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In this paper, we investigate and prove a new discrete q-fractional version of the coupled Gronwall inequality. By applying this
result, the finite-time stability criteria of solutions for a class of nonlinear q-fractional difference coupled delay systems are
obtained. As an application, an example is provided to demonstrate the effectiveness of our result.

1. Introduction

)e q-difference equations have numerous applications in
diverse fields in recent years and have gained intensive
interest [1–4]. For more details on q-calculus, we recom-
mend the readers to [5]. In the last two decades, the frac-
tional difference equations have recently received
considerable attention in many fields of science and engi-
neering, see [6–9] and the references therein. We know that
the q-fractional difference equations can be used as a bridge
between fractional difference equations and q-difference
equations, and there are many papers on this research di-
rection which have been appeared in [10–16]. And, we
recommend [17] and the papers cited therein.

For 0< q< 1, we define the time scale Tq �

qn: n ∈ Z ∪ 0{ }, where Z is the set of integers. For a � qn0

and n0 ∈ Z, we denote Ta � [a,∞)q � q− ia: i � 0, 1, 2, . . . .
In [18], Abdeljawad and Alzabut established a discrete

q-fractional version of the Gronwall-type inequality as
follows:

Theorem 1 (see [18]). Let α> 0, u and μ be nonnegative real
valued functions such that 0≤ μ(t)< 1/tα(1 − q)α, for all
t ∈ Ta, and

u(t)≤ u(a)+q∇
− α
a u(t)μ(t), (1)

&en,

u(t)≤ u(a) 

∞

k�0
qE

k

μ1, (2)

where qEk
μ1 � μk(t − a)kα

q /Γq(kα + 1).

Abdeljawad et al., in [19], extended the above inequality
and obtained the following generalized q-fractional Gron-
wall-type inequality.

Theorem 2 (see [19]). Let α> 0, u and ] be nonnegative
functions, and w(t) be nonnegative and nondecreasing
function, for t ∈ [a,∞)q, such that w(t)≤M, where M is a
constant. If

u(t)≤ ](t) + w(t)q∇
− α
a u(t), (3)

then

u(t)≤ ](t) + 
∞

k�1
w(t)Γq(α) 

k
q∇

− kα
a

](t). (4)

Based on the above result, Abdeljawad et al. investigated
the following nonlinear delay q-fractional difference system:
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qC
α
a
x(t) � A0x(t) + A1x(τt) + f(t, x(t), x(τt)), t ∈ [a,∞)q,

x(t) � ϕ(t), t ∈ Iτ ,


(5)

where qCα
a
means the Caputo fractional difference of order α,

Iτ � τa, q− 1τa, q− 2τa, . . . , a , τ � qd ∈ Tq, with d ∈ N0 �

0, 1, 2, . . .{ }.
An interesting topic in control theory is finite-time

control, and the objective of finite-time control is to design a
control law, making the system state converge to the origin
in finite time. In [20], Sun et al. developed the finite-time
state feedback stabilisation scheme for nonlinear time-delay
systems with high-order and low-order nonlinearities. Re-
cently, Wang and Xiang [21, 22] presented a finite-time
output feedback control scheme for a class of nonlinear
systems and nonlinear time-delay in the p-normal form,
respectively. In [23], Modiri and Mobayen studied the
synchronization of fractional-order uncertain chaotic sys-
tems in the finite time. Mofid et al., in [24], considered the
sliding mode disturbance observer control of a class of
fractional-order chaotic systems by using adaptive syn-
chronization. Moreover, the observer-based state feedback
stabilizer design for a class of chaotic systems and the fixed-
time attitude control for a flexible spacecraft in the presence
of actuator faults, external disturbances, and coupling effect
of flexible modes have been considered in [25, 26],
respectively.

On the contrary, finite-time stability is a method which is
much valuable to analyze the transient behavior of nature of
a system within a finite interval of time. In recent decades,
the finite-time stability analysis of fractional differential
systems have recently considerable attention, see, for in-
stance, [27–31] and the references therein. However, till
now, few researchers focus on finite-time stability of frac-
tional delay difference systems.

Motivated by the above works, we will to extend the
q-fractional Gronwall-type inequality ()eorem 2) to cou-
pled q-fractional Gronwall inequality. As an application, we
establish a finite-time stability criterion of the following
nonlinear coupled delay q-fractional difference system:

qC
α
a
x(t) � A0y(t) + A1y(τt) + f(t, y(t), y(τt)), t ∈ [a, 1]q,

qC
α
a
y(t) � B0x(t) + B1x(τt) + g(t, x(t), x(τt)), t ∈ [a, 1]q,

x(t) � ϕ(t), y(t) � ψ(t), t ∈ Iτ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where [a, 1]q � [a, 1]∩ Ta, Iτ � τa, q− 1τa, q− 2τa, . . . , a ,
τ � qd ∈ Tq with d ∈ N0 � 0, 1, 2, . . .{ }, qCα

a
and qCβ

a
mean

the Caputo fractional difference of order α ∈ (0, 1) and order
β ∈ (0, 1), respectively, and the constant matrices A0, A1, B0,
and B1 are of appropriate dimensions.

In this paper, the coupled q-fractional Gronwall in-
equality is studied and given for the first time, which is a
powerful tool and method to deal with finite-time stability
and other stability of nonlinear coupled delay q-fractional
difference systems. And, we studied the finite-time stability
of a class of nonlinear coupled delay q-fractional difference
system by using this inequality.

)e organization of this paper is given as follows. In
Section 2, we give some notations, definitions, and pre-
liminaries. Section 3 is devoted to proving a coupled
q-fractional Gronwall inequality. In Section 4, the finite-time
stability theorem of nonlinear coupled delay q-fractional
difference system is proved. In Section 5, an example is given
to illustrate our theoretical result. Finally, the paper is
concluded in Section 6.

2. Preliminaries

In this section, we provided some basic definitions and
lemmas which are used in the sequel.

Let f: Tq⟶ R, and we define the nabla q-derivative of
f by

∇qf(t) �
f(t) − f(qt)

(1 − q)t
, t ∈ Tq∖ 0{ }. (7)

)e nabla q-integral of f has the following form:


t

0
f(s)∇qs � (1 − q)t 

∞

i�0
q

i
f tq

i
 , (8)

and for 0≤ a ∈ Tq,


t

a
f(s)∇qs � 

t

0
f(s)∇qs − 

a

0
f(s)∇qs. (9)

)e definition of the q-factorial function for a non-
positive integer α is given by

(t − s)
α
q � t

α


∞

i�0

1 − (s/t)qi

1 − (s/t)qi+α. (10)

For a function f: Tq⟶ R, the left q-fractional integral
q∇

− α
a

of order α≠ 0, − 1, − 2, . . . and starting at 0< a ∈ Tq is
defined by

q∇
− α
a

f(t) �
1
Γq(α)


t

a
(t − qs)α− 1

q f(s)∇qs, (11)

where

Γq(α + 1) �
1 − q

α

1 − q
Γq(α), Γq(1) � 1, α> 0. (12)

Definition 1 (see [11]). Let 0< α ∉ N. )en, the Caputo left
q-fractional derivative of order α of a function f defined on
Tq is defined by

qC
α
a
f(t) ≔ q∇

− (n− α)

a
∇n

qf(t)

�
1

Γq(n − α)


t

a
(t − qs)n− α− 1

q ∇
n
qf(s)∇qs,

(13)

where n � [α] + 1.

Lemma 1 (see [11]). Let α> 0 and f be defined in a suitable
domain. &us,
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q∇
− α
a qC

α
a
f(t) � f(t) − 

n− 1

k�0

(t − a)
k
q

Γq(k + 1)
∇k

qf(a), (14)

and if 0< α≤ 1, we have

q∇
− α
a qC

α
a
f(t) � f(t) − f(a). (15)

)e following identity plays a crucial role in solving the
linear q-fractional equations:

q∇
− α
a

(x − a)
μ
q �
Γq(μ + 1)

Γq(α + μ + 1)
(x − a)

μ+α
q 0< a< x< b,

(16)

where α ∈ R+ and μ ∈ (− 1,∞). )e q-analog of the Mit-
tag–Leffler function with double index (α, β) is introduced
as follows.

Definition 2 (see [11]). For z, z0 ∈ C and R(α)> 0, the
q-Mittag–Leffler function is defined by

qEα,β λ, z − z0(  � 
∞

k�0
λk

z − z0( 
αk

q

Γq(αk + β)
. (17)

In the case β � 1, we utilize qEα(λ, z − z0) � qEα,1
(λ, z − z0).

Moreover, the modified q-Mittag–Leffler function is
used in [19] as follows:

qeα,β λ, z − z0(  � 
∞

k�0
λk

z − z0( 
αk+(β− 1)
q

Γq(αk + β)
. (18)

3. A Generalized Coupled q-Fractional
Gronwall Inequality

In this section, we give and prove the following a generalized
coupled q-fractional Gronwall inequality, which extend a
generalized q-fractional Gronwall inequality in )eorem 2.

Theorem 3. Assume that u(t), v(t), and gi(t) (i � 1, 2) are
nonnegative functions for t ∈ Ta. Let wi(t) (i � 1, 2) be
nonnegative and nondecreasing functions for t ∈ Ta with
wi(t)≤Mi, where Mi are constants (i � 1, 2). If

u(t)≤g1(t) + w1(t)q∇
− α
a v(t), t ∈ [a, 1]q,

v(t)≤g2(t) + w2(t)q∇
− β
a u(t), t ∈ [a, 1]q,

⎧⎪⎨

⎪⎩
(19)

and

M1M2(1 − q)
α+β < 1, (20)

hold, then

u(t)≤g1(t) +
w1(t)

Γq(α)


t

a
(t − qs)α− 1

q g2(s)∇qs

+ 
∞

k�1
w1(t)

k
w2(t)

k
q∇

− k(α+β)

a
g1(t) +

w1(t)

Γq(α)


t

q
(t − qs)α− 1

q g2(s)∇qs ,

(21)

and

v(t)≤g2(t) +
w2(t)

Γq(β)


t

a
(t − qs)β− 1

q g1(s)∇qs

+ 
∞

k�1
w1(t)

k
w2(t)

k
q∇

− k(α+β)

a
g2(t) +

w2(t)

Γq(β)


t

a
(t − qs)β− 1

q g1(s)∇qs .

(22)

Proof. Let

Av(t) �
w1(t)

Γq(α)


t

a
(t − qs)α− 1

q v(s)∇qs, t ∈ Ta, (23)

and

Bu(t) �
w2(t)

Γq(β)


t

a
(t − qs)β− 1

q u(s)∇qs, t ∈ Ta. (24)

According to (19), one has

u(t)≤g1(t) + Av(t), v(t)≤g2(t) + Bu(t). (25)

Discrete Dynamics in Nature and Society 3



By (25) and the monotonicity of the operators A and B,
we obtain

u(t)≤g1(t) + A g2(t) + Bu(t)(  � g1(t) + Ag2(t) + ABu(t)

≤g1(t) + Ag2(t) + AB g1(t) + Ag2(t) + ABu(t) 

� g1(t) + ABg1(t) + Ag2(t) + ABAg2(t) +(AB)
2
u(t)

≤ 

n− 1

k�0
(AB)

k
g1(t) + 

n− 1

k�0
(AB)

kAg2(t) +(A)
n
u(t), t ∈ Ta.

(26)

Similarly, we obtain

v(t)≤ 
n− 1

k�0
(BA)

k
g2(t) + 

n− 1

k�0
(BA)

kBg1(t) +(BA)
n
v(t), t ∈ Ta,

(27)

where (AB)0g1(t) � g1(t) and (BA)0g2(t) � g2(t).
In the following, we will prove that

(AB)
n
u(t)≤w1(t)

n
w2(t)

n
q∇

− n(α+β)

a
u(t), (28)

(BA)
n
v(t) ≤w1(t)

n
w2(t)

n
q∇

− n(α+β)

a
v(t), (29)

where t ∈ Ta and

lim
n⟶∞

(AB)
n
u(t) � 0, lim

n⟶∞
(BA)

n
v(t) � 0. (30)

We know that (28) and (29) are true for n � 1. In fact,
one has

ABu(t) � A(Bu(t)) �
w1(t)

Γq(α)


t

a
(t − qs)α− 1

q Bu(s)∇qs

�
w1(t)

Γq(α)Γq(β)


t

a
(t − qs)α− 1

q w2(s) 
s

a
(t − qr)β− 1

q u(r)∇qr∇qs

≤
w1(t)w2(t)

Γq(α)Γq(β)


t

a
(t − qs)α− 1

q 
s

a
(t − qr)β− 1

q u(r)∇qr∇qs

�
w1(t)w2(t)

Γq(α)Γq(β)


t

a


t

r
(t − qs)α− 1

q (s − qr)β− 1
q u(r)∇qr∇qs

�
w1(t)w2(t)

Γq(β)


t

a

1
Γq(α)


t

r
(t − qs)α− 1

q (s − qr)β− 1
q ∇qs u(r)∇qr

�
w1(t)w2(t)

Γq(β)


t

a
q∇

− α
qr

(t − qr)β− 1
q u(r)∇qr,

(31)

where q∇
− α
qr

u(t) � 1/Γq(α) 
t

qr
(t − qs)α− 1

q u(s)∇qs has been
used. By (16), we have

q∇
− α
a

(x − a)
μ
q �
Γq(μ + 1)

Γq(α + μ + 1)
(x − a)

μ+α
q

(0< a<x< b), μ> − 1.

(32)

Combining (31) with (32), one has

ABu(t)≤
w1(t)w2(t)

Γq(β)


t

a

Γq(β)

Γq(α + β)
(t − qr)α+β− 1

q u(r)∇qr

�
w1(t)w2(t)

Γq(α + β)


t

a
(t − qr)α+β− 1

q u(r)∇qr

� w1(t)w2(t)q∇
− (α+β)
a u(t).

(33)

Similarly, one has
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BAv(t)≤w1(t)w2(t)q∇
− (α+β)
a v(t). (34)

)us, (28) and (29) are valid for n � 1. Assume that (28)
and (29) are true, for n � k, which are

(AB)
k
u(t)≤w1(t)

k
w2(t)

k
q∇

− k(α+β)

a
u(t), (35)

(BA)
k
v(t) ≤w1(t)

k
w2(t)

k
q∇

− k(α+β)

a
v(t). (36)

For n � k + 1 and t ∈ Na+1+k(]+μ), by using (33) and (35)
and the nondecreasing functions w1(t) and w2(t), we obtain

(AB)
k+1

u(t) � AB (AB)
k
u(t) 

≤
w1(t)w2(t)

Γq(α + β)


t

a
(t − qs)α+β− 1

q 
s

a

w1(s)
k
w2(s)

k

Γq(k(α + β))
(t − qr)k(α+β)− 1

q u(r)∇qr∇qs

≤
w1(t)

k+1
w2(t)

k+1

Γq(k(α + β))


t

a


t

r

1
Γq(α + β)

(t − qs)α+β− 1
q (s − qr)k(α+β)− 1

q ∇qs u(r)∇qr

�
w1(t)

k+1
w2(t)

k+1

Γq(k(α + β))


t

a
q∇

− (α+β)

qr
(t − qr)k(α+β)− 1

q u(r)∇qr,

(37)

where q∇
− (α+β)

qr
u(t) � 1/Γq(α) 

t

qr
(t − qs)α+β− 1

q u(s)∇qs has
been used. By using (16) and (37), we obtain

(AB)
k+1

u(t)≤
w1(t)

k+1
w2(t)

k+1

Γq(k(α + β))


t

a
(t − qr)(k+1)(α+β)− 1

q

Γq(k(α + β))

Γq(k + 1)(α + β)
u(r)∇qr

�
w1(t)

k+1
w2(t)

k+1

Γq((k + 1)(α + β))


t

a
(t − qr)(k+1)(α+β)− 1

q u(r)∇qr

� w1(t)
k+1

w2(t)
k+1

q∇
− (k+1)(α+β)

a
u(t).

(38)

Similarly, we can obtain

(BA)
k+1

v(t)≤w1(t)
k+1

w2(t)
k+1

q∇
− (k+1)(α+β)

a
v(t). (39)

)us, (28) and (29) are proved.
Using Stirling’s formula of the q-gamma function [32]

yields that

Γq(x) � [2]
1/2
q Γq2

1
2

 (1 − q)
(1/2)− x

e
θqx/(1− q)− qx

, 0< θ< 1,

(40)

that is,

Γq(x) ∼ D(1 − q)
(1/2)− x

, x⟶∞, (41)

where D � [2]1/2q Γq2(1/2). Moreover, if t> a> 0 and c> 0 (c
is not a positive integer), then 1 − a/tqj < 1 − a/tqc+j, for
each j � 0, 1, . . ., and

(t − a)
c
q � t

c


∞

j�0

1 − a/tqj

1 − a/tqc+j
< t

c
. (42)

Applying the first mean value theorem for definite in-
tegrals [33], (41) and (42), and w1(t)<M1 and w2(t)<M2,
there exists a ξ ∈ [a, 1]q such that

Discrete Dynamics in Nature and Society 5



lim
n⟶∞

(AB)
n
u(t)≤ lim

n⟶∞
u(ξ)

M
n
1M

n
2

Γq(n(α + β))


t

a
(t − qr)n(α+β)− 1

q ∇qr

� lim
n⟶∞

u(ξ)
M

n
1M

n
2

Γq(n(α + β) + 1)
(t − a)

n(α+β)
q

≤ lim
n⟶∞

u(ξ)
M

n
1M

n
2

Γq(n(α + β) + 1)
t
n(α+β)

� lim
n⟶∞

u(ξ)
M

n
1M

n
2

D(1 − q)
1/2− (n(α+β)+1)

t
n(α+β)

≤ lim
n⟶∞

u(ξ)
M

n
1M

n
2

D(1 − q)
1/2− (n(α+β)+1)

� lim
n⟶∞

u(ξ)
����
1 − q



D
M1M2(1 − q)

α+β
 

n
.

(43)

From (20), for each t ∈ [a, 1]q, one has

M1M2(1 − q)
α+β

 
n
⟶ 0, as n⟶∞. (44)

)us, (AB)nu(t)⟶ 0 as n⟶∞, Similarly, we can
obtain that (BA)nu(t)⟶ 0 as n⟶∞, for each t ∈ Ta.
)erefore, (30) is proved.

Let n⟶∞ in (26); with the help of the semigroup
property q∇

− α
a q∇

− μ
a

� q∇
− (α+μ)

a
and the definition of A and B,

one obtains

u(t)≤g1(t) + Ag2(t) + 
∞

k�1
(AB)

k
g1(t) + 

∞

k�1
(AB)

k
Ag2(t)

� g1(t) +
w1(t)

Γq(α)


t

a
(t − qs)α− 1

q g2(s)∇qs

+ 
∞

k�1
w1(t)

k
w2(t)

k
q∇

− k(α+β)

a
g1(t) +

w1(t)

Γq(α)


t

a
(t − qs)α− 1

q g2(s)∇qs .

(45)

Similarly, let n⟶∞ in (27), and we obtain (22). )is
completes the proof. □

Corollary 1. Under the hypothesis of &eorem 3, let g1(t)

and g2(t) be two nondecreasing functions on t ∈ Ta. &en,

u(t)≤g1(t)qEα+β w1(t)w2(t), t − a( 

+ w1(t)g2(t)qeα+β,α+1 w1(t)w2(t), t − a( 
(46)

and

v(t)≤g2(t)qEα+β w1(t)w2(t), t − a( 

+ w2(t)g1(t)qeα+β,β+1 w1(t)w2(t), t − a( .
(47)

Proof. By (16) and the assumption that g1(t), g2(t), and
w1(t) are three nondecreasing functions for t ∈ Ta, we have

q∇
− α
a

g2(t)≤g2(t)q∇
− α
a
1 �

g2(t)

Γq(α + 1)
(t − a)

α
q, (48)

and

q∇
− k(α+β)

a
g1(t) + w1(t)q∇

− α
a

g2(t) 

≤ g1(t) + w1(t)q∇
− α
a

g2(t) q∇
− k(α+β)

a
1

� g1(t) + w1(t)q∇
− α
a

g2(t) 
(t − a)

k(α+β)
q

Γq(k(α + β) + 1)
.

(49)

6 Discrete Dynamics in Nature and Society



)us, from (21), (48), and (49), one can conclude that

u(t)≤ g1(t) + w1(t)g2(t)q∇
− α
a 1  1 + 

∞

k�1
w1(t)

k
w2(t)

k
q∇

− k(α+β)

a
1⎡⎣ ⎤⎦

� g1(t) 1 + 

∞

k�1
w1(t)

k
w2(t)

k
q∇

− k(α+β)

a
1⎡⎣ ⎤⎦ +

w1(t)g2(t)

Γq(α + 1)
(t − a)

α
q

+ w1(t)g2(t) 
∞

k�1
w1(t)

k
w2(t)

k
q∇

− k(α+β)

a q∇
− α
a
1

� g1(t) 
∞

k�0

w1(t)w2(t)( 
k
(t − a)

k(α+β)
q

Γq(k(α + β) + 1)
+

w1(t)g2(t)

Γq(α + 1)
(t − a)

α
q

+ w1(t)g2(t) 
∞

k�1
w1(t)

k
w2(t)

k
q∇

− k(α+β)− α
a

1

� g1(t)qEα+β w1(t)w2(t), t − a(  +
w1(t)g2(t)

Γq(α + 1)
(t − a)

α
q

+ w1(t)g2(t) 
∞

k�1

w1(t)w2(t)( 
k
(t − a)

k(α+β)+α
q

Γq(k(α + β) + α + 1)

� g1(t)qEα+β w1(t)w2(t), t − a(  + w1(t)g2(t) 
∞

k�0

w1(t)w2(t)( 
k
(t − a)

k(α+β)+α
q

Γq(k(α + β) + α + 1)

� g1(t)qEα+β w1(t)w2(t), t − a(  + w1(t)g2(t)qeα+β,α+1 w1(t)w2(t), t − a( .

(50)

Similarly,we can obtain (47) holds. □

4. Main Result

)roughout this paper, we make the following assumptions:

(H1) f, g ∈ D(Ta × Rn,Rn) are two Lipschitz-type
functions. )at is, for any x, y, u, v: T τa⟶ Rn, there exist
two positive constants L1, L2 > 0 such that

‖f(t, y(t), y(τt)) − g(t, v(t), tvn(τt))‖≤ L1(‖y(t) − v(t)‖ +‖y(τt) − v(τt)‖),

‖g(t, x(t), x(τt)) − g(t, u(t), tun(τt))‖≤L2(‖x(t) − u(t)‖ +‖x(τt) − u(τt)‖),
(51)

For t ∈ [a, 1]q,

(H2)f(t, 0, 0) � [0, 0, . . . , 0]√√√√√√√√

T

n

, g(t, 0, 0) � [0, 0, . . . , 0]√√√√√√√√

T

n

,

(H3) A0
����

���� + A1
����

���� + 2L1  B0
����

���� + B1
����

���� + 2L2 (1 − q)
α+β < 1.

(52)

Let us denote ‖(ϕ,ψ)‖ � max maxt∈Iτ‖ϕ(t)‖,

maxt∈Iτ‖ψ(t)‖}.

Definition 3. System (6) is finite-time stable with respect
to δ, ε, T{ }, with δ < ϵ, if and only if ‖(ϕ,ψ)‖< δ implies
‖(x(t), y(t))‖ � max ‖x(t)‖, ‖y(t)‖ < ε, ∀t ∈ T τa.
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Theorem 4. Assume that conditions (H1)–(H3) hold. &en,
system (6) is finite-time stable if the following conditions are
satisfied:

1 +
A1

����
���� + L1

Γq(α + 1)
(t − a)

α
q qEα+β(c, t − a)

+ A0
����

���� + A1
����

���� + 2L1  1 +
B1

����
���� + L2

Γq(β + 1)
(t − a)

β
q qeα+β,α+1(c, t − a)<

ε
δ
,

(53)

and

1 +
B1

����
���� + L2

Γq(β + 1)
(t − a)

β
q qEα+β(c, t − a)

+ B0
����

���� + B1
����

���� + 2L2  1 +
A1

����
���� + L1

Γq(α + 1)
(t − a)

α
q qeα+β,β+1(c, t − a)<

ε
δ
,

(54)

where c � (‖A0‖ + ‖A1‖ + 2L1)(‖B0‖ + ‖B1‖ + 2L2). Proof. From )eorem 4 in [19], it is easy to see that
(x, y): T τa × T τa⟶ Rn × Rn is a solution of system (6) if
and only if

x(t) � ϕ(α) +
1
Γq(α)


t

a
(t − qs)α− 1

q A0y(s) + A1y(τs) + f(s, y(s), y(τs)) ∇qs,

y(t) � ψ(α) +
1
Γq(β)


t

a
(t − qs)β− 1

q B0x(s) + B1x(τs) + g(s, x(s), x(τs)) ∇qs,

x(t) � ϕ(t), y(t) � ψ(t), t ∈ Iτ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

For t ∈ Ta, we have, by (55), that

‖x(t)‖≤ ‖ϕ(a)‖ +
1
Γq(α)


t

a
(t − qs)α− 1

q A0y(s) + A1y(τs) + f(s, y(s)y(τs))
����

����∇qs

≤ ‖ϕ‖ +
A0

����
����

Γq(α)


t

a
(t − qs)α− 1

q ‖y(s)‖∇qs +
A1

����
����

Γq(α)


t

a
(t − qs)α− 1

q ‖y(τs)‖∇qs

+
1
Γq(α)


t

a
(t − qs)α− 1

q ‖f(s, y(s), y(s))krqs

≤ ‖ϕ‖ +
A0

����
���� + L1

Γq(α)


t

a
(t − qs)α− 1

q ‖y(s)‖∇qs +
A1

����
���� + L1

Γq(α)


t

a
(t − qs)α− 1

q ‖y(τs)‖∇qs
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≤ ‖ϕ‖ +
A0

����
���� + L1

Γq(α)


t

a
(t − qs)α− 1

q ‖y(s)‖∇qs

+
A1

����
���� + L1

Γq(α)


t

a
(t − qs)α− 1

q supθ∈Jτ‖y(θs)‖ +‖ψ‖ ∇qs

� ‖ϕ‖ +
‖ψ‖ A1

����
���� + L1 

Γq(α + 1)
(t − a)

α
q +

A0
����

���� + L1

Γq(α)


t

a
(t − qs)α− 1

q ‖y(s)‖∇qs

+
A1

����
���� + L1

Γq(α)


t

a
(t − qs)α− 1

q supθ∈Jτ‖y(θs)‖∇qs,

(56)

where Jτ � τ, τq− 1, . . . , 1  . Similarly, we can obtain

‖y(t)‖≤ ‖ψ‖ +
‖ϕ‖ B1

����
���� + L2 

Γq(β + 1)
(t − a)

β
q +

B0
����

���� + L2

Γq(β)


t

a
(t − qs)β− 1

q ‖x(s)‖∇qs

+
B1

����
���� + L2

Γq(β)


t

a
(t − qs)β− 1

q supθ∈Jτ‖x(θs)‖∇qs.

(57)

Let g1(t) � ‖ϕ‖ + ‖ψ‖(‖A1‖ + L1)/Γq(α + 1)(t − a)αq and
g2(t) � ‖ψ‖ + ‖ϕ‖(‖B1‖ + L2)/Γq(β + 1)(t − a)βq; then, g1
and g2 are two nondecreasing functions.

Set x(t) � supθ∈Jτ‖x(θt)‖ and y(t) � supθ∈Jτ‖y(θt)‖;
then, by (56), we obtain

x(t)≤g1(t) +
A0

����
���� + L1

Γq(α)


t

a
(t − qs)α− 1

q y(s)∇qs

+
A1

����
���� + L1

Γq(α)


t

a
(t − qs)α− 1

q y(s)∇qs

� g1(t) +
A0

����
���� + A1

����
���� + 2L1

Γq(α)


t

a
(t − qs)α− 1

q y(s)∇qs

� g1(t) + A0
����

���� + A1
����

���� + 2L1 
q
∇− α

a y(t).

(58)

Similarly, we obtain

y(t) ≤g2(t) + B0
����

���� + B1
����

���� + 2L2 
q
∇− β

a x(t). (59)

Hence, by (53) and (54) and applying the result of
Corollary 1, we have

‖x(t)‖≤ x(t)≤g1(t)qEα+β(c, t − a)

+ A0
����

���� + A1
����

���� + 2L1 g2(t)qeα+β,α+1(c, t − a)

� 1 +
A1

����
���� + L1

Γq(α + 1)
(t − a)

α
q ‖(ϕ,ψ)‖qEα+β(c, t − a)
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+ A0
����

���� + A1
����

���� + 2L1  1 +
B1

����
���� + L2

Γq(β + 1)
(t − a)

β
q ‖(ϕ,ψ)‖qeα+β,α+1(c, t − a)

≤ δ 1 +
A1

����
���� + L1

Γq(α + 1)
(t − a)

α
q qEα+β(c, t − a)

+ δ A0
����

���� + A1
����

���� + 2L1  1 +
B1

����
���� + L2

Γq(β + 1)
(t − a)

β
q qeα+β,α+1(c, t − a)< ε,

(60)

and

‖y(t)‖ ≤y(t)≤g2(t)qEα+β(c, t − a)

+ B1
����

���� + B0
����

���� + 2L2 g1(t)qeα+β,β+1(c, t − a)

� ‖ψ‖ +
‖ϕ‖ B1

����
���� + L2 

Γq(β + 1)
(t − a)

β
q

⎛⎝ ⎞⎠
qEα+β(c, t − a)

+ B1
����

���� + B0
����

���� + 2L2  ‖ϕ‖ +
‖ψ‖ A1

����
���� + L1 

Γq(α + 1)
(t − a)

α
q

⎛⎝ ⎞⎠
qeα+β,β+1(c, t − a).

≤ δ 1 +
B1

����
���� + L2

Γq(β + 1)
(t − a)

β
q qEα+β(c, t − a)

+ δ B1
����

���� + B0
����

���� + 2L2  1 +
A1

����
���� + L1

Γq(α + 1)
(t − a)

α
q qeα+β,β+1(c, t − a)< ε.

(61)

□

Remark 1. In [34], Lyu and Vong proposed and analyzed a
scheme on nonuniform mesh for solving the q-Volterra
equation which provides the same solution to the q-frac-
tional initial value problem. We will apply the proposed
scheme as in (3.12) in [32] to solve Example 1.

5. Example

Example 1. Consider the nonlinear delay q-fractional dif-
ferential difference coupled system:

qC
0.7
a

x(t) � 0.7y(t) + sin
1
8

y(τt) , t ∈ [a, 1]q,

qC
0.5
a

y(t) � 0.8x(t) + arctan
1
9

x(τt) , t ∈ [a, 1]q,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(62)

where α � 0.7, β � 0.5, q � 0.6, a � q9 � 0.69, τ � q9 � 0.69,
f(t, y(t), y(τt)) � sin((1/8)y(τt)), g(t, x(t), x(τt)) �

arctan((1/9)x(τt)), ϕ(t) � 0.07, and ψ(t) � 0.09, and
t ∈ Iτ � 0.618, 0.617, . . . , 0.69 .
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Figure 1: Behavior of the solution of system (62) in the (t, x) plane within T � 0.6s.
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Figure 2: Behavior of the solution of system (62) in the (t, y) plane within T � 0.6s.
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Figure 3: Phase plot of (62).

Discrete Dynamics in Nature and Society 11



Let δ � 0.1 and ϵ � 0.5. Obviously,
‖(ϕ,ψ)‖ � max 0.07, 0.09{ }< 0.1 � δ. We can see that f, g

satisfy conditions (H2) and (H1) with L1 � 1/8 and L2 � 1/9.
Moreover, we have ‖A0‖ � 0.7, ‖A1‖ � 0, ‖B0‖ � 0.8, and

‖B1‖ � 0, and (H3) holds. In the following, the aim is to
validate the FTS conditions (53) and (54), w.r.t. δ, ϵ, T{ }. By
using Matlab (the pseudocode to compute different values of
Γq(α), see [35]), when t � 0.6 ∈ [a, 1]q,

1 +
A1

����
���� + L1

Γq(α + 1)
(t − a)

α
q qEα+β(c, t − a)

+ A0
����

���� + A1
����

���� + 2L1  1 +
B1

����
���� + L2

Γq(β + 1)
(t − a)

β
q qeα+β,α+1(c, t − a)

≈ 3.4304< 5 �
ε
δ
,

(63)

and

1 +
B1

����
���� + L2

Γq(β + 1)
(t − a)

β
q qEα+β(c, t − a)

+ B0
����

���� + B1
����

���� + 2L2  1 +
A1

����
���� + L1

Γq(α + 1)
(t − a)

α
q qeα+β,β+1(c, t − a)

≈ 4.8461< 5 �
ε
δ
.

(64)

)us, we obtain that the estimated time of FTS is T � 0.6.
Within given parameters, we can observe the finite-time

behavior. In Figures 1 and 2, we can see that, within the
finite-time T � 0.6s, ‖(ϕ,ψ)‖ � 0.09< δ � 0.1, the norm
‖(x, y)‖ of solution (x(t), y(t)) does not exceed ε � 0.5
which supposes the theorem numerically. )e phase plot of
(62) is shown in Figure 3.

6. Conclusion

)e problem of finite-time stability of coupled q-fractional
difference delay systems is emphasized in this work. For this,
we obtained a generalized coupled q-fractional Gronwall
inequality, and by applying this inequality, a novel and easy
to verify sufficient conditions have been provided in this
paper to determine the finite-time stability of the solutions
for the considered system. Finally, an example is given to
illustrate the effectiveness and feasibility of our criterion.

In the future, we will consider more q-fractional dif-
ference systems, such as q-fractional difference singular
systems or q-fractional difference uncertain systems, and we
will study the problems of finite-time stability, and the
Ulam–Hyers stability for these systems.
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