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Background. Gene therapy shows considerable clinical benefit in cancer therapy, in which single-stranded ribonucleic acid
(siRNA) is a promising strategy in the treatment of glioblastoma (GBM). TANK-binding kinase 1 (TBK1) is critical in tu-
morigenesis and development, which lays a foundation for an ideal target for tumor therapy. However, the practical application of
free siRNA is limited. It is urgent to develop novel strategies to deliver TBK1 siRNA to activate apoptosis and cGAS-STING
pathway as a therapeutic strategy for GBM.Methods. *e expression and prognostic value of TBK1 were evaluated in the TCGA,
CGGA, and GTEx databases. A novel gene delivery system was designed here via PEGylated reduced graphene oxide (rGO-PEG)
to targeted delivery of anti-TBK1 siRNA efficiently. *e efficacy of TBK1si/rGO-PEG was evaluated in GBM cells. *e underlying
pathways were explored byWestern blot. Results. TBK1 was highly expressed in glioma samples, and its high expression indicated
poor prognoses in glioma patients. *e rGO-PEG presented great efficiency in targeted delivery of TBK1si RNA into GBM cells
with up to 97.1% transfection efficiency. TBK1si/rGO-PEG exhibited anti-GBM activities by inhibiting TBK1 and autophagy, as
well as activating apoptosis and cGAS-STING pathway. Conclusion. *e rGO-PEG could be an efficient system facilitating the
delivery of specific siRNA. TBK1si/rGO-PEG could be a novel strategy for the treatment of GBM.

1. Introduction

*e incidence of glioblastoma (GBM, grade IV) in Western
countries and China is increasing year by year, which owned
the highest mortality rate [1, 2]. Some biomarkers such as
isocitrate dehydrogenase (IDH) mutation and 1p19q
codeletion have been proposed to indicate favorable prog-
nosis of glioma patients [3, 4]. Besides, age is considered as a
prognostic factor for glioma patients, and the younger age
indicates a favorable prognosis [5, 6]. *e conventional
therapies include surgery, chemotherapy, and radiotherapy;
however, the average survival time of GBM patients ranges
from 12 to 15 months [7, 8]. Although gene regulation is
regarded as a key factor for tumorigenesis, the application of

gene therapy remains controversial. Hence, the treatment
for GBM is challenging.

TANK-binding kinase 1 (TBK1) is a noncanonical
member of the inhibitor of nuclear factor κB (IKK) family,
which is involved in cell survival, autophagy, mTOR/AKT
signaling, and KRAS-driven tumorigenesis [9, 10]. Moreover,
EGFR constitutively complexes with TBK1 and leads to TBK1
phosphorylation in glioblastoma [11]. *e loss of TBK1 in-
hibits kidney cancer cell growth [12]. *erefore, down-
regulation of TBK1 may be a promising approach to suppress
the progression of GBM, which has not been reported yet.

As an emerging and promising tool, gene therapy has
attracted increasing attention in the treatment of cancers or
autoimmune diseases [13]. RNA interference (RNAi), a
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conserved biological response to double-stranded RNA, is
about 20–25 nucleotides, which binds to the specific target
gene to manipulate gene expression by inhibiting mRNA and
protein. As variously known, siRNA can regulate gene ex-
pression specifically, which is essential in RNAi phenotype.
SiRNA may be a promising strategy in the treatment of
cancers including GBM. However, the practical application of
free siRNA is limited, owing to the inefficient cellular uptake
and nuclease degradation because of its enzyme vulnerability
and negative charges. Consequently, it is urgent to modify
siRNA and make it used more widely, especially in GBM.

Based on our previous work [14], graphene oxide (GO)
can stabilize proteins. From this, we further designed TBK1si/
rGO-PEG to targeted delivery of TBK1si RNA into GBM
cells. *is work may facilitate and expand the experimental,
even clinical applications of siRNA in targeted therapy.

2. Materials and Methods

2.1.DataExtraction. *e expression of TBK1 in gliomas and
normal brain tissues was extracted from *e Cancer Ge-
nome Atlas (TCGA), Chinese Glioma Genome Atlas
(CGGA), and Genotype-Tissue Expression (GTEx) data-
bases. A total of 672 and 1013 glioma patients were included
in the TCGA and CGGA datasets, respectively. GEPIA
website was used to detect the expression of TBK1 in gliomas
and normal brain tissues [15].

2.2. SubgroupAnalysis. For subgroup analysis, patients were
divided into two groups based on the following variables:
grade (III or IV), IDH status (wildtype or mutant), and age
(≤41 years old or>41 years old).

2.3. Characterization of rGO-PEG Nanoparticles. For GO
functionalization, 2mg of GO was diluted in 2ml ultrapure
DI (Deionized) water and then added 20mg PEG-NH2. Put
those mixtures under sonication for 90min. *en, the
mixture was mixed with 20mg EDC and stirred for 12 h.
Afterward, centrifuged at 20000 rpm for 30min to remove
excess free PEG-NH2. At last, resuspended the precipitate
into 2mL ultrapure DI water.*e rGO-PEGwas synthesized
in the presence of GO-PEG and NaBH4. Last, rGO-PEG
with the final concentration of 2mg/mL was achieved after
centrifugation to remove excess free reagents.

*e TBK1si/rGO-PEG was diluted with distilled wa-
ter, put on a copper grid with nitrocellulose, and then
stained with phosphotungstic acid. Afterward, it was
measured by Nano ZS-90 (Malvern Instruments, Malvern,
UK) under room temperature. AFM (atomic force mi-
croscopy) images were taken by a Nanoscope V multi-
mode atomic force microscope (Veeco Instruments,
USA). TBK1si/rGO-PEG was diluted with ultrapure DI
water with a final concentration of 1 × 10−6M for AFM.
Twenty μL TBK1si/rGO-PEG sample was placed on the
brand new muscovite mica and dried the samples under
critical point dryer. Photos were taken in the tapping
mode under room temperature.

2.4. Preparation of TBK1si/rGO-PEGComplexes. For siRNA
loading, single-chain anti-TBK1 siRNA (TBK1si) was dis-
persed in ultrapure DI water. TBK1 siRNA (20 nM) in 1mL
ultrapure DI water was added into rGO-PEG (2mg/mL).
*ose samples were mixed and stirred for half a day at 37°C.
*en, samples were centrifugated to remove free TBK1si.
*e TBK1si/rGO-PEG nanoparticles ranging 5 :1, 50 :1, and
500 :1 (weight ratios, siRNA: rGO-PEG) were electro-
phoresed under 150V for half an hour. *en, the agarose gel
was stained and illuminated to show the blot of RNA.

2.5. Cell Transfection. *e U251 cells, purchased from
American Type Culture Collection (Manassas, VA, USA),
were cultured in six-well plates at the density of 2×105/well
with 4mL complete DMEM for a day.*en, themediumwas
changed to fresh serum-free DMEM while transfection.
Fluorescein isothiocyanate (FITC)-labeled TBK1si (TBK1si-
FITC) was designed and the quantity of which was about at
0.1 nm/well. *e weight ratios of TBK1si-FITC/rGO-PEG
range 5 :1, 50 :1, and 500 :1. To detect the transfected cells
and evaluate the transfection efficiency, the fluorescence
signal was measured by the LSR Fortessa device (BD Bio-
sciences, San Jose, CA, USA) and the fluorescence micro-
scope (Carl Zeiss Meditec AG, Jena, Germany). *e Consi
sequence was 5′-UUCUCCGAACGUGUCACTUTT-3′.

2.6. CCK8Assay. A total of 1× 104 of U251 cells were seeded
in 96-well plates. TBK1si/rGO-PEG were synthesized by
TBK1 siRNA (TBK1si1: UAAACUUCUAUUA-
GAAAGCUA; TBK1si2: UGAACUGAUAGUAAAUCU-
CUG; TBK1si3: UAAUCUGCUGUCGAUAUCCUG),
respectively. After incubation with NS (normal saline), rGO-
PEG, Consi/rGO-PEG, or TBK1si/rGO-PEG for 3, 24, 48,
and 72 h, 10 µL CCK8 reagent was added into wells and
cultured for 2 h. *e absorbance at 450 nm was evaluated by
the Bio-Rad reader to assess GBM cell viability.

2.7. Cell Cycle Analysis. GBM cells were cultured in 12-well
plates at the density of 1× 105/well with 2ml complete
DMEM with 10% FBS. After 12 h, GBM cells were treated
with NS, rGO-PEG, Consi/rGO-PEG, or TBK1si/rGO-PEG
for 48 h.*en, all GBM cells were harvested and fixed in 70%
ethanol for 12 h at 4°C. After washed twice by PBS, GBM
cells were incubated RNase A for 1.5 h at room temperature.
Afterward, propidium iodide (PI) (Becton–Dickinson, San
Jose, CA) and Triton X-100 were used to stain GBM cells. At
last, the LSR Fortessa device (BD Biosciences, San Jose, CA,
USA) was used to acquire the data, which were analyzed with
FlowJo V10.

2.8. Cell Apoptosis Analysis. GBM cells were cultured in six-
well plates at a density of 1× 105 cells/well with 4ml
complete DMEM for 12 h. *en, GBM cells were treated
with NS, rGO-PEG, Consi/rGO-PEG, or TBK1si1/rGO-PEG
for 12 h. Afterward, the cells were collected and stained by
the Annexin V-CF Blue/PI apoptosis detection kit (Abcam)
as protocol for 20min at 25°C in the darkness. *e LSR
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Fortessa device (BD Biosciences, San Jose, CA, USA) was
used to evaluate the apoptotic cells including the early and
late ones in GBM cells.

2.9. Western Blotting. *e GBM cells washed with cold PBS
were lysed with radioimmunoprecipitation assay buffer
(*ermoFisher) containing phenylmethyl sulfonylfluoride
(Sigma-Aldrich) and protease inhibitor cocktail (Cell Sig-
naling). *en, the supernatant was collected, and the protein
could be measured roughly after the lysate was centrifuged.
After electrophoresed on a 10% SDS-PAGE gel at 120V for
60min, proteins were transferred onto Immobilon PSQ
PVDF membranes (*ermoFisher) at 100V for another
60min. After blocked in membrane blocking solution
(Invitrogen) for 1 h at 25°C, blot was mixed with primary
antibodies for 12 h at 4°C, which was tested by the corre-
sponding horseradish peroxidase-conjugated secondary
antibody. It was incubated with the Pierce ECL kit (Sig-
naGen, Jinan, China). Antibodies include rabbit anti-TBK1
(1 :1,000 dilution; CST, Boston, MA, USA), β-actin (Clone
13E5; Cell Signaling, #4970, 1 : 2000), STING (Clone D2P2F;
Cell Signaling, #13647, 1 : 500), and cGAS (Clone D3O8O;
Cell Signaling, #31659, 1 : 500) goat anti-rabbit IgG antibody
(1 : 5,000 dilution). *e critical molecules in partway were
probed with primary antibodies against caspase-3, Bcl-2,
P53, P62, p-P62, p-TBK1, cGAS, STING, and LC3.

2.10. Statistical Analyses. *e data were analyzed and visu-
alized by R version 3.6.0 and GraphPad Prism version 8.0.2.
Kaplan–Meier analysis was used to estimate the survival dif-
ference betweenTBK1-high andTBK1-low groups.*eoptimal
cutoff point of TBK1 expression in survival analysis was de-
termined using “survminer” R package. Statistical analysis was
accessed by the unpaired two-tailed Student’s t-test or one/two-
wayANOVAvariance. All data were shown asmean± standard
deviation. Asterisks indicated the various statistical significance
(∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001). n.s. means nonsignificant,
indicating p>0.05. Error bar�mean± standard deviation
presented in all necessary graphs.

3. Results

3.1. TBK1 Was Highly Expressed in Gliomas and Correlated
with the Prognosis of Glioma Patients. To preliminarily ex-
plore the potential role of TBK1 in gliomas, we extracted
data from online databases including TCGA, CGGA, and
GTEx. *e expression of TBK1 was significantly elevated in
lower-grade glioma (LGG, grade II and III gliomas) and
GBM compared with normal brain tissues (p< 0.05)
(Figure 1(a)). Glioma patients with low expression of TBK1
had relatively better survival time compared with those with
high TBK1 expression (p< 0.05) (Figure 1(b)). In subgroup
analysis, the low expression of TBK1 indicated better
prognoses for patients with grade III or IV glioma (p< 0.05)
(Figures 1(c) and 1(d)). Moreover, in IDH wildtype or
mutant glioma patients, those with low expression of TBK1
had a relatively long overall survival time (p< 0.05)
(Figures 1(e) and 1(f)). *ese findings were consistent in

glioma patients who were younger than 41 years old or not
(p< 0.05) (Figures 1(g) and 1(h)). *ese results indicated
that TBK1 played a potential carcinogenic role in glioma and
correlated with the prognosis of glioma patients.

3.2. Preparation and Characteristics of TBK1si/rGO-PEG.
GO was obtained according to our previous work [14, 16]
in the presence of EDC and conjugated with six-arm PEG
into GO-PEG [17].*en, GO-PEG was reduced by NaBH4
with rGO-PEG yielded. It is critical to raise the chemistry
and physiological stability of rGO or GO via PEG func-
tional modification. rGO-PEG absorbed siRNA and
consisted of TBK1si/rGO-PEG, with a sheet shape
(Figure 2(a)). rGO-PEG significantly improved the sta-
bility with the culture medium, which was similar to
physiological conditions (Figure 2(b)). *e average di-
ameter of the miRNA-loaded nanoparticles was
102.00 ± 20.53 nm, and the height of TBK1si/rGO-PEG is
18.00 ± 3.18 nm in AFM image (Figures 2(c) and 2(d)).*e
UV–vis absorption spectrum revealed that after the al-
ternation from GO-PEG into rGO-PEG, the absorption
maximum presented a significant redshift from 230 nm to
265 nm, but there was no 265 nm nearby peak for PEG
(Figure 2(e)). *ose results indicated that the redshift of
the UV spectrum was on the basis of the restoration of
electronic conjugation in the rGO, instead of the existence
of PEG [17].

3.3. Stability and Release Rate of TBK1si/rGO-PEG. *e
fluorescence emission spectrum was measured after the
TBK1si/rGO-PEG nanoparticles were mixed with a certain
concentration (1 μM) of complementary DNA. Only 20% of
the labeled TBK1si released from rGO-PEG to complete
DMEM after 3 d (Figure 3). However, over 70% of the
TBK1si is released in the presence of corresponding com-
plementary dye-labeled siRNA within 10 h (p< 0.05). *is
result could lay a solid foundation of a brand new and ef-
ficient platform based on siRNA/rGO-PEG nanoparticles for
targeting the gene in vitro and even in vivo.

3.4. Transfection Efficiency and Its Effects of TBK1si/rGO-PEG
In Vitro. *e TBK1si-FITC/rGO-PEG was prepared in
various weight ratios ranging 5 :1, 50 :1, and 500 :1. After
incubation with TBK1si-FITC/rGO-PEG in three different
ratios for 3 h, the GBM cells transfected by the ratio of 500 :1
exhibited the brightest fluorescence under fluorescence
microscopy (Figure 4(a)), indicating the highest transfection
efficiency. After evaluated by flow cytometry, the transfec-
tion efficiency of three different ratios ranging 5 :1, 50 :1,
and 500 :1 was 72.2%, 90.8%, and 97.1%, respectively
(Figure 4(b)). In order to suppress the expression of TBK1,
GBM cells were transfected with NS, rGO-PEG, Consi/rGO-
PEG, TBK1si1/rGO-PEG, TBK1si2/rGO-PEG, and
TBK1si3/rGO-PEG. After 48 h of transfection, the expres-
sion of TBK1 was decreased the most in the TBK1si1/rGO-
PEG treatment group than other groups (p< 0.001)
(Figures 4(c) and 4(d)).
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Figure 1: TBK1 was highly expressed in gliomas and correlated with the prognosis of glioma patients. (a) *e expression of TBK1 in lower-
grade glioma (LGG) and glioblastoma (GBM) compared with normal brain tissues. (b) Kaplan–Meier analysis of TBK1 in glioma patients in
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3.5. TBK1si/rGO-PEG Inhibited Proliferation and Induced
Apoptosis of GBMCells. GBM cell viability was investigated
by CCK8, which presented that the viability in the
TBK1si1/rGO-PEG group was significantly lower than
other control groups (p< 0.05) (Figure 5(a)). Moreover,
representative images reflected the effect of NS, rGO-PEG,
Consi/rGO-PEG, and TBK1si/rGO-PEG (Figure 5(b)).
TBK1si1/rGO-PEG nanoparticles induced cell cycle arrest
in the G1/S phase more significantly than any other in-
terventions (Figure 5(c)). At last, the apoptosis rate was
evaluated with Annexin V/PI kit by flow cytometry. *e
apoptosis rates of NS, rGO-PEG, Consi/rGO-PEG, or

TBK1si/rGO-PEG groups were 0.85%, 0.33%, 1.40%, and
47.50%, respectively (Figure 5(d)). TBK1si/rGO-PEG sig-
nificantly induced cell apoptosis compared with other
interventions (p< 0.05) (Figure 5(e)).

3.6. TBK1si/rGO-PEG Inhibited Autophagy but Activated
cGAS-STINGPathway. To reveal the mechanism of the anti-
GBM effect of TBK1si/rGO-PEG, the critical protein ex-
pression level of apoptosis and autophagy after the inter-
ventions of NS, rGO-PEG, Consi/rGO-PEG, or TBK1si/
rGO-PEG were measured. In Figure 6(a), Bcl-2 and caspase-

PI

C
ou

nt

0

0

50
 K

10
0 

K

15
0 

K

20
0 

K

25
0 

K

100

200

300

G1
78.5

400
NS

S
4.04

G2
17.0

0

0

50
 K

10
0 

K

15
0 

K

20
0 

K

25
0 

K

100

200

300

400

rGO-PEG

G1
70.4

S
11.9

G2
15.9

0

0

50
 K

10
0 

K

15
0 

K

20
0 

K

25
0 

K

100

200

300

400

Consi/rGO-PEG
G1

70.7

S
8.85

G2
16.3

0

200

400

600

800

1.0K

0

50
 K

10
0 

K

15
0 

K

20
0 

K

25
0 

K

TBK1si/rGO-PEG

G1
98.9

S
0.44

G2
0.32

(b)

0

20

10

30

40

50

N
S

C
on

si/
rG

O
-P

EG

rG
O

-P
EG

TB
K1

si1
/r

G
O

-P
EG

S
G1

G2

(c)

100
100

101

102

103

104

105 Q1
0.64

NS
Q2

0.21

Q4
99.1

Q3
0

101 102 103 104 105 100
100

101

102

103

104

105 Q1
0.25

rGO-PEG

Annexin V

PI

Q2
0.082

Q4
99.7

Q3
0

101 102 103 104 105

100
100

101

102

103

104

105 Q1
0.98

Consi/rGO-PEG
Q2

0.47

Q4
98.6

Q3
0

101 102 103 104 105 100
100

101

102

103

104

105 Q1
4.01

TBK1si1/rGO-PEG
Q2

29.7

Q4
52.5

Q3
13.8

101 102 103 104 105

(d)

0

20

10

30

40

50
***

ce
ll 

ap
op

to
sis

 (%
)

N
S

C
on

si/
rG

O
-P

EG

rG
O

-P
EG

TB
K1

si1
/r

G
O

-P
EG

(e)

Figure 5: TBK1si/rGO-PEG exerted antitumor effects in vitro. (a) CCK8 analysis cell viability. When U251 cells were transfected with NS,
rGO-PEG, Consi/rGO-PEG, or TBK1si/rGO-PEG for 3, 24, 48, and 72 hours, cell viability was tested by the CCK8 test. (b) Cell cycle analysis
of U251 cells after 48-hour intervention with TBK1si/rGO-PEG. (c) Percentage of U251 cells in each mitotic phase after treatment with NS,
rGO-PEG, Consi/rGO-PEG, or TBK1si/rGO-PEG. (d)-(e) When U251 cells were transfected with NS, rGO-PEG, Consi/rGO-PEG, or
TBK1si/rGO-PEG for 72 hours, U251 cells were collected and stained with Annexin V-CF Blue/PI and then analyzed by flow cytometry.
Statistics of GBM cell apoptosis. PI, propidium iodide. *e result was a representative of three independent experiments. Error bars
represent mean± SD. P values were determined by one-way analysis of variance (ANOVA) followed by Tukey post hoc test. ∗P< 0.05.
∗∗P< 0.01. ∗∗∗P< 0.001.

10 Evidence-Based Complementary and Alternative Medicine



RE
TR
AC
TE
D

3 expressions were dropped, and P53 enhanced after the
treatment of TBK1si/rGO-PEG, pointing that this nano-
particle may be induced by apoptosis via the P53 pathway.
Afterward, the expression of cGAS, STING, LC3, p-TBK1,
and p-P62 after TBK1si/rGO-PEG treatment was also tested
(Figure 6(b)). *e result presented that p-TBK1, LC3-II, and
p-P62 significantly decreased and cGAS, STING, P62, and
LC3-I increased after 3 days of treatment with TBK1si/rGO-
PEG, whereas TBK1 and β-actin were not affected.

4. Discussion

Gene regulation plays a critical role in the development of
cancer including cell proliferation, angiogenesis, immu-
nology, and metastasis. *e gene mutations can lead to
tumorigenesis [18–21]. However, the treatment of malignant
tumors including GBM remains a challenge. Gene therapy is
promising for the treatment of cancer and certain auto-
immune diseases [22–25]. Particularly, gene was transferred
into the abnormal cell to produce a functional molecular,
such as protein, which can correct a genetic disorder
[26–29].

TBK1 and its IκB kinase epsilon (IKKε) are noncanonical
members of the IKK family. *eir roles in innate immune
signaling and cancer have been well characterized, including
promotion of cell survival, autophagy, and AKT–mTOR
signaling, and TBK1 activation promotes KRAS-driven
tumorigenesis and development [9, 10]. Furthermore, TBK1
signaling in both cancer and immune cells can promote
immunosuppression, and potent/specific TBK1 inhibitors
have been shown to potentiate ICI responsiveness in

preclinical models [10, 30]. TBK1 also activates type-1 IFN
signaling downstream of the cGAS-STING pathway and
other viral and pathogen sensors and thus can regulate both
pro and antitumorigenic innate immune pathways [31].
Moreover, EGFR constitutively complexes with TBK1
leading to TBK1 phosphorylation in glioblastoma [11].
Based on those points, inhibition of TBK1 could obviously
prevent GBM from proliferation. TBK1 could be inhibited
by various methods such as siRNA, shRNA, or inhibitors.
*e transfection efficiency of shRNA is low since it is a
plasmid system, which is hard to deliver via a nonviral
vector. Although the transfection efficiency could be en-
hanced by a viral vector system, the safety issue should be
addressed. In addition, small-molecule inhibitors are limited
for its specificity, in spite of being focused recently. As a
result, the siRNA is more promising for its safety and re-
liability in nonviral vector transfection. Due to the specific
properties such as enzyme vulnerability and negative
charges, siRNA is limited in application for inefficient cel-
lular uptake and nuclease degradation. *us, it is urgent to
develop novel strategies for transporting siRNA. *e virus
system and physical methods are popular, but the delivery
and security issues should be addressed [32, 33]. Since the
1960s, many chemical transfection systems including cal-
cium phosphate, lipid, and cationic polymers have been
designed as an alternative to viral vectors to overcome the
previous shortcomes [24, 34]. Afterward, many efforts have
been devoted to modify chemical molecular features such as
structure, size, and surface potential to enhance the trans-
fection efficiency [35, 36]. However, the ideal siRNA delivery
system should possess not only high transfection efficiency
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Figure 6: TBK1si/rGO-PEG exhibited the anticancer effect via activating the cGAS-STING pathway. (a)*e effect of TBK1si/rGO-PEG on
apoptosis-related proteins. (b) *e autophagy was inhibited, and cGAS-STING was enhanced by TBK1si/rGO-PEG.
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but also low toxicity. *erefore, TBK1si/rGO-PEG was
designed to inhibit TBK1 for GBM treatment. First, three
different target RNA sequences were synthesized to inhibit
the TBK1 protein expression, and results presented that
TBK1si1 was themost efficient. Second, TBK1si1 was used to
evaluate the anti-GBM effect. *ose results presented that
TBK1si1/rGO-PEG could significantly impede the prolif-
eration of GBM than other groups including NS, rGO-PEG,
Consi/rGO-PEG, and TBK1si/rGO-PEG. As a result, the
TBK1si1/rGO-PEG nanoparticle was used as the target
delivery system for TBK1 siRNA.

In this study, autophagy-related molecular expression
was investigated, and the result presented that inhibition
of TBK1 can upregulate the expression of caspase-3, P53,
P62, LC3-I, cGAS, and STING, while downregulating the
Bcl-2, p-TBK1, p-P62, and LC3-II. *erefore, we found
that TBK1siRNA promotes apoptosis via inhibiting
autophagy probably. Meanwhile, the damaged DNA ac-
tivated P53, which results in cell cycle arrest and apo-
ptosis. As is known, autophagy can be inhibited by the
knockdown of TBK1, which lays a foundation of accu-
mulation of P62. Interestingly, the cGAS-STING pathway
was enhanced probably by the accumulation of P62 [37],
which could promote the cell survival or initiate resistance
in the presence of damage or medicine [31]. *e cGAS-
STING pathway is an evolutionary conserved defense
mechanism against viral infections. It is reported that
activation of TBK1 and cGAS-STING resulted in cancer
progression and inflammation [38]. In cancers, it remains
unclear how cGAS-STING axis suppresses type-1 IFN
signaling and upregulate NF-κB pathways to enhance
metastatic behaviors. Maybe, the intensity of cGAS-
STING activation determinates the switch between tumor
suppression or promotion [39]. Yet, the underlying
mechanisms remain poorly understood and require fur-
ther research. *e shortcomings in our work should be
addressed, the possible mechanism of anti-GBM needs to
be further studied, and TBK1si/rGO-PEG needs to be
further studied whether it can effectively inhibit GBM
growth in vivo.

5. Conclusions

*e rGO-PEG could be an efficient system for the delivery of
siRNA, and TBK1si/rGO-PEG could be a novel therapeutic
approach for GBM treatment.
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