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In service industries, especially in some ticket windows at scenic spots, affected by congestion, some customers often find excuses
or ask the acquaintances in the queue so as to jump the queue and complete their corresponding service as early as possible. In this
paper, we model the queueing phenomenon in the ticket windows at scenic spots as a special queue, namely, the so-called “team
queue.” Although this phenomenon often happens in daily life, it is less well known to people. In a team queue, an arriving
customer first searches the queue from the top to bottom to see if some of his teammates are already in the queue. If yes, he would
join the queue and be served with his teammates; otherwise, he would join the queue at the tail. To this end, arising from the
customers’ perspective, the strategic behavior of queueing customers in the ticket windows at scenic spots is analyzed. On the basis
of considering the waiting cost and reward, the individual strategies and social optimal strategies of queueing customers are
derived, regarding the joining or balking dilemma and for the observable and unobservable cases. Finally, to demonstrate how
various parameters affect the joining strategies, some numerical examples are provided.

1. Introduction

Nowadays, in the ticket windows at scenic spots, stations,
and other places, customer service is basically on a first-
come-first-served (FCFS) discipline. However, because of
the limitations of service capabilities and hardware facilities
of service providers, a congestion phenomenon in queueing
service frequently occurs; some queue-jumping customers
often attempt to jump in queue or find excuses (ask the
acquaintances in the queue) so as to cut in the queue and
complete their corresponding service as early as possible. By
jumping the queue, the queue-jumping customers can be
served before customers who are already in line; as a result,
the queueing phenomenon does not adhere to FCFS dis-
cipline and the act of jumping in the queue cannot be ig-
nored in designing the service systems. On the basis of the
queueing phenomenon in front of ticket windows at scenic
spots, in this paper, the queueing phenomenon is modelled
as a special queue, i.e., the team queue, which is less well

known, although it occurs frequently in everyday life. In
front of ticket windows at scenic spots, each customer in the
waiting line belongs to a team. If a new arriving customer
joins the team queue, he first searches the queue from the top
to bottom to see if any of his acquaintances (teammates) are
already in the waiting line; if yes, he accedes the queue and
receives service together with his teammates; otherwise, he
joins the queue at the tail.

In the existing literature about queue-jumping cus-
tomers in the ticket windows, many studies mainly focused
their analysis on obtaining the stationary distribution as well
as key performance measures, such as He and Chavoushi [1],
Boxma et al. [2], and Perel and Yechiali [3–6]. As far as we
know, there seems to be insufficient research on the phe-
nomenon of queueing service from the perspective of cus-
tomers, and no research has analyzed the strategic behavior
of queue-jumping customers in queueing systems. To this
end, we will use the team queue to model the queueing
service phenomenon in front of ticket windows at scenic
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spots, where the queue-jumping customers find their
teammates in the queue to cut in, and analyze the team
queue from an economic viewpoint with deriving the queue-
jumping customers’ corresponding equilibrium strategies.
-e following are the benefits and contributions of this work.

1.1. Model. A queue-jumping customer is presented in a
continuous-time team queue. -is model is well suited to
capturing the characteristics of customers lining up in front
of the ticket windows at scenic spots.

1.2. Methodology and Results. From the viewpoint of
queueing customers, queueing theory and game theory are
used to examine the team queue. We create a queueing-
game-theoretic model of a team queue and derive formulas
for calculating customer strategies at different levels of in-
formation. By the elaborate successful formulation of the
problem, the underlying paper expands the current theory of
queueing economics and extends the theoretical literature of
queueing theory and game theory.

1.3. Numerical Illustrations. -is paper includes numerical
examples to illustrate the effects of various parameters on
customer strategies, as well as some qualitative take-away
messages and intuitive explanations.

-e outline structure of this paper is as follows: Section 2
contains a comprehensive overview of relevant studies.
Section 3 describes the underlying team queue and con-
structs the reward-cost structure. -e individual optimal
strategies and the expected social welfare per unit of time in
the observable case are investigated in Section 4. -e
equilibrium joining strategies for the unobservable case are
deduced in Section 5. Section 6 includes some numerical
findings that demonstrate the effects of various parameters
on customer strategic action. In Section 7, we wrap up the
paper and summarize the key results of our paper.

2. Literature Review

-e literature on the queueing model with queue-jumping
customers dates back to Larson [7]. In [7], the author
discussed the queueing system with queue-jumping be-
havior from the perspective of social justice and psychology.
Later, Afèche and Mendelson [8] studied a queueing system
in which customers’ position in the queue depends on how
much they pay. He and Chavoushi [1] investigated the
queueing systems with queueing jumpers and derived the
waiting time periods of two types of customers. Recently,
Perel and Yechiali [3–6] and Jiang et al. [9–11] also con-
sidered the so-called “Israeli queue,” which reflects a real-
world situation and can be viewed as a queue-jumping
phenomenon. Arriving customers in an Israeli queue first
search for their friends or acquaintances already lining up in
the waiting region, and they could be served before the
customers who are already in the queue. As a result, the
Israeli queue can model the queue-jumping phenomenon,
which is also common in China. Concretely, the authors of

[3] looked at a polling scheme with an infinite number of
queues, where all customers in a queue can be served at the
same time by the server in that queue; i.e., at each queue,
service is provided in batches of any size. In [4–6], the
authors used different approaches to analyze the preemptive
priority Israeli queue, the retrial Israeli queue, and the
general group-joining policy of Israeli queue and obtained
the stationary distribution as well as some primary per-
formance measures. In addition, the authors considered the
Israeli queue with multiple servers in [9], where the service
rate of each server varies from low to high, depending on the
number of groups in the queue. In [10], the authors con-
sidered a multiphase random environment Israeli queue,
where two regions in front of the queue and the holding time
of an external environment vary depending on the system’s
state. In [11], the tail asymptotics for the retrial Israeli queue
was studied in depth, since the explicit closed solution for a
stationary distribution is difficult to obtain while each retrial
customer in the orbit is making independent and repeated
attempts to accept the service. In all of the papers above, we
discovered that the Israeli queue is modelled as follows:
arriving customers could form groups, and service time at
each group is independent of the group size. A new arriving
customer first searches each group leader; if he knows a
leader, he will join the group and be served together with all
customers in this group. By using some effective methods,
the authors mainly focused their analysis on obtaining the
stationary distribution as well as key performance measures.

Our model also falls into the category of strategic cus-
tomers. Some excellent references are studies by Naor [12],
Edelson and Hildebrand [13], Hassin and Haviv [14], Hassin
[15], Hassin and Roet-Green [16], Ibrahim [17], etc.

In reality, it is a new attempt to analyze the strategic
behavior of customers in batch service queueing systems.
For instance, Economou and Manou [18] have explored M/
M/1 queue in a substitutional environment where all existing
customers will be served upon the expiration of service.
Manou et al. [19] examined the strategic behavior of pas-
sengers at a transportation station, where all existing pas-
sengers can be excised as soon as the vehicle stops at the
station. Customer-joining behavior in batch service
queueing systems was also studied in [20], in which a fixed
number of customers could be served at once. -en,
Bountali and Economou [21] investigated the batch services
model under imperfect information.Wang et al. [22] studied
the strategic behavior of passengers in the queueing system
with batch transfer under threshold policy and obtained the
threshold joining strategies of passengers. Afimeimounga
et al. [23], Chen et al. [24], and the references therein are
recommended for the interested readers who want to know
more about the customer behavior analysis in batch
queueing systems.

3. Model Description

For the sake of analysis, for the queueing service phe-
nomenon in front of some ticket windows at scenic spots, we
assume that all queueing customers are queue jumpers; i.e.,
each arriving customer first finds his friend in the queue so
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as to cut in the queue and complete his corresponding
service as early as possible. -erefore, the underlying
queueing phenomenon can be modelled as anM/M/1 “team
queue (Israeli queue).” We use “he” to represent a customer
and “team queue” to represent the underlying queueing
system with queue-jumping customers for ease of exposi-
tion. More concretely, we also assume that customers arrive
at the system according to a Poisson process with rate λ, and
the service time, regardless of size (an unlimited size), fol-
lows an exponential distribution with mean μ− 1. If a new
arrival determines to join the system, he will first look for the
group leader, and if he finds an acquainted leader, he will
directly join the group and receive service alongside the
group leader. Actually, the assumption is reasonable. In
front of the ticket windows at scenic spots, the head of the
group buys several tickets at a time. In today’s information
society, the influence of the number of tickets purchased on
the service time can be ignored. We also suppose that the
value of the probability that a new arrival is familiar with a
group leader is θ, namely, ifm groups are in the team queue,
then with probability (1 − θ)k− 1θ, 1≤ k≤m, an arriving
customer who decides to join the team queue would be
assigned to the kth group or would create a new group with
probability. We also suppose that a new arrival could also
join the being-served group. From the model description,
the service is no longer subject to FCFS and a new arrival
could be served before the customers who are already in the
line.

At time t, define L (t) as the different number of groups;
then, the state of team queue L(t), t≥ 0{ } could be described
by a continuous-time Markov chain (CTMC). -e state
space of the team queue is Ω � 0, 1, 2, . . .{ }.

Unlike recent team queue papers, which concentrate on
the performance analysis, in the current paper, we mainly
discuss the team queue from the queueing customer per-
spective, where arriving customers are fully strategic, and
they can choose whether to join the team queue or not,
depending on their expected utility.

We construct a decision framework U � R − CE[W],
where U is the net utility, R is the valuation of service of-
ferings, C is the delay sensitivity, and E[W] records the
expected sojourn time (waiting and service time) of a joining
customer. -en, depending on the net utility U, if U≥ 0, a
newly arrived customer will join the queue, and vice versa.

Next, by distinguishing the observable and the unob-
servable cases, we study the strategic joining behavior of
customers. Concretely, we have the following: (1) observable

case: customers are allowed to know the number of groups in
the team queue and cannot see in advance if they have
friends in the queue; (2) unobservable case: customers are
not allowed to know the number of groups in the team queue
and cannot observe in advance if they have friends in the
queue, but they know the value of parameter θ.

4. Observable Case Analysis

We first examine the observable team queue. Customers
know about the team queue when they arrive in the ob-
servable situation; i.e., they might be informed of the
number of different groups in the queue but cannot see in
advance if they have friends in the queue. Next, we provide a
lemma to show the expected utility of a new arriving cus-
tomer when he arrives to the system.

Lemma 1. For the observable team queue, if a new arrival
discovers that n groups exist and he decides to join the queue,
then the utility is

Uobs(n) � R −
C

μ
1 − (1 − θ)

n+1

θ
. (1)

Proof. First, assume that a new arrival discovers the team
queue is empty upon his arrival and decides to join the team
queue; he will create a group and get served immediately by
the server; hence, his sojourn time is equal to 1/μ. Next, we
consider that a new arrival who discovers that n> 0 groups
exist upon his arrival and determines to join the queue. We
consider two scenarios that whether the customer knows the
leaders of present groups or not. □

Case 1. -e arriving customer knows the leaders of present
groups. In this case, if n> 0 groups exist, then the probability
that the new arrival knows the leader of the kth group is
(1 − θ)k− 1θ, and if he joins the kth group, his sojourn time is
k/μ, 1≤ k≤ n.

Case 2. -e arriving customer does not know any leaders of
all present groups. In this case, the probability that the new
arrival forms a new group is (1 − θ)n and his sojourn time is
(n + 1)/μ.

According to the decision framework, if an incoming
customer discovers that n groups exist in the team queue and
determines to join the queue, the utility would be

Uobs(n) � R − CE Wn􏼂 􏼃 � R − C
θ
μ

+
2θ(1 − θ)

μ
+ · · · +

nθ(1 − θ)
n− 1

μ
+

(n + 1)(1 − θ)
n

μ
􏼠 􏼡, (2)
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where Wn records the expected sojourn time of the new
arrival when he notices that n≥ 1 groups exist in the team
queue. After some calculations, we have

Uobs(n) � R −
C

μ
1 − (1 − θ)

n+1

θ
. (3)

Following that, we could locate the unique individual
optimal pure strategy by using Lemma 1.

Theorem 1. For the observable model, we could obtain the
unique individual optimal pure strategy:

Scenario 1. If R< (C/μ), balking is the unique individual
optimal pure strategy.
Scenario 2. If (C/μ)≤R< (C/μθ), we could obtain the
unique threshold strategy: if a new arrival discovers that
n groups exist in the team queue and n≤ ne, he would
join the team queue; otherwise, he would balk, where
ne(� ⌊n∗⌋) and

n
∗

�
ln K

ln(1 − θ)
− 1, (4)

with K � (C − Rμθ)/C.

Case 3. If R≥ (C/μθ), joining is the unique individual op-
timal pure strategy.

Proof. Differentiating Uobs(n) about n, we have

dUobs(n)

dn
�

C

μθ
(1 − θ)

n+1 ln(1 − θ)< 0. (5)

-en, Uobs(n) is monotone decreasing with respect to n; as a
result, if Uobs(n)< 0, a new arrival would balk; otherwise, he
is more willing to join the team queue. Next, we consider
three cases to obtain the results:

When R< (C/μ), we have Uobs(0)< 0. In this case,
balking is the unique individual optimal strategy.
When (C/μ)≤R< (C/μθ), we have Uobs(0)≥ 0 and
Uobs(+∞)< 0. In this case, there is a unique root n∗

that satisfiesUobs(n) � 0. According to the equation, we
have n∗ � (ln K/ln(1 − θ)) − 1 with K � (C − Rμθ)/C.
Since Uobs(n) is monotone decreasing with respect to n,
a new arrival would join the team queue when
n≤ ne(� ⌊n∗⌋); otherwise, he would balk the queue.
When R≥ (C/μθ), we have Uobs(n)≥ 0. -erefore, in
this case, joining is the unique individual optimal
strategy.

Now, we look at the issue from the viewpoint of a social
planner’s perspective; i.e., by constructing a social welfare
function, we could get the optimum threshold value to
maximize the social welfare. □

Theorem 2. For the observable model, if all new arrivals
adopt a threshold strategy (the threshold value ns), we then
have the expected net benefit, which has the following form:

S
soc
obs ns( 􏼁 � λ ns( 􏼁R − CE Lobs􏼂 􏼃, (6)

where

λ ns( 􏼁 � λ 1 −
(λ/μ)

ns+1(1 − θ)
ns ns+1( )/2

􏽐
ns+1
n�0 (λ/μ)

n
(1 − θ)

n(n− 1)/2
⎛⎝ ⎞⎠,

E Lobs􏼂 􏼃 � λ ns( 􏼁 􏽘

ns

n�0

(λ/μ)
n
(1 − θ)

n(n− 1)/2

􏽐
ns+1
k�0 (λ/μ)

k
(1 − θ)

k(k− 1)/2
1 − (1 − θ)

n+1

μθ
.

(7)

Proof. First, in the observable case, denote by πsocobs(n) its
corresponding steady-state distribution, i.e., the probability
that n groups exist in the team queue; then, under the

threshold strategy with threshold value ns, the distribution
can be obtained by solving the following balance equations:

λπsocobs(0) � μπsoc
obs(1), (8)

λ(1 − θ)
k

+ μ􏽨 􏽩πsoc
obs(k) � μπsocobs(k + 1) + λ(1 − θ)

k− 1πsoc
obs(k − 1), 1≤ k≤ ns, (9)

μπsoc
obs ns + 1( 􏼁 � λ(1 − θ)

nsπsocobs ns( 􏼁. (10)
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Solving equations (8)–(10), we have

πsocobs(n) � πsoc
obs(0)

λ
μ

􏼠 􏼡

n

(1 − θ)
n(n− 1)/2

, 1≤ n≤ ns + 1,

(11)

πsocobs(0) � 􏽘

ns+1

n�0

λ
μ

􏼠 􏼡

n

(1 − θ)
n(n− 1)/2

)
− 1

.⎛⎝ (12)

Based on equations (11) and (12), 􏽐
ns+1
k�0 kπsocobs(k) is used

to get the expected number of groups in the team queue.
Next, we use Little’s formula, i.e., E[Lobs] � λ(ns)E[W], to
obtain the expression of E[Lobs]:

E Lobs􏼂 􏼃 � λ 1 − πsocobs ns + 1( 􏼁( 􏼁 􏽘

ns

n�0
πsoc
obs(n)E Wn􏼂 􏼃 � λ 1 − πsocobs ns + 1( 􏼁( 􏼁 􏽘

ns

n�0
πsoc
obs(n)

1 − (1 − θ)
n+1

μθ
, (13)

where λ(ns) records the effective arrival rate of the system in the
observable case and E[W] records the mean sojourn time of an
arbitrary arrival who would join the team queue. If all new
arrivals adopt a threshold strategy to join the team queue, then
we could derive the expected social benefit by substituting
equation (13) into Ssocobs(ns) � λ(ns)R − CE[Lobs].

From equation (6), it is found that it would be difficult to
derive an analytical solution nsoc to the optimal value that
maximizes the expected social benefit. However, it can be
easily computed through numerical algorithm. Next, we
present the calculation process of Algorithm 1, and the
numerical results would be shown in the Numerical Ex-
amples section. □

5. The Unobservable Case Analysis

Now, we look at the unobservable team queue. In this case,
new arrivals have no way of knowing how many groups are
in the team queue and cannot observe in advance if they have
friends in the queue. Since customers could know the value
of parameter θ, even if the queue is not observable, they
could estimate the probability of joining (or creating) a
group; that is, they could be assigned to each group with
probability. According to the steady-state analysis, we then
obtain their expected sojourn time and their strategic de-
cisions on the basis of their expected utility. Hereby, we first
give a lemma to express the expected utility of a joining
customer.

Lemma 2. For the unobservable team queue, a new arrival
does not know the state of the system; if all the other customers
join the queue with probability q and the new arrival choose to
join the queue, then his utility is shown as follows:

Uun(q) � R −
C

μθ
􏼠 􏼡 +

C(1 − θ) 1 − π0( 􏼁

λqθ
, (14)

where π0 satisfies

π0 � 􏽘
∞

n�0

λq

μ
􏼠 􏼡

n

(1 − θ)
n(n− 1)/2⎛⎝ ⎞⎠

− 1

. (15)

Proof. First, let πn, n ∈ Ω record the steady-state distribu-
tion of the team queue under the unobservable case. Suppose
that all new arrivals join the team queue with probability q;
then, the balance equations of the team queue have the
following forms:

λqπ0 � μπ1, (16)

μ + λq(1 − θ)
n

􏼂 􏼃πn � λq(1 − θ)
n− 1πn− 1 + μπn+1, n≥ 1.

(17)

Combining with the normalization condition
􏽐
∞
n�0 πn � 1, we have

πn � π0
λq

μ
􏼠 􏼡

n

(1 − θ)
n(n− 1)/2

, n≥ 1, (18)

π0 � 􏽘
∞

n�0

λq

μ
􏼠 􏼡

n

(1 − θ)
n(n− 1)/2⎛⎝ ⎞⎠

− 1

. (19)

Since π0 is finite, the system is stable if 0< θ≤ 1. In
particular, the stability condition of the system is λq< μ if
θ � 0. Define Π(z) � 􏽐

∞
n�0 πnzn; multiplying both sides of

equation (17) by zn and summing all the terms, we have

Π(z) �
λqz

μ
Π((1 − θ)z) + π0. (20)

Substituting z � 1 into Π(z) and combining Π(1) � 1,
we have

Π(1 − θ) �
μ
λq

1 − π0( 􏼁. (21)

-en, for the unobservable case, if all the other cus-
tomers join the queue with probability q, the expected utility
of a new arrival is
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Uun(q) � 􏽘
∞

n�0
πnUobs(n) � R −

C

μθ
􏼠 􏼡 +

C(1 − θ) 1 − π0( 􏼁

λqθ
,

(22)

which is equation (14).
We can now decide the equilibrium joining strategies of

an arriving customer in the unobservable case based on the
above discussion. -e following theorem includes the ex-
plicit results. □

Theorem 3. For the unobservable model, there is a unique
mixed strategy qe, which takes the form of

qe �

0, R≤
C

μ
,

q
∗
e ,

C

μ
<R<

C

μθ
−

C(1 − θ) 1 − π0(1)( 􏼁

λθ
,

1, R≥
C

μθ
−

C(1 − θ)π0(1)

λθ
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where q∗e is the solution which satisfies

1 − π0(q)

q
�

λ
μ(1 − θ)

−
λRθ

C(1 − θ)
. (24)

Proof. Hence, π0 is a function depends on q.
Define π0(q) � (1/A(q)), where A(q) � 􏽐

∞
n�0 (λq/μ)n

(1 − θ)n(n− 1)/2. -en, we have

π0′(q) � −
A′(q)

[A(q)]
2 � −

􏽐
∞
n�1 n(λ/μ)(λq/μ)

n− 1
(1 − θ)

n(n− 1)/2

[A(q)]
2 .

(25)

Differentiating Uun(q), we then have

Uun′(q) � −
C(1 − θ)

λθ
􏽐
∞
n�0 (λq/μ)n(1 − θ)n(n− 1)/2

􏼐 􏼑
2

− 􏽐
∞
n�0(n + 1)(λq/μ)

n
(1 − θ)

n(n− 1)/2

q
2
(A(q))

2 . (26)

It is not difficult to find that

􏽘

∞

n�0

λq

μ
􏼠 􏼡

n

(1 − θ)
n(n− 1)/2⎛⎝ ⎞⎠

2

− 􏽘
∞

n�0
(n + 1)

λq

μ
􏼠 􏼡

n

(1 − θ)
n(n− 1)/2 > 0. (27)

Input: λ, μ, θ, R, C
Output: nsoc, Ssocobs(nsoc)

(1) Set nmax � 100, n� 1, nsoc � n

(2) Calculate a � Ssocobs(n) according to equation (6).
(3) while (n< nmax) do
(4) n� n + 1.
(5) Calculate Ssocobs(n) according to equation (6).
(6) if Ssocobs(n)> a then
(7) a � Ssocobs(n), nsoc � n.
(8) end if
(9) end while
(10) Ssocobs(nsoc) � a.

ALGORITHM 1: Search for nsoc and Ssocobs(nsoc).
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So, we have Uun′(q)< 0. -is means that Uun(q) is
monotone decreasing with respect to q. Next, the issue can
be solved by considering the following three scenarios:

Scenario 1. If Uun(0)≤ 0, we have R≤ (C/μ), then
Uun(q) is a nonpositive function for every q, balking is
the unique equilibrium strategy, and we can obtain the
first branch of equation (23).
Scenario 2. If Uun(0)> 0 and Uun(1)< 0, we have
(C/μ)<R< (C/μθ) − (C(1 − θ)(1 − π0(1))/λθ), there
is a unique root q∗e in the open interval (0, 1) that
satisfies Uun(q∗e ) � 0, and then we can obtain the
second branch of equation (23).
Scenario 3. If Uun(1)≥ 0, we have
R≥ (C/μθ) − (C(1 − θ)(1 − π0(1))/λθ), then Uun(q) is
a nonnegative function for every q; in this scenario,
joining is the unique equilibrium strategy and we could
obtain the third branch of equation (23).

-e expected social welfare for the unobservable case is
then considered. -e following theorem can be used to
obtain the explicit result. □

Theorem 4. For the unobservable model, if all arrivals adopt
a mixed strategy with joining probability q, then the expected
net benefit is

S
soc
un (q) � λqR − C

λq

μθ
−

(1 − θ) 1 − π0(q)( 􏼁

θ
􏼠 􏼡, (28)

where π0(q) is obtain in equation (19).

Proof. If all new arrivals join the queue by adopting a mixed
strategy, then the expected net benefit is

S
soc
un (q) � λqR − CE Lun􏼂 􏼃, (29)

where E[Lun] is obtained by Little’s formula; i.e., combining
equation (14) and using Little’s formula, we have

E Lun􏼂 􏼃 �
λq

μθ
−

(1 − θ) 1 − π0(q)( 􏼁

θ
􏼠 􏼡. (30)

Substituting E[Lun] into Ssocun (q) � λqR − CE[Lun], we
then have the expression of equation (28).

From the expression of π0(q), we find that it is difficult to
obtain the optimal value qsoc with explicit analytical form.
However, qsoc is easily obtained by numerical calculation.
Hence, we will present numerical Algorithm 2 and give some
numerical examples in the following section to derive some
qualitative conclusions. □

6. Numerical Examples

In this section, by using Matlab software, we would
display the dependence of the equilibrium strategies and
social optimal strategies on parameters through some
numerical examples. Assuming that λ � 1.5, μ � 2, and

θ � 0.1, the effect of R and C on the individual and social
optimal thresholds are studied, respectively. Obviously,
in Figures 1 and 2, both of the values ne and nsoc increase
as R increases and decrease as C increases. It makes sense
that queueing customers would be willing to join the
queue if they were offered with a higher value reward.
Conversely, if the cost of delay is high, queueing cus-
tomers tend to balk to avoid paying too much.

Next, we continue to suppose that λ � 1.5, μ � 2, and
θ � 0.1 and observe the changing relationship between
dependent variables (qe and qsoc) and independent var-
iables (R and C). Obviously, in Figure 3, qe and qsoc in-
crease as R increases. -e reason is that, as R increases,
queueing customers could perceive higher service value
and prefer to join the team queue. In Figure 4, it is
obvious that qe and qsoc decrease as C increases. In order
to find how the parameters λ and μ affect qe and qsoc, we
then assume θ � 0.1, C � 2, and R � 4 and show their re-
lationship in Figures 5 and 6. From Figures 5 and 6, we
observe that qe and qsoc are continuously increasing with
respect to μ and continuously decreasing with respect to
λ. -is is because that increasing the service rate can
benefit customers by reducing the expected delay cost
and, meanwhile, the new arriving customers who know a
high arrival rate can predict the higher load of the system,
which increases their delay cost and makes them reluctant
to join the system.

Finally, in Figures 1 and 2, we note that the inequality
nsoc ≤ ne holds for any values of R and C, and in Figures 3
and 4, we note that the inequality qsoc ≤ qe holds for any
values of R and C. Moreover, in Figures 5 and 6, the
inequality qsoc ≤ qe holds for any values of λ and μ. -e
main reason for these results is that each new arrival is
inclined to maximizing his/her own benefit. When new
arrivals join the team queue, their joining decisions
would lengthen the waiting time and increase the delay
cost of future arrivals; that is, it will have a negative
externality effect on future arrivals. -erefore, when
maximizing the net benefit, we should consider these
negative externalities, which will directly result in the
inequalities nsoc ≤ ne and qsoc ≤ qe. Furthermore, we also
find that the inequalities are in accordance with the re-
sults in some classic papers: individual optimization
results in longer queue than it is socially desirable. We
expect the obtained results can be extended to other
practice queueing systems.

From the above numerical results, we could obtain the
following management inspiration: First, the higher the
service level is, the more will be the customers joining the
queue. -e service provider should effectively improve
service quality at a certain cost. Second, customers’
perceived wait time periods will be longer in a boring and
monotonous environment. High delay sensitivity and
long perceived wait time periods make customers balk the
queue; therefore, the service provider should take mea-
sures and use the theory of queueing psychology to

Discrete Dynamics in Nature and Society 7



Input: λ, μ, θ, R, C
Output: qsoc, Ssocun (qsoc)

(1) Set step � 0.01, q� step, qun � q

(2) Calculate a � Ssocun (q) according to equation (28).
(3) while (q< 1) do
(4) q� q+ step.
(5) Calculate Ssocun (q) according to equation (28).
(6) if Ssocun (q)> a then
(7) a � Ssocun (q), qsoc � q.
(8) end if
(9) end while
(10) Ssocun (qsoc) � a.

ALGORITHM 2: Search for qsoc and Ssocun (qsoc).
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Figure 1: ne and nsoc vs R (C� 4).
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Figure 2: ne and nsoc vs C (R� 7).
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Figure 4: qe and qsoc vs C (R� 3).
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Figure 3: qe and qsoc vs R (C� 3).
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reduce customers’ perceived waiting time (by reducing
the delay sensitivity) without shortening the actual
waiting time, such as “improve the queueing situation,”
“fill the waiting time,” and “make customers feel that the
service has started.”

7. Summary and Conclusions

In this paper, the strategic behavior of queueing customers
in the ticket windows at scenic spots is analyzed. We as-
sumed that each arriving customer first finds his friend in the
queue so as to cut in the queue and complete his corre-
sponding service as early as possible. -erefore, the un-
derlying queueing service phenomenon can be modelled as a
“team queue.” For the observable case, we first derived the

individual optimal threshold strategies and the expected net
benefit. -en, for the unobservable case, the mixed equi-
librium balking strategies and the social optimal strategies
are obtained. Finally, a number of numerical examples are
given to compare the equilibrium strategy with the social
optimal strategy. In the future work, by using the real data,
we could investigate a real-world ticket window at scenic
spot and verify the validity of the derived conclusions;
meanwhile, we could also investigate the pricing of service at
scenic spots and the effect of information on queueing
customers’ strategic behavior. We think these would be
interesting directions for future research.
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