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Solution of the Bloch Equations including Relaxation
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'e magnetization differential equations of Bloch are integrated using a matrix diagonalization method. 'e solution
describes several limiting cases and leads to compact expressions of wide validity for a spin ensemble initially
at equilibrium.

1. Introduction

In 1949 Torrey used Laplace transforms to provide [1] the
first solution of the differential equations proposed by
Bloch [2] for the magnetization components of a spin
ensemble. His results are somewhat cumbersome and
contain some errors. Although the problem is funda-
mental, a general solution including relaxation does not
appear in any of the standard NMR texts, with one partial
exception [3]. 'e problem has been revisited several
times employing third-order differential equations [4, 5]
and Laplace transforms [6] to give unwieldy solutions
using somewhat opaque derivations. 'e first-order
differential equations are directly integrated here using a
matrix diagonalization method.

2. Bloch Equations and Their Integration

'eBloch equations for a collection of identical spins − (1/2)

in the frame rotating at ωrf are
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where

K �

R2 Δ 0

− Δ R2 ω1

0 − ω1 R1
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R1 andR2 are the longitudinal and transverse relaxation
rates in s− 1, and Δ � |ω0 − ωrf | and ω1 � cB1 are the reso-
nance frequency offset and the rf amplitude for a B1 field
along the x-axis, in radians/s. c is the (positive) gyromag-
netic ratio, and M0 is the equilibrium magnetization.

Defining a magnetization vector V � Mx My Mz 
T
,

the integrated solution of equation (1) is

V(t) � exp(− Kt)[V(0) − V(ss)] + V(ss) � X

· exp(− Dt)X− 1
[V(0) − V(ss)] + V(ss),

(3)

whereK � XDX− 1.'e problem is, thus, deducing the roots
of K(�D), the matrix X and inverse X− 1 which diagonalize
K and the steady-state magnetization vector V(ss).

2.1. Evaluation of Roots. |K − λ1| � 0 gives the following
cubic equation:

λ3 − R1 + 2R2( λ2 + R
2
2 + 2R1R2 + Δ2 + ω2

1 λ

− R1R
2
2 + R1Δ

2
+ R2ω

2
1  � 0.

(4)
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Choosing roots of the form λ1 � a, λ2,3 � b ± iΩ gives
the corresponding cubic equation:

(λ − a) λ2 − 2bλ + b
2

+Ω2  � λ3 − (a + 2b)λ2

+ b
2

+ 2ab +Ω2 λ − a b
2

+Ω2  � 0.
(5)

Equating the last term in equations (4) and (5), and with
R2 <ω1 and/orΔ in (4) and b<Ω in (5),

a � R1cos
2θ + R2sin

2θ ≡ Rθ, (6)

using tan θ � (ω1/Δ) and Ω ≡ (Δ2 + ω2
1)

1/2.

b is obtained by equating the coefficients of the second
term in equations (4) and (5):

b �
1
2

R1 + 2R2 − Rθ(  � R2 −
1
2

R2 − R1( sin2θ. (7)

'ese expressions agree with Torrey ([1], equation 59)
and with Abragam ([3]. p. 70).

For R2 � 1s− 1 and ω1 and/orΔ � 2π × 10Hz, for ex-
ample, the above approach is valid and avoids the explicit
solution of the cubic equation (4).

2.2. Calculation of X. X is obtained by evaluating the three
cofactors of K − λ1 for λ1 � Rθ and λ2,3 � b ± iΩ. Choosing
the third row of K − λ1, the cofactors are

cofactor 1�Δω1

cofactor 2� − ω1(R2 − λ)

cofactor 3� (R2 − λ)2 + Δ2

Omitting all (small) relaxation rate difference terms
(which are exactly zero for R1 � R2) and dividing all ele-
ments by ω1 gives X:

X �

Δ Δ Δ

0 iΩ − iΩ

Δ2

ω1
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2.3. Calculation of X− 1. X− 1 is formed by constructing the
matrix of all cofactors of X, taking the transpose, and di-
viding by the determinant |X| [7]. 'e result is
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�

1
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1
Δ

0 2ω1
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'ese may be rewritten in a more compact form using
tan θ � (ω1/Δ) and Ω:

X �

cos θ cos θ cos θ

0 i − i

cos θ
tan θ

− sin θ − sin θ
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X− 1
�
1
2

2 sin θ tan θ 0 2 sin θ
cos θ − i − sin θ
cos θ i − sin θ

⎛⎜⎜⎜⎜⎜⎜⎝
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Finally, we calculate the matrix A � X exp(− Dt)X− 1:

A � X

exp − Rθt

exp − bt(c − is)

exp − bt(c + is)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X− 1
,where

c � cosΩt

s � sinΩt
.

(12)

'e elements of A are

A11 � sin2θ exp − Rθt + cos2θ exp − bt cosΩt,

A22 � exp − bt cosΩt,

A12 � − A21 � − cos θ exp − bt sinΩt,

A23 � − A32 � − sin θ exp − bt sinΩt,

A13 � A31 � sin θ cos θ exp − Rθt − exp − bt cosΩt( ,

A33 � cos2θ exp − Rθt + sin2θ exp − bt cosΩt.

(13)

2.4. SteadyStates. 'e steady-state magnetizations are found
by setting equation (1) to zero and using Cramer’s rule [7]:

Mx(ss) �
R1Δω1M0

d
, (14)

My(ss) �
− R1R2ω1M0

d
, (15)

Mz(ss) �
R1 R

2
2 + Δ2 M0

d
, (16)

where d � R1R
2
2 + R1Δ2 + R2ω2

1.
For R2 <ω1 and/orΔ, these may be simplified using

equation (6):

Mx(ss)⟶
R1

Rθ
 sin θ cos θM0, (17)

My(ss)⟶ −
R1R2 sin θ

RθΩ
M0 ≈ 0, (18)

Mz(ss)⟶
R1

Rθ
 cos2θM0. (19)
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'e integrated solution equation (3) for the initial
condition Mz(0) � M0 is

Mx(t) � A13M0 − A11Mx(ss) − A12My(ss)

− A13Mz(ss) + Mx(ss),
(20)

My(t) � A23M0 − A21Mx(ss) − A22My(ss)

− A23Mz(ss) + My(ss),
(21)

Mz(t) � A33M0 − A31Mx(ss) − A32My(ss)

− A33Mz(ss) + Mz(ss).
(22)

In the absence of relaxation, these are the well-known
Bloch equations [8, 9]:

Mx(t) � A13M0 � sin θ cos θM0(1 − cosΩt), (23)

My(t) � A23M0 � − sin θM0 sinΩt, (24)

Mz(t) � A33M0 � cos2θM0 + sin2θM0 cosΩt. (25)

3. Results

Limiting forms of equation (3) are discussed in this section.

3.1. Case 1: Resonant Nutation Δ � cos θ � 0, b � (R1 +

R2)/2, andMz(0) � M0.

A11 � exp − R2t,

A12 � A21 � A13 � A31 � 0,

A22 � A33 � exp − bt cosω1t,

A23 � − A32 � − exp − bt sinω1t,

(26)

Mx(ss) � Mx(t) � 0,

My(ss) � −
R1

ω1
 M0,

Mz(ss) �
R1R2

ω2
1

 M0,

(27)

My(t) � A23M0 + My(ss) 1 − A22  − A23Mz(ss), (28)

Mz(t) � A33M0 + Mz(ss) 1 − A33  − A32My(ss). (29)

My and Mz interconvert at rate ω1 and decay to (small)
steady states.

3.2. Case 2: Free Precession/Mz Relaxation ω1 � sin θ � 0
andMx(0) � Mz(ss) � M0.

A11 � A22 � exp − R2t cosΔt,

A12 � − A21 � − exp − R2t sinΔt,

A13 � A31 � A23 � A32 � 0,

A33 � exp − R1t,

(30)

Mx(t) � A11M0 � M0 exp − R2t cosΔt,
My(t) � A21M0 � M0 exp − R2t sinΔt,

Mz(t) � − A33M0 + Mz(ss) � M0 1 − exp − R1t( .

(31)

Mx and My interconvert at rate Δ and decay to zero as
Mz returns to equilibrium.

3.3. Case 3: Spin-Locked Relaxation Mx(0) � sin θM0,

Mz(0) � cos θM0, andMy(ss) ≈ 0.

Mx(t) � A11 sin θM0 + A13 cos θM0 − A11Mx(ss)

− A13Mz(ss) + Mx(ss),

My(t) � A21 sin θM0 + A23 cos θM0 − A21Mx(ss)

− A23Mz(ss),

Mz(t) � A31 sin θM0 + A33 cos θM0 − A31Mx(ss)

− A33Mz(ss) + Mz(ss).

(32)

Employing the steady states of equations (17)–(19), these
become

Mx(t) � sin θM0 exp − Rθt

+
R1

Rθ
 sin θ cos θM0 1 − exp − Rθt ,

My(t) � 0,

Mz(t) � cos θM0 exp − Rθt

+
R1

Rθ
 cos2 θM0 1 − exp − Rθt .

(33)

'e magnetization vector relaxes to a steady state along
the effective field Beff � (Ω/c) [10, 11].

3.4. Case 4: General Solution Mz(0) � M0.

Equations (20)–(22) may be recast using the steady states of
equation (17)–(19) as

Mx(t) � A13M0 + Mx(ss) 1 − exp − Rθt ,

My(t) � A23M0,

Mz(t) � A33M0 + Mz(ss) 1 − exp − Rθt .

(34)
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'ese expressions agree with equations (60)–(62) of
Torrey [1] and with Abragam [3].

For a weak rf field ω1 <Δ (cos θ⟶ 1, sin2θ⟶ 0),
they reduce to

Mx(t) �
ω1

Δ
 M0 1 − exp − R2t cosΔt( ,

My(t) � −
ω1

Δ
 M0 exp − R2t sinΔt,

Mz(t) ≈M0,

(35)

in agreement with Slichter ([12], p. 35).

3.5. Case 5: Equal Relaxation Rates Rθ � b � R, Mz(0) � M0.
An exact solution of the Bloch equations is given by
equations (20)–(22) using the full steady-state expressions
(14)–(16). Using the steady states of equation (17)–(19), they
become

Mx(t) � sin θ cos θM0(1 − exp − Rt cosΩt),

My(t) � − sin θM0 exp − Rt sinΩt,

Mz(t) � cos2θM0 + sin2θM0 exp − Rt cosΩt.

(36)

4. Discussion

Equation (3) describes a number of experimental situations.

4.1. Case 1: Resonant Nutation. Resonant nutation (equa-
tions (28) and (29) ) was described by Torrey in his original
paper [1]. 'e effective relaxation rate is the average of the
longitudinal and transverse relaxation rates [3].

4.2. Case 2: Free Precession and Relaxation. In the absence of
an rf field, the transverse components interconvert and relax
to zero (the free induction decay) as the longitudinal
component, initially zero, relaxes independently to equi-
librium (equation (31)).

4.3. Case 3: Spin-Locked Relaxation. Orientation of the
magnetization vector parallel to the effective field suppresses
precession and results in a single-exponential approach to
equilibrium, affording the longitudinal and transverse re-
laxation rates using equations (6) and (33) [10, 11].

4.4. Case 4: General Solution. Equation (34) presents in
compact form the solutions originally given by Torrey [1]
and by Morris and Chilvers [6] as Laplace expressions and
the tabulations of Madhu and Kumar [4, 5] for a spin en-
semble initially at equilibrium. 'ey are valid provided

R2 s
− 1

 < Ω rad s
− 1

 , (37)

which holds for most cases of practical interest. In the
example given byMadhu and Kumar [4, 5],

R1 � 10 s
− 1

,

R2 � 100 s
− 1

,

Δ � ω1 � 2π × 1 kHz.

(38)

Accordingly, from equations (6), (7), and (17)–(19),

Rθ � 55 s
− 1

,

b � 77.5 s
− 1

,

Ω � 2π × 1414Hz,

Mx(ss) � Mz(ss) �
M0

11
,

My(ss) � −
M0

(110 × 2π)
≈ 0.

(39)

'ese values do not appear to reproduce the figures
presented in [5].

4.5. Case 5: Equal Relaxation Rates. 'e solutions (20)–(22)
for equal relaxation rates are exact provided the full steady
states of equation (14)–(16) are used.'e inequality of Case 4
leads to the simpler expressions (36). We note also that
setting ω1 �

�
2

√
Δ results in Rθ � b � (R1 + 2R2)/3.

4.6. Neglect of Relaxation. For rf amplitude and precession
terms which are large compared to relaxation rates equations
(23)–(25) pertain.'ey are useful, for example, in describing
selective (on-resonance) excitation with (off-resonance)
signal suppression [9] as in the following example (using Hz
units).

4.6.1. On-Resonance Rotation

cos θ⟶ 0,

v1tp �
1
4
,

My tp  � − M0,

Mx tp  � Mz tp  � 0.

(40)

4.6.2. Off-Resonance Rotation

ΩtP � 1,

Mz tP(  � M0,

Mx tP(  � My tP(  � 0,

Ωtp � 1 requires Δtp �

��
15

√

4
so tp �

��
15

√

4Δ
sec.

(41)
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'en, v1 � (1/4tp) � (Δ/
��
15

√
)Hz.

For a 5KHz offset tp � 193.6 μsec and v1 � 1291Hz.
'e on-resonance magnetization is rotated to the –y axis

by the rf pulse, whereas the off-resonance magnetization
undergoes an excursion that returns it to the z-axis.

5. Conclusion

'e differential equations (1) of Bloch [2] are integrated with
a matrix diagonalization method to give the solution
equation (3). It correctly describes a number of experimental
situations including resonant nutation, free precession and
relaxation, and spin-locked relaxation. Equation (3) is exact
for the case of equal longitudinal and transverse relaxation
rates and leads to the general equation (34) for a spin en-
semble initially at equilibrium.
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