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Background. Atherosclerosis (AS) is a type of yellow substance containing cholesterol in the intima of large and middle arteries,
which is mostly caused by fat metabolism disorders and neurovascular dysfunction. Materials and Methods. The GSE100927 data
got analyzed to find out the differentially expressed genes (DEGs) using the limma package in R software. Gene Ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the DEGs were assessed by the Database for Annotation,
Visualization, and Integrated Discovery (DAVID). The Search Tool for the Retrieval of Interacting Genes (STRING) visualized the
Protein-Protein Interaction (PPI) network of the aggregated DEGs. GSEA software was used to verify the biological process.
Result. We screened 1574 DEGs from 69 groups of atherosclerotic carotid artery and 35 groups of control carotid artery,
including 1033 upregulated DEGs and 541 downregulated DEGs. DEGs of AS were chiefly related to immune response,
Epstein-Barr virus infection, vascular smooth muscle contraction, and cGMP-PKG signaling pathway. Through PPI networks,
we found that the hub genes of AS were PTAFR, VAMP8, RNF19A, VPRBP, RNF217, KLHL42, NEDD4, SH3RF1, UBE2N,
PJA2, RNF115, ITCH, SKP1, FBXW4, and UBE2H. GSEA analysis showed that GSE100927 was concentrated in RIPK1-
mediated regulated necrosis, FC epsilon receptor fceri signaling, Fceri-mediated NF KB activation, TBC rabgaps, TRAF6-
mediated induction of TAK1 complex within TLR4 complex, and RAB regulation of trafficking. Conclusion. Our analysis reveals
that immune response, Epstein-Barr virus infection, and so on were major signatures of AS. PTAFR, VAMP8, VPRBP, RNF217,
KLHL42, and NEDD4 might facilitate the AS tumorigenesis, which could be new biomarkers for diagnosis and therapy of AS.

1. Background

Atherosclerosis (AS) is a slow progressive disease that occurs
in the coronary arteries, carotid arteries, cerebral arteries,
renal arteries, and other large and middle arteries [1]. It is
also frequently seen in the cardiovascular and cerebrovascu-
lar systems [2]. Approximately 20 million people die from
diseases caused by AS each year, and the onset age of AS is
becoming younger [3]. The AS symptoms differ from the vas-
cular diseases and the ischemia degree of the involved organs
[4]. The etiology of AS is very complex, involving hyperlipid-
emia, hypertension, smoking, diabetes, obesity, immune
damage, and genetic factors [5]. In the early stage of onset,
patients generally take drugs and appropriate exercise to con-
trol the progression of the disease; those who are severely ill

require surgery [6]. Due to the complex etiology of the dis-
ease and multiple complications, it is necessary to determine
the biomarkers of AS for improving the treatment of patients
and reducing the risk of the disease.

The high-throughput gene microarray analysis method
has been applied to disease research by more and more
researchers, making it possible to analyze the transcriptome
and genome of species in a detailed and complete picture
[7–10]. Although microarray technology can simultaneously
detect thousands of quantitatively expressed gene transcripts
from cells or tissues, it lacks reliability and independent sta-
tistical analysis [11]. In studying the molecular mechanism
of the disease, we need to integrate the best technical means
to identify potential diagnostic and therapeutic targets, which
will bring great benefits to the diagnosis and therapy of AS.
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Figure 1: Heat map of GSE100927 gene expression profile. The color from yellow to blue indicates the expression of DEGs from high to low.
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Figure 2: BP and KEGG enrichment analyses of upregulated DEGs. The abscissa represents the P value, and the ordinate represents the BP
terms and KEGG channels.
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In this study, we obtained the GSE100927 data which
contained 69 groups of the atherosclerotic carotid artery
and 35 groups of control carotid artery. Through the GEO2R
analysis of these samples, it was concluded that differentially
expressed genes (DEGs) were classified into upregulated and
downregulated genes. Then, the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) was used
to enrich the pathways of these DEGs in the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG). Subsequently, based on the online Search Tool
for the Retrieval of Interacting Genes (STRING) and Cytos-
cape, the Protein-Protein Interaction (PPI) network of
upregulated DEGs and downregulated DEGs was built and
the hub genes were analyzed. Finally, in order to further ver-
ify the biological functions of genes in AS patients, the path-
ways of these genes in REACTOME were enriched and
analyzed by Gene Set Enrichment Analysis (GSEA). The
above research results may provide effective biomarkers for
AS patients and improve AS therapies.

2. Materials and Methods

2.1. Microarray Data. We downloaded GSE100927 data
from the Gene Expression Omnibus (GEO, http://www.

ncbi.nlm.nih.gov/geo) database and saved it in TXT format.
The GSE100927 gene expression profile contained a total of
104 data samples, which were 69 groups of the atheroscle-
rotic carotid artery and 35 groups of control carotid artery,
which was used as a basis for subsequent research.

2.2. Identification of DEGs. In this study, the GEOquery and
limma R packages in the Bioconductor project can be used
to analyze and process the raw data [12]. We set P < 1e −
12 and FC > 1 as the selection criteria for upregulated DEGs
and P < 1e − 12 and FC < 1 for downregulated DEGs. The
subsequent results were displayed using the volcano map
made by ImageGP.

2.3. Enrichment Analysis of GO and KEGG Pathways of
DEGs. GO is a database established by the Gene Ontology
Consortium that applies to various species and provides a
limited description of gene or protein functions. It is catego-
rized into three parts: Cellular Component (CC), Molecular
Function (MF), and Biological Process (BP) [13]. KEGG is a
pathway-related database that integrates genomic, chemical,
and system function information [14]. In this study, we used
the DAVID (https://david.ncifcrf.gov) database to delve into
the BP of DEGs in GO and the pathway in KEGG.
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Figure 3: BP and KEGG enrichment analyses of downregulated DEGs. The abscissa represents the P value, and the ordinate represents the
BP terms and KEGG channels.
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Figure 4: Continued.
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2.4. Construction of the PPI Network and MCODE Plugin
Analysis. The STRING (https://string-db.org/) database
could seek for interactions between known proteins and pre-
dicted protein interactions [15]. In order to explore the rela-
tionship between DEGs, we separately evaluated the
upregulated and downregulated DEGs based on the STRING
database. After that, based on Cytoscape (https://cytoscape
.org/), a graphical display network software for analysis

and editing, we built PPI networks for DEGs. Finally, we
analyzed the MCODE plugin to determine the hub genes.

2.5. GSEA. REACTOME (https://reactome.org/) is a signal
pathway database similar to KEGG, which provides users
with knowledge visualization, interpretation, and analysis
of bioinformatics [16]. GSEA is a gene-by-gene comparison
technique for genome-wide expression profile chip data
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Figure 4: Analysis of PPI network and modules for upregulation of DEGs. (a) PPI network constructed by Cytoscape. (b) Important
modules obtained by MCODE plugin. The upregulated hub genes are RTAFR and VAMP8.
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Figure 5: Continued.

6 Computational and Mathematical Methods in Medicine



[17]. To further explore the potential functions of genes in
AS patients, we analyzed the enrichment of genes in the
REACTOME pathway.

3. Results

3.1. Identification of DEGs. The GSE100927 gene expression
profile we downloaded contained 69 groups of atheroscle-
rotic carotid artery and 35 groups of control carotid artery.
According to the adjusted P value and the filtering condi-
tions of FC, we identified 1033 upregulated DEGs and 541
downregulated DEGs. The top 10 most significant upregu-
lated DEGs were IBSP, MMP9, ACP5, CHI3L1, CCL3L3,
IGLL5, DHRS9, CCL3, SPP1, and SLAMF7, respectively.
The top 10 most significant downregulated DEGs were
PLA2G2A, MYOC, PI16, SCARA5, VIT, APOD, HSPB7,
WNT11, XLOC_013983, and AOX1, respectively. Figure 1
shows the cluster distribution of 1574 DEGs in 104
samples.

3.2. GO and KEGG Enrichment Analyses of Upregulated
DEGs. Through the enrichment analyses of GO and KEGG
on the upregulated DEGs, we could conclude from the
results in Figure 2 that these DEGs were enriched in BP
in neutrophil activation involved in immune response,
neutrophil-mediated immunity, neutrophil degranulation,
cytokine-mediated signaling pathway, regulation of immune
response, positive regulation of cytokine production, cellular
response to interferon-gamma, cellular response to cytokine
stimulus, and antigen receptor-mediated and interferon-
gamma-mediated signaling pathways. In KEGG, they are
enriched in lysosome, osteoclast differentiation, phagosome,
Epstein-Barr virus infection, tuberculosis, allograft rejection,
leishmaniasis, chemokine signaling pathway, viral myocardi-
tis, and type I diabetes mellitus.

3.3. GO and KEGG Enrichment Analyses of Downregulated
DEGs. In BP, downregulated DEGs gathered in mesonephric
duct development, neuron projection development, regula-
tion of cytoskeleton organization, mesonephric tubule devel-
opment, ureteric bud development, heart development,
negative regulation of cyclin-dependent protein serine/-
threonine kinase activity and cellular response to growth fac-
tor stimulus, regulation of peptidyl-lysine acetylation, and
cyclin-dependent protein serine/threonine kinase activity
(Figure 3). It could be seen from the results in Figure 3 that
the downregulated DEGs enriched ten pathways, namely,
vascular smooth muscle contraction, regulation of actin
cytoskeleton, diabetic cardiomyopathy, proteoglycans in
cancer, adrenergic signaling in cardiomyocytes, fatty acid
degradation, synthesis and degradation of ketone bodies,
Hippo, cGMP-PKG, and oxytocin signaling pathways.

3.4. PPI Network of Upregulated DEGs and Identification of
Hub Genes. Figure 4(a) is the PPI network constructed by
upregulated DEGs. The network consisted of 608 nodes
and 3121 edges. Due to too many genes involved, in order
to screen out hub genes more accurately, we selected genes
with high degree scores for MCODE analysis. According to
Figure 4(b), it could be seen that the graph has 76 nodes
and 876 edges. The first two genes with the highest score
value were identified as the upregulated hub genes, which
were PTAFR (degree = 41) and VAMP8 (degree = 33).

3.5. PPI Network of Downregulated DEGs and Identification
of Hub Genes. The PPI network of downregulated DEGs was
composed of 387 nodes and 10001 edges (Figure 5(a)). In
order to screen out the hub genes that are downregulated
DEGs, we selected 13 genes to form an interactive network
with a total of 13 nodes and 78 edges (Figure 5(b)). On the
basis of these 13 genes, we found that the degrees of
RNF19A, VPRBP, RNF217, KLHL42, NEDD4, SH3RF1,

FBXW4

UBE2H

SKP1

ITCH

RNF115

PJA2

UBE2N

SH3RF1

NEDD4

KLHL42
RNF217 VPRBP

RNF19A

(b)

Figure 5: Analysis of PPI network and modules for downregulation of DEGs. (a) PPI network constructed by Cytoscape. (b) Important
modules obtained by MCODE plugin. The downregulated hub genes are RNF19A, VPRBP, RNF217, KLHL42, NEDD4, SH3RF1,
UBE2N, PJA2, RNF115, ITCH, SKP1, FBXW4, and UBE2H.

7Computational and Mathematical Methods in Medicine



Enrichment plot:
REACTOME_RIPK1_MEDIATED_REGULATED_NECROSIS

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
 (S

ig
na

l2
N

oi
se

)

0.6
0.5
0.4

0.3

0.2

0.1
0.0

1.0 'CASE’ (positively correlated)

'CONTROL' (negatively correlated)

0.5

0.0

−0.5

Zero cross at 10372

−1.0
0 5.000

Enrichment profile
Hits
Ranking metric scores

10.000

Rank in ordered dataset

15.000 20.000

(a)

Ra
nk

ed
 li

st 
m

et
ric

 (S
ig

na
l2

N
oi

se
)

'CONTROL' (negatively correlated)

'CASE’ (positively correlated)

Zero cross at 10372

Rank in ordered dataset

1.0
0.5

0.0

−0.5
−1.0

0 5.000 10.000 15.000 20.000

En
ric

hm
en

t s
co

re
 (E

S) 0.5

0.4

0.3

0.2

0.1

0.0

Enrichment plot:
REACTOME_FC_EPSILON_RECEPTOR_FCERI_SIGNALING

Enrichment profile
Hits
Ranking metric scores

(b)

Figure 6: Continued.
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Figure 6: Enrichment analysis of the REACTOME pathway based on GSEA: (a) RIPK1-mediated regulated necrosis; (b) FC epsilon receptor
fceri signaling; (c) Fceri-mediated NF KB activation; (d) TBC rabgaps; (e) TRAF6-mediated induction of TAK1 complex within TLR4
complex; (f) RAB regulation of trafficking.
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UBE2N, PJA2, RNF115, ITCH, SKP1, FBXW4, and UBE2H
were all 12. Therefore, these 13 genes could be regarded as
downregulated hub genes.

3.6. GSEA. In order to have a deeper understanding of the
gene function in AS patients, we conducted an enrichment
analysis of the REACTOME pathway through GSEA.
According to Figures 6(a)–6(f), the genes in AS patients
were enriched in 6 pathways, namely, RIPK1-mediated regu-
lated necrosis, FC epsilon receptor fceri signaling, Fceri-
mediated NF KB activation, TBC rabgaps, TRAF6-mediated
induction of TAK1 complex within TLR4 complex, and RAB
regulation of trafficking.

4. Discussion

AS refers to the yellowish atherosclerotic lipids accumulating
in the artery intima; it brings multiple complications like
coronary heart disease [18]. The characteristic is that the
affected arteries start from the intima. If the patient’s condi-
tion is mild, it generally does not affect the quality of life and
life expectancy [19]. However, the prognosis of AS must be
closely related to the complications of the heart, brain, and
kidneys. Severe AS can endanger major organs, such as angina
pectoris, acute myocardial infarction, heart failure, renal per-
fusion blood flow reduction and kidney necrosis, cerebral
infarction, peripheral AS, and aortic aneurysm [20]. Due to
the various difficulties and uncertainties in the diagnosis
and treatment of AS, the prognosis of AS is often poor [21].
Therefore, it is urgent to find key genes and signal pathways
related to improve the AS diagnosis efficiency and cure rate.

Through analysis, we discovered that DEGs in AS were
mainly involved in immune response, Epstein-Barr virus
infection, vascular smooth muscle contraction, and cGMP-
PKG signaling pathway. Samson et al. proposed that AS
was featured with chronic inflammation and changes in
the immune response [22]. The modification of low-
density lipoprotein would lead to variation in its function
and activate the innate immune system and adaptation
[23]. Previous studies have shown that Epstein-Barr virus
(EBV) is a ubiquitous oncogenic virus, which causes about
2% of cancers to occur by regulating the activities of a variety
of host cells [24]. Early-life EBV infection can result in infec-
tious mononucleosis, a self-limiting lymphoproliferative ill-
ness [25]. Huang et al. believed that EBV infection was
related to the development of human malignancies [26].
Xiong et al. found that the senescence and apoptosis of vas-
cular smooth muscle cells were involved in the vulnerability
of atherosclerotic plaques. Stable plaques were characterized
by low vascular smooth muscle cell content and low extra-
cellular matrix content. Unstable plaque rupture with coro-
nary thrombotic occlusion was a fatal complication of AS,
which could result in acute coronary syndromes [27]. Stud-
ies by Kovács et al. have shown that the cGMP-PKG signal-
ing pathway mediated many processes, such as regulating
the relaxation and contraction of vascular smooth muscle
cells, antiheart hypertrophy, anti-AS, and antivascular injur-
y/restenosis [28]. The importance of CGMP-PKG pathway
regulation is confirmed by more and more evidence.

In our study, we aimed to identify biomarkers of AS and
uncover their biological functions through constructing PPI
networks. Through the Cytoscape software plugin, we have
identified that the hub genes related to AS were mainly
PTAFR, VAMP8, VPRBP, RNF217, KLHL42, and NEDD4.
Many studies have shown that PTAFR (platelet-activating
factor receptor) promotes tumorigenesis, angiogenesis, and
metastasis [29]. In addition to participating in the produc-
tion of cytokines and chemokines, PTAFR plays an active
role in the progression of atherosclerotic plaques. Chen
et al. pointed out that VAMP8 (vesicle-associated membrane
protein 8) was a trap and had been found in a variety of
important cellular activities [30]. VAMP8 is significantly
overexpressed in human glioma specimens and can be used
as a new indicator of glioma prognosis and treatment [31].

The GSEA results based on all gene expression informa-
tion revealed that gene set GSE100927 was significantly
enriched in 6 pathways, namely, RIPK1-mediated regulated
necrosis, FC epsilon receptor fceri signaling, Fceri-mediated
NF KB activation, TBC rabgaps, TRAF6-mediated induction
of TAK1 complex within TLR4 complex, and RAB regulation
of trafficking. Meng et al. pointed out that RIPK1 was an
important mediator of cell death and inflammatory response
downstream of TNFR1 [32]. Under the stimulation of TNF-
α, TNFR1 was a powerful proinflammatory cytokine that
participates in the occurrence of various inflammations and
degenerative diseases [33]. RIPK1-DD-mediated dimeriza-
tion was the key to promote the activation of RIPK1 during
the process of tumor necrosis factor-α-stimulated cell transi-
tion from complex I to complex II [34]. In addition, the
potential crucial genes need further validation by RT-qPCR
in clinical samples. Finally, the mechanisms in which these
genes play are not completely clear. More evidence is
required to find out the biological foundation.

5. Conclusion

In summary, our research identified 1574 DEGs, including
1033 upregulated DEGs and 541 downregulated DEGs.
Functional and pathway enrichment analyses exhibited that
DEGs of AS were concentrated in immune response,
Epstein-Barr virus infection, vascular smooth muscle con-
traction, and cGMP-PKG signaling pathway. The hub genes
of AS were PTAFR, VAMP8, RNF19A, VPRBP, RNF217,
KLHL42, NEDD4, SH3RF1, UBE2N, PJA2, RNF115, ITCH,
SKP1, FBXW4, and UBE2H. GSEA analysis revealed RIPK1-
mediated regulated necrosis, FC epsilon receptor fceri sig-
naling, Fceri-mediated NF KB activation, TBC rabgaps,
TRAF6-mediated induction of TAK1 complex within TLR4
complex, and RAB regulation of trafficking. These hub genes
and signaling pathways may be related to the occurrence and
development of AS and can be used to determine bio-
markers of AS and explore the treatment of AS.
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