We added
Ldist and Ldist−max to the loss function of the generated net-
work to increase the local and overall grasp of the noise
reduction signal. We propose an adversarial ECG signal
denoising method, and our method has an excellent
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Figure 15: The average noise reduction effect of seven kinds of noises in ten groups of ECG signals.

70

60

50

40

30

20

10

0

SN
R

The average SNR value of the ten signals with seven kinds of noise respectively

103 105 111 116 122 205 213 219 223 230

Data number

0dB
1.25dB
5dB
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denoising effect for all kinds of noisy signals. A large number
of experiments verify the superiority of the model’s noise
reduction effect. As shown in Table 7, our method improves
the SNR by 88.57% on average.

6. Conclusion

This article describes a new method for ECG signal denois-
ing. The high-quality noise reduction of the ECG signal is
realized, and the characteristic distribution of noise is learned
through the adversarial network.

First, this article improves the original adversarial net-
work structure, adds the residual block structure to the gen-
eration network, and uses the ResNet structure in the
discrimination network. All of these improvements acceler-
ate the training process while improving the stability of net-
work optimization and have stronger generalization
capabilities than general networks.

Second, in the aspect of feature layer normalization, this
article carries out batch processing operations. It is conve-
nient to adjust the data distribution in the hidden layer, mak-
ing the network easier to train.

Third, the residual block and Skip-Connecting structure
are added to the network model in this paper. The introduc-
tion of the improved network structure effectively suppresses
the defect that the gradient explodes or disappears easily in
the training process of the counter network itself, which
greatly reduces the possibility of gradient explosion and dis-
persion during training, thereby improving the stability of
network optimization.

Fourth, we have improved the traditional loss function.
Through the network model noise reduction effect verifica-
tion experiment, it is known that the loss function used in
this paper has achieved excellent results under different types
of noises with different intensities.

But for now, the theory of learning differences based on
adversarial methods has not been clearly established. The
classification operation can be added to the output part after
noise reduction to further verify the noise reduction effect of
the network model, which will be the focus of our future
work.

Certain achievements have been made in noise reduction
of the ECG signals, yet further research studies are still
needed, which will focus on the following aspects:

(1) A good signal noise reduction method performs bet-
ter in ECG signal classification. Inspired by [42], we
will combine the denoising and classification of
ECG signals for further research studies. Noise
reduction can improve the classification accuracy,
and the classification result is used to verify the per-
formance of the noise reduction method

(2) The research results in ECG noise reduction can pro-
vide support for the development of other industries.
For example, the progress in noise reduction can
improve the accuracy of the ECG measurement
device. In the next step, the proposed noise reduction
method will be applied to the ECG signal acquisition
process of the twelve-lead wearable ECG monitor
that is actually involved in the research and develop-
ment. In this way, the practicality and feasibility of
the research results can be further verified. Because
the ECG signal interaction method collected by the
12-lead wearable ECG monitoring suit developed by
our team is a cloud platform, the blockchain-based
medical data protection proposed in [43] is also one
of the research directions in the future

(3) The data noise reduction method proposed in this
paper is not limited to its application in the field of
ECG signals. The proposed method can also be
applied to other one-dimensional signal noise reduc-
tion, such as the processing of noise data in ocean
data [44]. Data denoising methods are also applicable
in the field of big data preprocessing. For example, as
stated in [45], according to different service require-
ments to expand big data processing, it can provide
more accurate valuable data. Such data processing
ideas are consistent with the ideas of this article
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Table 7: Compared with the most advanced method, the noise
reduction effect of this experimental method is improved by
percentage.

SNR/noise type MA noise EM noise BW noise

0 dB 68.57% 31.85% 35.77%

1.25 dB 41.23% 49.65% 47.95%

5 dB 151.99% 163.47% 191.64%

Average 87.26% 86.66% 91.79%

Table 6: Model experiment results under different noise types and
different noise intensities.

SNR/noise
type

MA EM BW
SNR RMSE SNR RMSE SNR RMSE

0 dB 34.3956 0.0002 34.4056 0.0003 34.1810 0.0004

1 dB 38.1268 0.0006 37.1836 0.0003 37.6323 0.0007

1.25 dB 31.1282 0.0018 31.4057 0.0008 31.1545 0.0016

2 dB 40.2612 0.0009 39.2438 0.0008 40.1673 0.0009

3 dB 42.2612 0.0009 43.5693 0.0002 43.6502 0.0006

4 dB 46.2873 0.0004 45.6912 0.0005 40.4056 0.0006

5 dB 51.1128 0.0009 53.2246 0.0011 52.2459 0.0010

Average 40.5079 0.0007 40.6705 0.0005 41.3008 0.0009
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