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Early diagnosis of the harmful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with clinical expertise, allows
governments to break the transition chain and flatten the epidemic curve. Although reverse transcription-polymerase chain reaction
(RT-PCR) offers quick results, chest X-ray (CXR) imaging is a more reliable method for disease classification and assessment. The
rapid spread of the coronavirus disease 2019 (COVID-19) has triggered extensive research towards developing a COVID-19
detection toolkit. Recent studies have confirmed that the deep learning-based approach, such as convolutional neural networks
(CNNs), provides an optimized solution for COVID-19 classification; however, they require substantial training data for learning
features. Gathering this training data in a short period has been challenging during the pandemic. Therefore, this study proposes
a new model of CNN and deep convolutional generative adversarial networks (DCGANs) that classify CXR images into normal,
pneumonia, and COVID-19. The proposed model contains eight convolutional layers, four max-pooling layers, and two fully
connected layers, which provide better results than the existing pretrained methods (AlexNet and GoogLeNet). DCGAN
performs two tasks: (1) generating synthetic/fake images to overcome the challenges of an imbalanced dataset and (2) extracting
deep features of all images in the dataset. In addition, it enlarges the dataset and represents the characteristics of diversity to
provide a good generalization effect. In the experimental analysis, we used four distinct publicly accessible datasets of chest X-ray
images (COVID-19 X-ray, COVID Chest X-ray, COVID-19 Radiography, and CoronaHack-Chest X-Ray) to train and test the
proposed CNN and the existing pretrained methods. Thereafter, the proposed CNN method was trained with the four datasets
based on the DCGAN synthetic images, resulting in higher accuracy (94.8%, 96.6%, 98.5%, and 98.6%) than the existing
pretrained models. The overall results suggest that the proposed DCGAN-CNN approach is a promising solution for efficient
COVID-19 diagnosis.

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic was
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The consequences of this pandemic have
caused threats to life among the human race. Although mild
and moderately affected COVID-19 patients recovered
quickly without any special treatment, numerous studies
have confirmed that older people are vulnerable to the severe
effects of this disease, particularly those with preexisting
medical conditions such as cardiovascular disease, diabetes,

chronic respiratory disease, and cancer. Coronaviruses
(CoVs) fall under the CoV family of order Nidovirales and
are nonsegmented positive-sense RNA viruses. CoVs pro-
duce 80-160 nm crown-shaped peplomers with positive
polarity of 27-32 kb, along with a high pleomorphic rate
and mutation. According to the World Health Organization
(WHO), COVID-19 has infected over 222,180,532 people
worldwide and killed 4,592,893. As per the records, nearly
198,785,372 patients have been treated for CoV (September
7, 2021) [1]. However, due to its low sensitivity, real-time
reverse transcription-polymerase chain reaction (RT-PCR),
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the recent diagnosis technique, provides negative results for
patients with disease symptoms that have been diagnosed by
computed tomography (CT) or chest radiography (CXR).

CXR is a simple and relatively inexpensive imaging
modality available in many resource-constrained healthcare
environments. The visual representations of CXR and CT
imaging are represented in Figure 1.

The difference between CXR and CT imaging is
expressed in Table 1.

Both procedures can assist clinical expertise in determin-
ing better treatment plans for patients. In an article, radiolo-
gist Wang et al. [2] mentioned the term “ground glass” to
indicate the opacity of a hazy lung. CXR diagnoses this dense
opacity that obscures the vessel and bronchial walls quickly.
In addition, CXR image-based COVID-19 classification pro-
vides reliable results for remote village populations [3]. On
the other hand, CT images monitor health conditions [4]
to provide the severity and extent of the disease. In this
study, we divided the cases into nonemergency (mild or
common) and emergency (severe or fatal) cases based on
clinical and unique imaging characteristics. Visual functions
included vascular enlargement of ground-glass opacity
(GGO) lesions and traction bronchiectasis. This analysis
assisted in diagnosing the stage and severity of the disease.
Using CT images to determine the severity of the disease
reflected a lower prevalence of lung and multifocal lesions.
Therefore, CT images could not differentiate between other
lung infections.

In recent years, deep learning has endorsed an exponen-
tial research focus and outperformed many conventional
models. Deep learning models [5] can effectively learn the
CXR image features and reduce the number of training
cycles. It is an efficient learning tool that can solve complex
and cognitive problems occurring in COVID-19 diagnosis.
However, deep learning approaches, such as convolutional
neural networks (CNNs), require an enormous amount of
training data and can cause overfitting with small datasets.
Numerous studies have confirmed that an enormous
amount of data enhances the performance of CNNs. Various
pretrained models [6] (LeNet, AlexNet, GoogLeNet, VGG16,
VGG19, and Resnet50) are available for training deep learn-
ing networks. In addition, many open datasets that provide
unbalanced image datasets for training are accessible from
online resources such as Kaggle and GitHub. To overcome
dataset scarcity, we introduced a generative adversarial net-
work (GAN) to generate synthetic/fake images for training
CNN. To evaluate the generative capability of the GAN
network, a study [7] experimented with different datasets
to obtain the number of datasets required to work on the
GAN and found that 50,000 images were sufficient to obtain
better results rather than the entire dataset. The GAN
performance was tested using two distinct datasets (Celeb-
Faces attributes and large-scale scene understanding). GAN
reduces the effort and time required to gather large datasets
[8]. It [9] is a deep learning model wherein two neural
networks interact in a zero-sum game. In this model, we
represented two networks: a generator and a discriminator.
The discriminator does not succumb to overfitting, even if
a limited training sample is utilized. However, although

GAN performs satisfactorily in many areas, it causes severe
problems in stabilizing the training process. These short-
comings can be avoided by using a deep convolutional gen-
erative adversarial network (DCGAN). In CNN, DCGAN
discriminators and generators are designed to achieve a
higher performance in image synthesis tasks. The stride
and fractional strides of convolution in the discriminator
replace the pooling layers, allowing the model to obtain its
own upsampling and downsampling in the training process.
In addition, during the training phase, poor initialization
problems are solved by applying batch normalization to both
the generator and discriminator. Therefore, the above
improvements in DCGAN alleviate the prevailing instability
of training a conventional GAN.

Long short-term memory (LSTM) [10] is one of the most
extensively used deep learning approaches as it quickly fore-
casts COVID-19 cases. LSTM captures the sequence pattern
information of the training set using specified features.
CNN is a popular deep learning method that extracts noise-
free valuable knowledge for model forecasting. Adding
enormous layers to a CNN improves its prediction accuracy.
The main objective of this study is to aid an accurate
COVID-19 classification. Therefore, we proposed a
DCGAN-CNN approach for accurate COVID-19 classifica-
tion without data scarcity. The main contributions of this
study are summarized below:

(1) The proposed CNN model consists of eight convolu-
tional layers, four max-pooling layers, and two fully
connected layers for extracting image features

(2) DCGAN is an effective technique for generating
large datasets

(3) CXR images were utilized for gathering the visual
index of COVID-19 diseases

(4) By combining DCGAN-CNN, learning models
have exhibited versatile performance in COVID-19
classification

The remaining part of this research paper comprises four
sections: Section 2 (Related Works) explains the related
works of COVID-19 diagnosis models; Section 3 (Proposed
Method) elaborates the proposed model DCGAN-CNN;
Section 4 (Results and Discussion) represents the experi-
mental setup, observations, and key findings; and Section 5
(Conclusion) presents the conclusion and future work.

2. Related Works

Deep learning networks (DNNs) play a vital role in the
medical field due to their significant performance in image
classification when compared with human-level analysis.
Hemdan et al. [11] presented a deep learning classification
framework utilizing seven different CNN architectures
wherein the intensity of the image using CXR was analyzed
and classified into negative and positive cases. Apostolopou-
los et al. [12] used a deep learning-based mobile net frame-
work with 3905 X-ray images to develop a highly accurate

2 Computational and Mathematical Methods in Medicine



approach for diagnosing pulmonary diseases. Although
COVID-19 cases were classified using pretrained models,
this pretrained model caused an unbalanced dataset effect
on training. Litjens et al. [13] studied and analyzed various
research papers on deep learning algorithms, out of which
image classification, object detection, segmentation, registra-
tion, and other deep learning methods have survived.

Afshar et al. [14] proposed an alternative modeling
framework named capsule network (CAPS) to handle a
small dataset that performed better than the CNN-based
model; its architecture was composed of several capsules
with a small number of trainable parameters and convolu-
tion layers. Waheed et al. [15] developed an auxiliary classi-
fier generative adversarial network (ACGAN) to produce
CXR images. However, due to the COVID-19 outbreaks,
gathering a significant number of CXR images within a short
period has been challenging. The CovidGAN image gener-
ated for COVID-19 detection can be used to improve
CNN performance.

Bellemo et al. [16] proposed a GAN-based classifier to
develop retinal fundus images that are compatible with syn-
thetic databases.

Xie et al. [17] examined RT-PCR outcomes in five
patients with unfavorable results. The doctor conducted reg-
ular swab examinations for all patients and was finally diag-
nosed with COVID-19.

Du et al. [18] identified COVID-19 clinical features in
children and adults. They investigated 67 cases involving
53 adults and 14 children from two research centers. The
results indicated significant lung injuries in children.

Wang et al. [2] developed a COVID-19 detection
method using CXR images and introduced an open
COVID-Net benchmark dataset consisting of 13,975 CXR
images from 13,870 patients.

Alyasseri et al. [19] reviewed comprehensive work on
COVID-19 using deep learning and machine learning. They
summarized previous studies on COVID-19 and concluded
that CNN primarily uses a deep learning algorithm.

Al-Waisy et al. [20] proposed a method to diagnose
COVID-19 using chest radiography images. It is represented
as a COVID-DeepNet system that eliminates noise and
enhances the contrast of the CXR images through contrast-
limited adaptive histogram equalization (CLAHE) and Butter-
worth bandpass filter. A large dataset named COVID19-vs
was created for evaluating the COVID-DeepNet system.
However, the primary limitation of this method is that it
can only classify the input images into healthy and
COVID-19 infected.

Abed et al. [21] proposed an approach to identify
COVID-19 diseases that discriminates between healthy and
COVID-19 cases using traditional learning methods such
as ANN, SVM, linear kernel and radial basis function, deci-
sion tree, k-nearest neighbor, and deep learning pretrained
models using the large X-ray dataset [22] for training and
testing the models.

Mohammed et al. [23] evaluated and benchmarked the
scientific literature on COVID-19 diagnosis models.
Multicriteria decision-making (MCDM) is integrated with
TOPSIS and is ranked as the best diagnostic method based
on measured criteria. According to the MCDM and TOPSIS

(a) (b)

Figure 1: (a) CXR image; (b) CT image.

Table 1: Comparative analysis between CXR and CT imaging.

CXR imaging CT imaging

CXR visualization for medical treatment is relatively simpler. CT scans require more space to diagnose the patients.

It provides 2D images. It provides 3D images.

CXR is a cost-effective and straightforward method for chest imaging. CT imaging is costly and time-consuming.

Patients are exposed to less radiation during treatment. Patients are exposed to high radiation during treatment.

It has high sensitivity. It has low sensitivity.

CXR imaging equipment can be cleaned easily. In addition,
it has high availability.

CT imaging equipment has a complex cleaning process.
In addition, it has low availability.

Portable CXR are available for diagnosing lung anomalies Presently, portable CT scans are unavailable.

It has low risk of cross-infection. Cross-infection is possible due to the immediate environment.
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analysis, SVM linear attains the first rank whereas SVM
polynomial attains the worst rank.

Inspired by numerous research works, Agrawal et al.
[24] designed an automatic method for COVID-19 detection
wherein COVID-Net was pretrained on the ImageNet data-
set. The architecture of COVID-Net was compared with the
architectures of VGG-19 and ResNet-50 to evaluate the pos-
itive predictive value. The medical dataset can be publicly
accessible under specific conditions. To train our model,
we needed a large COVID-19 dataset, which is a challenging
task. At the same time, the limited dataset could collapse due
to the blurring and repetition of images. To resolve this, we
suggested an extension of synthetic data, such as DCGAN as
it can incorporate high-frequency information and features
from the input data where traditional methods are not acces-
sible. Therefore, DCGAN was used with more vital features
to transfer learning extracts and was applied to a discrimina-
tor that could discriminate between CXR images. Therefore,
the discriminator learned to differentiate the actual CXR
images and synthetically generated images that enhanced
the ability of the generator to learn about the actual CXR
image. Although extensive research and studies are being
conducted to diagnose COVID-19, there are still issues with
small datasets and inefficient results. This study is aimed at
assisting medical organizations in effectively evaluating
COVID-19 cases.

3. Proposed Method

The main objective of our proposed method is to use the
DCGAN-CNN method for efficient classification of CXR
images into three categories: normal, pneumonia, and
COVID-19. A flow diagram of the proposed DCGAN-
CNN model is depicted in Figure 2.

3.1. Principle of DCGAN. The proposed DCGAN is
described in detail in this section. We first analyze the
fundamentals of DCGAN (Section 3.1.1), followed by CNN
(Section 3.1.2), and conclude with architecture of the
proposed model (Section 3.1.3).

3.1.1. Fundamentals of DCGAN. A generative adversarial
network or GAN is an architecture of the neural network
for generative modeling that has been applied in various
fields, including computer vision, medical imaging, and style
transfer. The fundamental aspects of GAN are based on a
min–max game, often called as a zero-sum game [25].

The players of this game belong to various GAN net-
works called discriminators and generators. The primary
objective of the discriminator is to determine whether a
given sample is part of the synthetic or actual distribution.
It calculates samples according to the probability value. If
the probability value is close to 0.5, the discriminator pro-
duces an optimal solution that cannot distinguish between
synthetic and real samples. If the probability exceeds 0.5, it
means it is the actual sample. GAN is designed as an unsu-
pervised machine learning that learns the distribution of
data classes. It has better data distribution modeling and
can train any generator network where CNN is used as the

generator. In this model, we used 100 × 1 noise vectors that
were denoted as z. The network started from a layer of
1024 × 4 × 4 and reached the output with a layer of 64 × 64.
Thereafter, the output image was resized to specific sizes that
support the evaluation models (proposed CNN, AlexNet, and
GoogLeNet) for classification purposes. The discriminator
processed the real CXR image to train the data and extract
its features. The generated synthetic image was transferred
to the discriminator network for training along with the
actual CXR images. Once the discriminator extracted the
valuable features in the final layer, it was transferred to
CNN for classification. The general architecture of DCGAN
is illustrated in Figure 3. The two neural networks, discrimi-
nator (D) and generator (G), which train this generative
model are explained below.

(1) A generator (G) is a network that uses random noise
Z to generate images. The input data for the genera-
tor is Gaussian noise, which is a random point in the
latent space

(2) The discriminator (D) determines whether the given
image is a real or synthetic distribution. It receives
the input image x and yields the output as DðxÞ.
The generation of the output is based on the proba-
bility of x being a part of the real distribution. If the
output of the discriminator is 1, the image deter-
mined is real; else, it is determined as synthetic

The min–max equation of adversarial network is repre-
sented in

Min

G

Max

D
V D, Gð Þ = Ex~pdata xð Þ log D xð Þ½ � + Ez~pz zð Þ log 1 −D G zð Þð Þð Þ½ �:

ð1Þ

D is calculated based on the log function, where DðxÞ = 1

Input
images 

Pre-processing

DCGAN

Proposed
CNN AlexNet GoogLeNet

Pre-trained nets

COVID-19 Pneumonia Normal

Deep
learning 

Figure 2: Flow chart of the proposed DCGAN-CNN model.
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is real. Based on the min–max game theory, the data are
maximized or minimized by the discriminator DðGðzÞÞ
.Thereafter, a more complex deep convolutional GAN
(DCGAN) network is updated to improve the GAN perfor-
mance. After 50 epochs, they resemble the original image,
and the generator creates noisy images during the initial
training progress.

3.1.2. CNNs. CNNs are a feed-forward neural network that
transfers the data in one direction and consist of convolution
layers, pooling layers, and fully connected layers. In CNN,
the input images are processed as a tensor, where the data
are stored in an array format. The proposed CNN model
was constructed with numerous hidden layers that transfer
low-level features to attain high-level feature representations
of data. There were four blocks of layers with two convolu-
tion layers, a max-pooling layer, and a dropout layer. The
fully connected layer output was provided to the softmax
layer, wherein the classification took place.

3.1.3. Architecture of the Proposed Method. A deep learning
algorithm typically suffers from an overfitting problem when
it is trained using a small dataset. Our proposed method
provides an optimum solution to resolve this drawback,
thereby improving the efficiency of CXR image classification.
A block diagram of the proposed method is illustrated in
Figure 4. DCGAN is a multiple neural network that utilizes
random noise for fake image generation by extracting the
features of an input image. In the first few layers, it first
extracts the local features. Thereafter, using these local fea-
tures, it extracts the global features.

Until the bottleneck, the encoder and decoder, respec-
tively, downsample and upsample the given data. In the first
four layers of the generator, the input is downsampled and
then the features are learned, whereas after the fifth layer,
upsampling takes place to reconstruct the image. Thereafter,
the discriminator classifies the generated image into real or
synthetic images. The generated dataset is then provided as
the input for the CNN classification process.

The proposed CNN consists of eight convolution layers,
four pooling layers, four dropout layers, two flattened layers,
and two fully connected layers, as presented in Table 2. In
CNN, the convolution layer maps the features from the pre-
vious layer with the feature map by detecting the local con-
junction. At the end of the convolution layer, the images are
split into perceptrons and compressed into the feature maps.
Each layer consists of several filters; the depth feature maps
are estimated based on the filter count. Each filter detects a

particular feature from the input image. An overview of
the architecture of the DCGAN-CNN model is presented
in Figure 5. The convolution layers of the proposed CNN
obtain the input images as a matrix and convolve each pixel
with a filter (3 × 3). Thereafter, the horizontal stride is taken
over to calculate the feature map of the images.

In the pooling layer, the matrix size is reduced and the
maximum value is determined. A dropout layer that updates
the hidden layers based on the training phase is added to
overcome the overfitting problem. In the flattening process,
the feature map is converted into a one-dimensional array
for transferring it to the fully connected layer. Finally, the
fully connected layers classify the labels into normal, pneu-
monia, and COVID-19.

4×4
@1024

8×8
@512

16×16
@256

32×32
@128

G (z)

Conv 1
Conv 2 Conv 3 Conv 4

100 z

Figure 3: General architecture of DCGAN.

Generator Discriminator

Noise

Real Images
DCGAN

Proposed
CNN 

Output
(COVID-19 /

Pneumonia /normal)

Figure 4: Block diagram of proposed method.

Table 2: Description of layers of the proposed method.

Layer’s name Type/stride Filter

Input Image input —

C1 Convolution 3 × 3 Conv 32

C2 Convolution 3 × 3 Conv 32

P1 MaxPool —

D1 Dropout —

C3 Convolution 3 × 3 Conv 32

C4 Convolution 3 × 3 Conv 32

P2 MaxPool —

D2 Dropout —

C5 Convolution 3 × 3 Conv 64

C6 Convolution 3 × 3 Conv 64

P3 MaxPool —

D3 Dropout —

C7 Convolution 3 × 3 Conv 64

C8 Convolution 3 × 3 Conv 64

P4 MaxPool —

D4 Dropout —

FC1 Fully connected 256 × 9216
F1 Flatten —

FC2 Fully connected 3 × 256
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The aforementioned algorithm is a constituent of two
iterations and was utilized for training the proposed model.
Real CXR images were taken as input (x), and the output
(y) was the predicted label (normal, pneumonia, and
COVID-19). In the preprocessing phase, the input image
(x) dimension was converted to 256 × 256. In the training
phase, the samples were trained to update the weight of
the model in minibatches, known as an epoch, to train the
data per cycle. Noise samples were used to generate synthetic
images. Using transfer models, the images were assigned in
ascending order through a stochastic gradient. After the
synthetic/fake image was generated, these images were
assigned in descending order through the stochastic gradi-
ent. In the testing phase, the proposed CNN predicted the
output label (y). In the DCGAN, many hidden layers proc-
essed each data and extracted the vital features from it. Ini-
tially, a batch of random points was chosen from the noise
or latent space that supports the model to be generated.
The generated samples were referred to as synthetic samples.
Subsequently, the discriminator selected a batch sample
based on its weight. The layers of the discriminator continu-

ally processed until the expected value was obtained. Finally,
the discriminator classified the sample as an actual or syn-
thetic image.

3.2. Datasets. We utilized several datasets in this study from
various resources. These datasets include the COVID-19
Radiography database, the COVID Chest X-ray dataset, the
COVID-19 X-ray dataset, and the CoronaHack-Chest X-
Ray dataset. The COVID-19 Radiography database [26] is
the winner of the Kaggle community for the COVID-19
dataset. This dataset was developed by Qatar University
researchers who collaborated with clinical experts and cre-
ated a chest X-ray image for COVID-19. These datasets con-
sist of 1341 normal, 1345 viral pneumonia, and 1143 healthy
images of COVID-19. The COVID Chest X-ray dataset [27]
is a public dataset of chest X-rays and CT images of patients.
The COVID-19 X-ray dataset [22] was developed by a
Chinese team to study the chest CT image anomalies. The
CoronaHack-Chest X-Ray dataset [28] was prepared to
identify the X-ray images.

Proposed Convolution Neural Network

Real image

DCGAN

Random noise
Generated dataset

2(3⁎3 conv
32)+

2(3⁎3 conv
32)+

2(3⁎3 conv
32)+

2(3⁎3
conv32)+

maxpoolin
g+dropout
layer

maxpoolin
g+dropout
layer

maxpoolin
g+dropout
layer

maxpoolin
g+dropout
layer

Flatten layer Flatten layer

Output
label

Fully connect layerFully connect layer

Figure 5: Architecture of proposed CNN+DCGAN model.

1. Input data: for CXR real images, let x be input image and y be output label. y = {normal, pneumonia, and COVID-19}.
2. Output data: for output label y, the result may return as normal, pneumonia, or COVID-19.
3. Preprocessing phase: CXR images are modified to the height and width dimension of 256 × 256.
4. Training phase: for the number of training iterations for m steps:

(i) Sample minibatch of m noise sample {zð1Þ,…., zðmÞ} from noise prior pgðzÞ)
(ii) Sample minibatch of m example {xð1Þ,…., xðmÞ)} from data generation distribution pdataðxÞ
(iii) The real image is transferred to the discriminator. The discriminator is updated by ascending its stochastic gradient using

the transfer model

∇∅d

1
m ∑

m

i=1
½log DðxðiÞÞ + log ð1 −DðGðzðiÞÞÞÞ�

end for
(i) Minibatch of m noise sample {zð1Þ,…., zðmÞ} is sampled from noise prior pgðzÞ
(ii) The discriminator is updated by descending its stochastic gradient

∇∅g
ð1/mÞ∑m

i=1 log ð1 −DGðzðiÞÞÞ
end for
5. Testing phase: output label y is generated.

Algorithm 1: Proposed method.
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Table 3: Summary of results.

Dataset Number of images Model Training accuracy Testing accuracy Time elapsed (min)

COVID-19 X-ray 188

AlexNet 90.2 92.2 24

GoogLeNet 89.4 91.4 35

Proposed DCGAN-CNN 93.8 94.8 30

COVID Chest X-ray 803

AlexNet 92.5 93.5 129

GoogLeNet 88.5 90.5 135

Proposed DCGAN-CNN 94.6 96.6 125

COVID-19 Radiography 5910

AlexNet 96.3 96.7 2563

GoogLeNet 94.5 95.5 2660

Proposed DCGAN-CNN 98.4 98.5 1960

CoronaHack-Chest X-Ray 5911

AlexNet 96.2 97.2 2663

GoogLeNet 95.4 96.4 2726

Proposed DCGAN-CNN 97.6 98.6 2116

Table 4: Accuracy per class.

Dataset Model
Normal Pneumonia COVID-19

Train Test Train Test Train Test

COVID-19 X-ray

AlexNet 90.2 89.5 89.2 88.5 90.6 91.8

GoogLeNet 90.1 89.8 90.3 91.5 91.3 92.5

Proposed DCGAN-CNN 92.9 91.6 93.4 91.9 95.6 94.3

COVID Chest X-ray

AlexNet 91.6 90.8 87.6 90.8 92.3 93.6

GoogLeNet 90.5 89.5 89.5 88.5 92.2 91.1

Proposed DCGAN-CNN 93.6 92.4 94.6 93.4 93.5 94.3

COVID-19 Radiography

AlexNet 95.6 94.8 93.6 94.3 94.5 94.9

GoogLeNet 94.5 93.8 92.5 91.8 91.4 91.6

Proposed DCGAN-CNN 98.2 97.9 97.4 98.2 95.7 96.8

CoronaHack-Chest X-Ray

AlexNet 96.7 95.3 90.7 90.3 95.6 96.2

GoogLeNet 95.5 94.8 92.5 93.8 93.8 94.2

Proposed DCGAN-CNN 98.8 98.7 98.4 97.6 98.2 98.6

Table 5: Recall and precision per class.

Dataset Model
Normal Pneumonia COVID-19

Recall Precision Recall Precision Recall Precision

COVID-19 X-ray

AlexNet 0.90 0.89 0.85 0.88 0.90 0.91

GoogLeNet 0.91 0.90 0.86 0.89 0.87 0.88

Proposed DCGAN-CNN 0.92 0.93 0.93 0.89 0.95 0.92

COVID Chest X-ray

AlexNet 0.91 0.88 0.84 0.87 0.89 0.90

GoogLeNet 0.90 0.86 0.89 0.86 0.92 0.91

Proposed DCGAN-CNN 0.93 0.92 0.94 0.91 0.92 0.94

COVID-19 Radiography

AlexNet 0.94 0.90 0.92 0.90 0.93 0.94

GoogLeNet 0.93 0.91 0.92 0.93 0.89 0.91

Proposed DCGAN-CNN 0.96 0.95 0.94 0.94 0.95 0.96

CoronaHack-Chest X-Ray

AlexNet 0.95 0.91 0.92 0.88 0.93 0.94

GoogLeNet 0.92 0.90 0.91 0.92 0.91 0.92

Proposed DCGAN-CNN 0.97 0.96 0.95 0.96 0.97 0.98
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3.3. Evaluation. We utilized the MATLAB 2020a version to
run the proposed CNN with an Intel i7 processor and
GPU. The proposed CNN model was executed with four dif-
ferent datasets, wherein the input images were resized to
256 × 256. Thereafter, the mean accuracy and standard devi-
ations of AlexNet and GoogLeNet were compared with the
proposed CNN method. Lastly, the epoch values were fine-
tuned to improve the accuracy of the proposed model.

4. Results and Discussion

To evaluate the proposed DCGAN-CNN model quantita-
tively, we compared it with the existing pretraining deep
learning models (AlexNet, GoogLeNet). These three models
were evaluated by computing four quantitative measures:
accuracy, precision, recall, and area under the curve
(AUC). Compared to other performance metrics, accuracy,
precision, and recall provide sufficient information to vali-
date the deep learning model effectively:

Accuracy =
TP + TN

TP + FP + FN + TN
, ð2Þ

Precision =
TP

TP + FP
, ð3Þ

Recall =
TP

TP + FN
: ð4Þ

In Equations (2), (3), and (4), true positive (TP) and
true negative (TN) represent the correctly labeled class,
whereas false negative (FN) and false positive (FP) repre-
sent the misclassified labeled class. If the false negative
and false positive values of the data are the same, the
accuracy is high. Precision is a metric that measures the
number of false positives and represents the total amount
of actual positive data available. If the precision is high,
the model accuracy will be high as well. To determine
the negative prediction, recall assessed the false negative
values in the data. We utilized four different datasets to
measure the efficiency of the proposed DCGAN-CNN
model with a pretrained model.

The training and testing accuracies of the models are
listed in Table 3. As per the table, the COVID-19 Radiogra-
phy dataset provided an efficient accuracy (98.4%) in
COVID-19 detection when compared with other datasets.

In Table 4, the accuracy of each class (normal,
pneumonia, and COVID-19) was evaluated for different
datasets with the existing models. The CoronaHack-Chest
X-Ray predicted the classes with higher accuracy (COVID-19:
98.6%, pneumonia: 97.6%, and normal: 98.8%) than
other datasets.

The time elapsed for the pretrained models and the
proposed model was calculated as well; the proposed
CNN model provided the best computational time. The
individual accuracy and the precision and recall for each
class (normal, pneumonia, and COVID-19) were calculated
and tabulated in Tables 4 and 5, respectively. The AUC
values of the pretrained and proposed CNN models are
listed in Table 6. Table 7 compares the accuracy of the pro-

posed DCGAN-CNN model with the existing models [21,
23]; the accuracy of the proposed model (98.6%) was
higher. Figures 6–8, respectively, display the receiver oper-
ating characteristic (ROC) curves for the proposed model,
GoogLeNet, and AlexNet. According to the figures, the
proposed CNN model was more efficient in detecting
COVID-19 from four different datasets than the pretrained
models. However, although the proposed DCGAN-CNN

Table 6: Area under curve.

Dataset GoogLeNet AlexNet
Proposed

DCGAN-CNN

COVID-19 X-ray 0.65 0.69 0.94

COVID Chest X-ray 0.71 0.76 0.96

COVID-19 Radiography 0.92 0.94 0.95

CoronaHack-Chest X-Ray 0.93 0.96 0.98

Table 7: Comparing the existing methods [21, 23] with the
proposed DCGAN-CNN in terms of accuracy.

Sr. No. Method
Accuracy

(%)

1
Comprehensive investigation of machine

learning feature extraction and classification
methods [21]

94

2
Multicriteria decision-making (MCDM)

method [23]
98.3

3 Proposed DCGAN-CNN method 98.6
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Figure 6: Receiver operating characteristic (ROC) curve of the
proposed DCGAN-CNN.
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provided a significant advantage over COVID-19 detection,
it contained some shortcomings with respect to multilabel
classification, time consumption, and efficiency. DCGAN-
CNN could only classify three classes, thereby limiting the
CXR image features.

5. Conclusion

This study proposed a DCGAN-based CNN model that gen-
erates synthetic CXR images using different datasets as refer-
ences, thereby improving the performance of the proposed
CNN for COVID-19 detection. After numerous studies, we
found that the average CNN classification performance is
less in COVID-19 detection with small and large publicly
available datasets. The proposed CNN model with DCGAN
consists of eight convolution layers with several filters, max-
pooling, and drop-out layer and provides a promising solu-
tion for detecting COVID-19 images accurately. Imple-
menting the proposed model increased the accuracy, recall,
and precision of individual classes (normal, pneumonia,
and COVID-19) in all the datasets. In addition, comparing
the performance metric of the proposed CNN with existing
pretrained models confirmed that the efficiency of the pro-
posed model is higher than that of the other models. Our
findings confirm that the proposed DCGAN-CNN has a
powerful visualization and high learning ability that helps
detect the different classes of normal, pneumonia, and
COVID-19 robustly. We hope that our approach will be
highly supportive and reliable for medical expertise. Since
the current proposed method contains some shortcomings
with respect to multilabel classification, time consumption,
and efficiency, in the future, we will include an additional
layer for CNN that will predict multilabel classes. In addi-
tion, we will improvise the DCGAN layers to enlarge the
dataset for accurate prediction.
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G: Generator
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D: Discriminator
pdataðxÞ: Real data distribution
X: Sample from pdataðxÞ
Z: Sample from pzðzÞ
DðxÞ: Discriminator network
GðzÞ: Generator network
pz : Generator distribution
Ez : Encoder of generator.

Data Availability

The datasets used in this research work are available at var-
ious repositories such as the Kaggle COVID-19 Radiography
database, GitHub COVID Chest X-ray dataset, Kaggle
COVID-19 X-ray dataset with COVID-19 CNN Pneumonia
Detector, and Kaggle CoronaHack-Chest X-Ray dataset.
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