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Semantic mining is always a challenge for big biomedical text data. Ontology has been widely proved and used to extract semantic
information. However, the process of ontology-based semantic similarity calculation is so complex that it cannot measure the
similarity for big text data. To solve this problem, we propose a parallelized semantic similarity measurement method based on
Hadoop MapReduce for big text data. At first, we preprocess and extract the semantic features from documents. Then, we
calculate the document semantic similarity based on ontology network structure under MapReduce framework. Finally, based
on the generated semantic document similarity, document clusters are generated via clustering algorithms. To validate the
effectiveness, we use two kinds of open datasets. The experimental results show that the traditional methods can hardly work
for more than ten thousand biomedical documents. The proposed method keeps efficient and accurate for big dataset and is of

high parallelism and scalability.

1. Introduction

Recently, researchers pay much attention to semantic infor-
mation discovery. Semantic data mining has been intro-
duced into various fields of text mining, such as text
clustering [1, 2], text classification [3, 4], information extrac-
tion [5-7], named entity recognition [8-10], and sentiment
analysis [11-13]. Machine learning is the most commonly
used method in text mining. In the latest research for text
classification, ensemble strategy is often applied, which can
capture multiple characteristics from complex text data
[14-17].

For text clustering, with the continuous growth of data
scale, it poses a challenge for people to mine information
hidden in big text data. Since the similarities between texts
are required before clustering, it is imperative to explore
effective methods of computing similarity under the big data
background [18].

Document clustering is an important application in the
text clustering domain which helps people navigate the
interested documents conveniently [19, 20]. Detecting the
text similarity is of great importance in document clustering,
which directly affects the performance of clustering. Numer-
ous studies about similarity detection have been proposed,
including vector-based [21-23] and ontology-based [24,
25]. The vector-based methods change the text into vector
representation and then view the cosine similarity between
vectors as the text similarity. The ontology-based methods
use a structural knowledge representation network to
describe the meanings and relationships of concepts. Since
the vector-based methods ignore the semantic information
between words, the ontology-based method attracts much
attention at present [26].

An ontology is a hierarchical structure in which concepts
are represented as nodes. And the nodes are connected with
some relationships such as “is a” and “part of.” Thus, the
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semantic similarity between concepts can be quantified in an
ontology by detecting the node correlation in the structure.
Existing ontology-based semantic similarity measurements
can be divided into four categories. The first type is path-
based, which takes the path distance between nodes in the
structure as a measure of correlation. Bulskov et al. [27] used
the path length between two nodes in the ontology. The path
length is computed by the edges connecting the nodes.
Wang [28] gave precomputed weights to edges on the basis
of Buskov’s method. The second type is information content
(IC) based. Information content is the amount of informa-
tion that a concept expresses, which can be computed from
the ontology and corpus. The more a concept occurs, the less
information content it has. Resnik [29] took the IC value of
the least common ancestor (LCA) of the two nodes as the
semantic similarity. Lin [30] extended the method by nor-
malizing the IC value of the LCA using the IC value of both
nodes. The third type is depth-based. Leacock and Cho-
dorow [31] and Li et al. [32] took the depth of nodes in
the ontology into account since the depth of nodes repre-
sents the information specificity. The fourth type is hybrid.
Hybrid methods use more than one class of information.
Jiang and Conrath [33] and Zhao and Wang [34] combined
the IC and depth of nodes to compute the similarity.

In the domain of biomedical text mining, Medical Sub-
ject Headings (MeSH) is one of the most commonly used
ontologies, which contains 29,638 MeSH headings arranged
hierarchically in a tree structure by 2020 [35, 36].

Nowadays, with the rapid development of biomedicine,
the amount of biomedical literature grows rapidly. Even if
people narrow the search scope, a lot of literatures are
retrieved. For instance, over the past five years, PubMed
(http://pubmed.ncbinlm.nh.gov) has indexed more than
900 hundred biomedical citations by querying “cancer” in
all fields. In addition, due to the complexity of ontology-
based semantic similarity calculation, computing semantic
similarity between a big number of documents leads to low
efficiency. Our experiments show that the existing methods
can hardly work with more than ten thousand documents.
However, clustering is more valuable when the amount of
data is larger.

To solve these problems, we proposed a method on the
basis of Hadoop MapReduce. Hadoop is a framework that
allows for distributed processing across clusters of com-
puters. MapReduce is a module of Hadoop, allowing the par-
allel processing of large data sets. Traditionally, the
document similarity is computed pair by pair, which causes
redundant computation. The proposed method parallelizes
the process of computing document similarity for the pur-
pose of reducing the computational redundancy and
increasing the amount of data that can be processed.

2. Materials and Methods

2.1. Definition. The set of documents to be clustered is
denoted by D(D={d,,d,,--,d,}). Similarly, the set of
MeSH headings is denoted by M(M = {m,, m,,---,m,}).
In this article, we define the MeSH headings as the semantic
features of biomedical documents since the MeSH headings
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TaBLE 1: An example of a biomedical document (PMID: 10496010)
with corresponding MeSH headings and tree number of nodes.

MeSH heading Tree number

. G02.111.222
DNA repair
G05.219
Genetic diseases, inborn C16.320
B01.050.150.900
Humans .649.313.988.400
.112.400.400

describe the subject of each article in MEDLINE. Thus, we
use a set of MeSH headings to represent a document: d =
{my ,my_,---,m }, where j is the index of MeSH headings.

In the MeSH ontology, each MeSH heading is mapped to
one or more nodes associated with tree numbers. The deeper
the node is, the more specific the information is. The MeSH
Tree nodes are denoted by V(V = {v,,v,, ---,v,,}). Similarly,
a set of nodes are used to represent a MeSH heading: m =
{le’ i j"}, where j is the index of nodes.

Table 1 shows an example of a document with MeSH
headings and corresponding tree number of nodes.

Define Sim(-, -) a function that outputs the similarity
between two inputs. For example, Sim(v,v') outputs the
similarity between two nodes, and Sim(m, d) outputs the
similarity of a MeSH heading to a document. Define Ica(v,
v’) outputs the LCA (least common ancestor) of two nodes
in the MeSH ontology.

In MapReduce programming model, data is represented
as key-value pairs. The key-value pair is denoted by <k, v >.
Generally, a MapReduce task mainly consists of three stages:
map, shuffle, and reduce. The input file is first divided into
multiple splits through the input format, and each split will
be assigned a map task. The map task processes the input file
line by line and outputs intermediate key-value pairs: <k,
v, >. Shuffle is a process after the map task. Shuffle copies
data from the map task to the reduce task, sorts the data
according to the key value, and aggregates data with the
same key: <k,, list(v) > . The reduce task processes the shuf-
fled data line by line and then outputs new key-value pairs:
<k, vy >.

2.2. Overview. The workflow of the proposed method is as
Figure 1 shows. The input is the biomedical documents,
and the output is the document cluster. The details are as
follows:

(1) Preprocessing. The first step is to extract the semantic
features of each document. The second step is to
transform the data to put together documents that
have the same semantic feature by using MapReduce

(2) MapReduce-Based Semantic Similarity Calculation.
Calculate the MeSH heading similarity in advance
and then calculate the document similarity with the
average maximum match
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FiGure 1: The workflow of the proposed method.

Data transformation
Input: <d, list(m)>
Output: <m, list(d)>
Notation: Write (k, v) outputs <k, v>
Class mapper
Method map (d, list(m))
For each m € list(m)
Write (m, d)
End for
Class reducer
Method reduce (m, list(d))
s « string(list(d))
Write (m, s)

ArcoriTHM 1: Algorithm of MapReduce-based data transformation.

MeSH heading similarity calculation
Input: <m, list(nodes)>
Output: <pair of m, semantic similarity>
Notation: Write (k, v) outputs <k, v>
Class mapper
Method map (m, list(nodes))
ml <« MeSH heading
For each m2 e M
r— Sim (m,, m,)
s < string (m; +” & +m,)
Write (s, 1)
End for

ALGorITHM 2: Algorithm of MapReduce-based MeSH heading similarity calculation.

(3) Document Clustering. Apply the cluster algorithm over
the document similarity. In this article, we perform K
-means, agglomerative clustering, and spectral cluster-
ing, respectively, over the document similarity

2.3. Preprocessing. In MEDLINE, each document is associ-
ated with a unique PubMed ID (PMID) and is tagged with
several MeSH headings. Since the MeSH headings describe
the subject of the documents, the MeSH headings can be
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FIGURE 2: An example of MapReduce-based data transformation and semantic similarity calculation.

Document similarity calculation
Input: <m, list(d)>
Output: <pair of d, similarity>
Notation: Write (k, v) outputs <k, v>
Class mapper
Method map (heading, list(d))
m < heading
For each d; € D
r < Sim (m, d,)
For each d, in list(d)
s —string (d; +” & +d,)
Write (s, 1)
End for
End for
Class reducer
Method reduce (s, list(r))
Sum « 0, count « 0
For each r in list(r)
Sum < sum + r
Count « count +1
End for
Write (s, sum/count)

ArLgoriTHM 3: Algorithm of MapReduce-based document similarity calculation.
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TABLE 2: Summary of the dataset SL.

Unique MeSH  Total MeSH

Documents  Classes headings headings
Min 51 3 387 1619
Max 1619 12 2502 25631
Mean 689 7.5 1458 2502
TaBLE 3: Summary of the dataset LUs.
Documents Unique .MeSH Total MeSH
headings headings
Min 10000 14499 123347
Max 60000 25742 731089
Mean 35000 21540 427731

viewed as semantic features. Furthermore, the semantic sim-
ilarity between documents can be represented by the seman-
tic similarity between the sets of MeSH headings. Zhu et al.
[37] and Zhou et al. [38] have proved the feasibility of this
method. Therefore, we first extract the corresponding
MeSH headings of documents through Efetch in NCBI.
To put together documents that have the same semantic
features, we transform the input document denoted by
“dk#mkl,mkz, mk3” into the format “m,#d,,d,,d,” which
means that the documents "d,,” “d,,” and “d,” contain the
same MeSH heading “m,.” The output is denoted as <m,
list(PMID) >, where m is a MeSH heading.
The data transformation algorithm is as follows:

2.4. Semantic Similarity Calculation. To compute the seman-
tic contribution of each MeSH heading to the document, we
use Wang’s average maximum match (AMM) strategy [39].
In Wang’s study, Wang used AMM strategy to compute the
semantic similarity between two sets of Gene Ontology (GO)
terms. Since the AMM strategy is able to accurately detect
the similarity between sets of semantic features, we applied
AMM strategy to compute the semantic similarity between
two sets of MeSH headings. The AMM strategy is defined
as follows:

ZmedSim(m, d’) + zm'éd'sm(m', d)

o (d’ dl) ) MeSHNumber(d) + MeSHNumber (d') ()
Sim(m, d) = max, s _;Sim (m, m') , (2)
G (m’ m,) _ ZVEmSim<v, m') + Zv'em'Sim(v', m) )
NodeNumber(m) + NodeNumber (m')
3)
Sim(v, m) = max,/_, Sim*™ (v, v') , (4)

where NodeNumber() returns the node number of the
MeSH heading, and MeSHNumber() returns the MeSH

heading number of the document. The semantic measure
is optional. The measures used in this paper are as follows:

(1) SP [27]
Lmax <m’ ml) - Lmin <1’l’l, m/>
Sim®* <m, m') = » (5)
Lo (o)
where L, (m,m') returns the longest path length,

and L_, (m,m') returns the shortest path length.
(2) WP [28]

' B 2 x depth(lca(v, v'))
sim™ (') = depth(v) + depth (v') )

where depth(v) returns the tree depth of the node.
(3) LC [31]

s} o1 2]

where D is the maximum depth of the heading in
MeSH ontology.

(4) Res [29]

SimRe <v, v') =IC (lca (v, v’)). (8)

(5) Lin [30]

Gilin (v,v’) _ 2% IC(lca (v, v )) . o)

IC(v) +1C (v')

(6) Sch [40]

_— (V)V/> _ e IC(Zm(v,v'))

IC(v) +1IC (V’) (10)
« (1-exp (1C(kea(v ")),

o (11

log (Ttotal) (11)

IC(v) = H(v) * (1

IC(v) returns the IC value of the node. H(v) returns the
depth of the node in the ontology. C(v) is the set of the chil-
dren of the node, and T\, is the total node number of the
ontology.

total



6 Computational and Mathematical Methods in Medicine
3 377
38
5 254 . .
k= 2.05
E 2
L
£ 1.5 - 1.3
=1
=
g 17 AR '
é 0.5 S e
£ 059 o
s, Il
0 T T T
Map Shuffle Reduce
MapReduce stage
B Default
[ ] Optimized
FIGURE 3: The result of MapReduce job optimization.
TasLe 4: Configuration of computers. traditional method is O(m?n?). For the proposed
- , MapReduce-based algorithm, the time complexity of map
Configuration Details stage is O(kmn), and the time complexity of reduce stage is
(eN Centos 7 O(n?).
CPU 15-6500, 3.2 GHz
HDD 1 TB, 7200 rpm 2.5. Document Clustering. Spectral clustering [42, 43],
RAM 3G agglomerative clustering [44, 45], and K-means [46, 47]
Hadoop Hadoop 3.1.3 are commonly used in text clustering. Spectral ‘clustermg is
based on graph, which transforms the clustering problem
JDK 1.8.0_252

We use SORA [41] to calculate the IC value. It is an ontol-
ogy structure-based method, outperforming the corpus-based
method on computation time.

According to AMM, semantic similarity calculation is
divided into MeSH heading similarity calculation and docu-
ment similarity calculation. Since the MeSH heading simi-
larity is frequently used when computing the document
similarity, we calculate the similarity of all pairs of extracted
MeSH headings in advance. The MapReduce-based MeSH
heading similarity calculation algorithm is as follows:

Traditionally, document similarity is calculated pair by
pair, leading to large computational cost, which is the main
reason why the existing methods can hardly work with a large
number of documents. To make the AMM applied to the par-
allelization condition, we designed a MapReduce-based algo-
rithm to calculate the document similarity in parallel. In this
method, the similarity contribution of a MeSH heading to a
document is viewed as a basic computation element. By split-
ting the semantic similarity between documents into the
aggregation of multiple heading-to-document similarity
denoted as sim(m, d), we realized the parallel computation
of the document similarity. In addition, for each line of input,
we directly output the semantic similarity of the MeSH head-
ing to other documents, avoiding redundant computation.
The algorithm is as follows, and an example is given in
Figure 2:

Supposing that the number of documents is #, average
MeSH headings number of documents is m, the total num-
ber of MeSH headings is k, and the time complexity of the

into the optimal partition problem of a graph by treating
each document as the vertex of the graph and the similarity
between documents as the edge weight. The clusters are
obtained by cutting the graph according to some rules such
as Ncut [48] and Mcut [49]. Agglomerative clustering treats
each document as a cluster first and then merges the most
similar cluster repeatedly. K-means is carried out through
multiple iterations. In each iteration, each document is
divided into the most similar cluster until the cluster no lon-
ger changes. In this paper, these three clustering algorithms
are performed, respectively, over the document similarity.

2.6. Data. For the analysis of multiangle, two kinds of datasets
were applied in this experiment. One is a small and labelled
dataset named SL used for verifying the accuracy of the pro-
posed method. The other one is large and unlabelled dataset
named LUs, being used for testing the efficiency of the method
when dealing with a large number of documents.

SL is generated from Text REtrieval Conference (TREC)
genomics track 2005, which contains biomedical documents
with 50 topics. In TREC genomics track, each document is
judged as definitely relevant (DR), possibly relevant (PR),
or not relevant (NR) to the topic. We remove the PR and
NR documents, reserving DR documents.

When generating the data set, we referred to the practice
of Gu et al. [50]. To avoid small clusters, we remove the
topics that have less than 10 documents. Furthermore, we
remove the documents that are relevant to 2 or more topics.
Finally, the dataset of 2,317 documents with 24 topics were
obtained. We randomly selected documents of 3-12 topics
to generate 100 different datasets. Table 2 shows the sum-
mary of these datasets.
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TaBLE 5: Computation time (minutes) of the traditional and proposed method with different semantic measures (“/” means cannot work).

Method Dataset: SL Dataset: LUs-10000

Sp WP LC Res Lin Sch WP LC Res Lin Sch
Traditional 68.9 66.35 67.9 61.15 64.8 66.25 / / / /
Proposed 2.87 1.02 1.42 1.15 0.95 1.17 10.21 3.43 5.02 2.31 3.30 3.77

TaBLE 6: NMI (Average + Standard Deviation) on dataset SL with different cluster algorithms and semantic measures.

Cluster algorithm SP WP LC Resnik Lin Sch
Spectral clustering 0.579 £0.126 0.549 +£0.132 0.574 £0.130 0.647 £0.124 0.617 £0.111 0.527 £0.124
K-means 0.490 +0.140 0.495+0.131 0.491+£0.134 0.511+£0.176 0.526 £0.158 0.520 £ 0.123
Agglomerative clustering 0.524+0.123 0.551 £0.145 0.533£0.124 0.591£0.116 0.582 +£0.135 0.523 £0.126
Zhu / 0.568 + 165 0.565 +0.169 / 0.620 £0.161 /

LUs include six datasets randomly extracted 10000 to
60000 documents from PubMed, covering more than
20000 different MeSH headings. For each dataset, we mark
it with the number of documents, such as LUs-10000 and
LUs-20000. Table 3 is the summary of the dataset LUs.

2.7. Evaluation Criteria. In the experiment, the performance
is evaluated by comparing the predicted label and the true
label. We take Normalized Mutual Information (NMI) as
the evaluation index, since it has been proved that NMI out-
performs many other clustering evaluation indexes [40]. The
NMI formula [41] is defined as follows:

Zh,lnh,l log (n-ny, /n,n)

V(X log (my/n))(Em log (myin))’

NMI = (12)

where # is the total number of documents to be clustered, n;,
is the number of documents with true class h, #; is the num-
ber of documents with predicted class [, and #,,; is the num-
ber of documents with true class & and predicted class I.

NMI ranges from 0 to 1. A high NMI value means the
strong correlation between the predicted label and the true
label.

2.8. Experimental Environment. The hardware and software

details of each computer are shown in the following table.
The experimental environment is a Hadoop cluster com-

posed of five computers with the same configuration.

3. Results and Discussion

3.1. Optimization of MapReduce Job Settings. Before testing
the efficiency of the proposed method with a large number
of documents, MapReduce job settings are optimized
according to the characteristics of the proposed method
since the job settings have a great impact on task execution
[51]. It can be easily found that the input and output of
the proposed method are very compact, while a lot of inter-
mediate key-value pairs are generated in the Map task dur-
ing MapReduce-based semantic similarity calculation,
which will generate much data to be sorted and aggregated
in Shuffle. Therefore, according to the MapReduce optimiza-
tion principle of multiset homomorphisms proposed by

Dorre et al. [51], we increase the number of reduce tasks
to enhance the parallelism and add the combiner used to
aggregate the data before shuffle.

As is shown in Figure 3, on the dataset LUs-10000 with
Resnik measure, the elapsed time of map is reduced from
0.5 minutes to 0.45 minutes, the elapsed time of shuffle is
reduced from 2.77 minutes to 1.3 minutes, and the elapsed
time of reduce is reduced from 2.05 minutes to 0.56 minutes.
The result shows that the optimization reduces the interme-
diate data to be shuffled and promotes the efficiency of
reduce, effectively decreasing the computation time. And
we used the same optimized job settings in the following
experiments.

3.2. Evaluation of Clustering and Computation Efficiency. In
the experiment, the proposed method was conducted with
six semantic measures and three cluster algorithms. Then,
we compared the traditional method with the proposed
method on both computation time and NMI. Tables 5 and
6 show the results.

(A) Computational efficiency

For the small dataset SL, the traditional method takes
more than an hour, while the proposed method takes no
more than 3 minutes with the cluster of five computers.
For the big dataset LUs-10000, the traditional method can
hardly work due to the big data, while the proposed method
keeps efficient. Various semantic measures are available in
this method, and the IC-based methods take less time than
other methods.

(B) Clustering validation

For the spectral clustering, the highest NMI of 0.647 is
achieved with Resnik. For the K-means, the highest NMI
of 0.526 is achieved with Lin. For the agglomerative cluster-
ing, the highest NMI of 0.591 is achieved with Resnik. The
result reveals that the information content-based measure
(Resnik and Lin) outperforms other semantic measures,
and spectral cluster performs better than the other two clus-
ter algorithms. The highest NMI is obtained by Resnik mea-
sure and spectral clustering algorithm. Compared with the



Computational and Mathematical Methods in Medicine

10

12.63
A

Speedup

Computaion time (minutes)

Nodes

—*— Speedup
—A— Elapsed time

FIGURE 4: The trend of speedup and computation time with increasing cluster nodes.

120
7 100.6
£ 100 - :
5
E 80 —
g 62.4
3 60 4 . .
g 438
s 40 . . .
2 21.8
g 209 8.7 '
O 2.31
0 - r - - — L i
10000 20000 30000 40000 50000 60000
Document number
Bl Map
[ ] Shuffle
[ ] Reduce

FiGureg 5: Computation time of map, shuffle, and reduce on dataset LUs.

result in Zhu et al’s study [37] where the same data and
evaluation criteria were used, NMI of the proposed method
is slightly increased, implying that the proposed method
greatly improves the computational efficiency without
decreasing the clustering accuracy.

3.3. Speedup and Elapsed Time with Different Cluster Node
Number. To study the parallelism of the method, the pro-
posed method was performed with different cluster node

number on dataset LUs of 10000 documents. Figure 4 shows
that the elapsed time goes down from 12.63 minutes to
2.31 minutes, and the speedup goes up almost linearly from
1 to 5.45 as the cluster nodes increase, implying that the pro-
posed method is of high parallelism, and increasing nodes
will improve the computation time effectively.

3.4. Computation Time with More Documents. In this sec-
tion, the experiment was performed on the dataset LUs to
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observe the trend of the elapsed time and the proportion of
each stage in the MapReduce job. Figure 5 shows that the
proposed method remains effective when processing a big
number of documents. As the documents increase, the
elapsed time of map and reduce grows slowly while the
elapsed time consumed in shuftle grows rapidly. And shuffle
accounts for the largest proportion of computation time in
all MapReduce tasks. The result reveals that the sort and
copy of data become the key factor to the computation time
when processing a big number of documents.

4. Conclusions

In this paper, we developed an efficient ontology-based
semantic similarity measure for big document data clustering.
Traditionally, the semantic similarity between documents is
computed in pairwise, which can hardly work with a big num-
ber of documents. To solve the problem, we developed a
MapReduce-based method to process the data in parallel. By
splitting the document similarity into the aggregation of mul-
tiple heading-to-document similarity, the proposed method
avoids the redundant computation and is available to process
a big number of documents in a short time. Additionally,
according to the experiment results, it can be concluded that
the proposed method is of high parallelism and scalability,
implying that more documents can be processed as long as
we increase the cluster nodes, upgrade the hardware of com-
puters, and optimize the job settings properly. In this work,
both semantic measure and the cluster algorithm are optional,
which depend on the datasets and the ontology. For the TREC
2005 genomics track dataset and MeSH ontology, the spectral
algorithm and the semantic measure of Resnik perform better
than other parameters. Furthermore, the proposed method is
not limited to biomedical documents and MeSH ontology.
The proposed method can also work in the situation of com-
bining semantic similarity from different semantic features.
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