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Background. Berberine has been demonstrated to have anticancer effects against gastric cancer (GC), but the mechanism of these
actions is unclear. Objectives. To explore the impact of berberine on circular RNA (circRNA) expression profiles in GC and
investigate the potential molecular mechanisms associated with circRNAs in GC.Methods. AGS andHGC27 GC cells were treated
with various concentrations of berberine. Cell viability was measured using a Cell Counting Kit-8 assay. Cell proliferation was
measured using a cell colony formation assay. Cell apoptosis was measured using flow cytometry. (e mitochondrial membrane
potential (Δψm) was determined using a JC-1 probe. RNA-seq was performed to identify circRNA expression profiles in AGS cells
after berberine treatment. Selected differentially expressed (DE) circRNAs were verified using RT-qPCR. Bioinformatics analysis
was performed to predict target miRNAs and mRNAs and construct a circRNA-miRNA-mRNA network. Pathway and process
enrichment analyses were performed to explore the potential biological roles of DE circRNAs. Results. Berberine decreased GC cell
viability, cell proliferation, and Δψm and induced cell apoptosis. (irty-one DE circRNAs were identified in the berberine-treated
group compared to the control group, among which circRNA2499, hsa_circ_0003423, and hsa_circ_0006702 were validated using
RT-qPCR. Enrichment analyses, based on the host genes of these 31 DE circRNAs and putative target mRNAs in the circRNA-
miRNA-mRNA network of the validated circRNAs, indicated that berberine exerts anti-GC effects in multiple pathways including
the Notch, MAPK, and NF-κB signaling pathways via specific circRNAs. Conclusion. (is study elucidated the expression profile
of circRNAs in human GC cells after berberine treatment. Our results demonstrate that berberine has the potential to influence
cancer-related pathways by regulating circRNA expression and their corresponding target genes in GC cells.

1. Introduction

Despite advancements in early diagnosis and therapeutics,
such as surgery and chemoradiotherapy, the prognosis of
gastric cancer (GC) remains relatively poor [1, 2]. Multiple
factors including genetics and epigenetics are involved in the
development of GC [3, 4]. Circular RNAs (circRNAs) are
noncoding RNAs with a covalently closed continuous loop
[5]. circRNAs can regulate gene expression by acting as
nuclear transcriptional regulators, miRNA sponges, and
RNA-binding protein sponges [6]. Many researchers have
highlighted the important functions of circRNAs in the

development of cancer, including hepatocellular carcinoma
[7], GC [8], and colon cancer [9].

Natural products represent an important source for
discovering anticancer agents. Several plant-derived agents
have been successfully used in cancer treatment, such as
vinca alkaloid, etoposide, and paclitaxel, and some others are
currently under investigation [10, 11]. Some studies reported
that natural products such as nitidine chloride [12] and
quercetin [13] exert anticancer effects or improve the
prognosis of patients by influencing the expression of
circRNAs. Several studies have demonstrated the important
anticancer roles of berberine against malignant tumors,
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including GC [14]. However, the mechanisms of berberine
against GC via circRNAs remain unclear.

In this study, RNA-seq analysis was performed to
identify and analyze changes in circRNAs in GC cells in
response to berberine. (ese results improve the under-
standing of the circRNAs targeted by berberine, which may
be useful in developing treatments for GC.

2. Materials and Methods

2.1. Cell and Drug Preparation. Human AGS and HGC27
GC cells were obtained from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China) and maintained in
F-12K (Gibco, (ermo Fisher Scientific; Waltham, USA)
and RPMI 1640 (Gibco) media, respectively. Both media
were supplemented with 10% fetal bovine serum (Gibco).
(e cells were maintained in a humidified atmosphere of 5%
CO2 at 37°C. Berberine (MedChemExpress, Shanghai,
China) was dissolved in dimethyl sulfoxide (Solarbio,
Beijing, China) and diluted to the working concentration
with culture media.

2.2. Cell Viability Assay. AGS and HGC27 cells were seeded
into 96-well plates and incubated with berberine (0, 20, 50,
and 80 μM) for 24, 48, and 72 h. After incubation, cell vi-
ability was examined using a Cell Counting Kit-8 (CCK-8)
kit (Dojindo, Kumamoto, Japan) by measuring the optical
density values.

2.3. Cell Colony Formation Assay. AGS and HGC27 cells
were seeded into 6-well plates and incubated with berberine
(0 and 50 μM). After 7 days in culture, cells were stained with
crystal violet (Beyotime, Shanghai, China) and photo-
graphed with a digital camera. (e colony formation rate
was calculated, which can account for cell population de-
pendence and proliferation ability.

2.4. Flow Cytometry Evaluation of Cell Apoptosis. AGS and
HGC27 cells treated with berberine were harvested and cell
apoptosis induced due to berberine was identified using the
annexin V-FITC/PI (Beyotime, Shanghai, China) staining
according to the instructions. (e percentage of apoptotic
cells was assessed using a FACSCalibur flow cytometer (BD
Biosciences, San Jose, CA, USA).

2.5. Measurement of Mitochondrial Membrane Potential.
AGS cells were cultured and treated with different con-
centrations of berberine in 24-well plates. (ereafter, the
mitochondrial membrane potential (Δψm) was determined
using a JC-1 probe kit (MedChemExpress) according to the
instructions. Red and green fluorescence in the cells was
examined using a fluorescence microscope (Leica, Wetzlar,
Germany). (e ratio of red to green fluorescence intensity
was calculated using ImageJ software (National Institutes of
Health, Bethesda, MD, USA).

2.6. RNA Library Construction and circRNA Sequencing.
(ree random samples from each group were subjected to
RNA-seq. Total RNA was isolated using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) according to the instruc-
tions. RNA concentration and purity were quantified with a
NanoDrop ND-1000 ((ermo Fisher Scientific). RNA
integrity was assessed using an Agilent 2100 (Agilent
Technologies, Santa Clara, CA, USA). Ribosomal RNA was
depleted from total RNA according to the Ribo-Zero rRNA
Removal Kit instructions (Illumina, San Diego, CA, USA).
Preparation of RNA libraries and sequencing were
conducted by LC Bio Co., Ltd. (Hangzhou, China).
Sequencing was performed on a NovaSeq 6000 (Illumina)
according to the instructions. Differentially expressed (DE)
circRNAs were identified as those showing a |log2
(fold-change)|≥ 1 and statistical significance (P value< 0.05)
according to R package edgeR [15].

2.7. Pathway andProcess EnrichmentAnalyses. (e effects of
circRNAs on their host genes were predicted using GO
(http://www.geneontology.org) and KEGG (http://www.
kegg.jp) enrichment analyses to explore meaningful gene
annotations. (e P values represent enrichment scores. GO
analysis was performed to evaluate biological processes,
cellular components, and molecular functions.

2.8. RT-qPCR Validation. Total RNA was isolated from the
cell lines using TRIzol reagent (Invitrogen) and then reverse-
transcribed into cDNA using the PrimerScript RTreagent kit
with gDNA Eraser (Takara Bio, Shiga, Japan). RT-qPCR was
performed using SYBR Premix Ex Taq (Takara), and
GAPDH was used as an internal control. (e expression of
circRNAs was defined based on the threshold cycle (Ct), and
relative expression levels were calculated using the 2−ΔΔCt

method. PCR amplification was performed as follows: 95°C
for 30 s, 40 cycles of 95°C for 5 s, and 60°C for 34 s.

2.9. Construction of circRNA-miRNA-mRNA Network.
Interactions of circRNA-miRNA and miRNA-mRNA,
which were predicted using TargetScan (http://www.
targetscan.org/) and miRanda (http://www.miranda.org/),
were combined to construct a circRNA-miRNA-mRNA
network. Cytoscape software v3.7.2 [16] was used to visualize
the network. (e Metascape database [17] provides reliable
and productive bioinformatics analyses of gene or protein
lists, which can help users to make better data-driven de-
cisions. (e predicted mRNAs were entered into the
Metascape database for annotation, functional analysis, and
MCODE algorithm [18] analysis.

2.10. StatisticalAnalyses. Experimental data are presented as
the means± SEM. Student’s two-tailed unpaired t-test was
used to evaluate the differences between the two groups. P

values <0.05 represent statistical significance. GraphPad
Prism 8.0 (http://www.graphpad.com) was used for statis-
tical analyses.
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3. Results

3.1. Berberine Decreased Cell Viability, Cell Proliferation, and
Δψm and Induced Cell Apoptosis. (e CCK-8 analysis
showed that AGS and HGC27 cell viability decreased in
berberine concentration- and treatment time-dependent
manners (0–80 μM and 0–72 h, respectively) (Figure 1(a)).
After 7 days of treatment, 50 μM berberine significantly
decreased AGS and HGC27 cell colony formation rate
(Figure 1(b)). Treatment with different concentrations of
berberine for 48 h resulted in an increased number of ap-
optotic AGS and HGC27 cells (Figure 1(c)), as well as a
reduction in Δψm in AGS cells (Figure 1(d)).

3.2. Overview of circRNA Profiles. After 48 h treatment,
50 μMberberine induced changes in the circRNA expression
profiles. A total of 12,256 circRNAs were detected using
RNA-seq analysis between berberine-treated and control
AGS cells. Among these, 5561 potential novel circRNAs have
not been identified previously. Figure 2(a) represents the
chromosome distribution of the identified circRNAs. No
circRNAs were distributed in chromosome Y. (e length
distribution of all identified circRNAs is visualized in
Figure 2(b). (e lengths of the circRNAs ranged from <1000
nucleotides (nt) to >10,000 nt, with the majority having
<1000 nt.(e genomic origins of the identified circRNAs are
presented in Figure 2(c). Based on their location in the
genome, most candidate circRNAs’ host genes were
obviously derived from exonic regions, suggesting the
importance of these circRNAs.

3.3. DE circRNAs Affected by Berberine. Figure 3(a) shows a
clustered heatmap of the DE circRNAs in the berberine-
treated group and control group determined using the
described cutoff. (e volcano plot shows significant DE
circRNAs (Figure 3(b)). We identified 31 DE circRNAs,
among which 19 were upregulated and 12 were down-
regulated in the berberine-treated group (Figures 3(b) and
3(c)).

3.4. DE circRNA-Hosting Gene GO and KEGG Analyses.
To annotate the DE circRNAs, enrichment analysis was
performed on their host genes. GO analysis (Figures 4(a) and
4(b)) revealed that the altered circRNAs were associated with
terms such as negative regulation of DNA binding (GO:
0043392), NF-κB binding (GO:0051059), phospholipid
binding (GO:0005543), regulation of interleukin-1 pro-
duction (GO:0032732), and phosphorylase kinase activity
(GO:0004689). KEGG analysis (Figure 4(c)) yielded en-
richment in terms such as nucleotide excision repair
(ko03420), Notch signaling pathway (ko04330), insulin
signaling pathway (ko04910), and cell cycle (ko04110).

3.5. Validation of DE circRNAs. To verify the RNA-seq re-
sults, four DE circRNAs were manually selected at random
for further validation by RT-qPCR in AGS and HGC27 cells.
(e primer sequences for the candidate circRNAs are shown

in Table S1. (e expression levels of circRNA2499 (1.33-fold;
P< 0.01), hsa_circ_0003423 (1.76-fold; P< 0.001), hsa_-
circ_0006702 (3.25-fold; P< 0.0001), and hsa_circ_0070562
(1.76-fold; P< 0.01) were significantly upregulated in the
berberine-treated group of AGS cells. (e expression levels of
circRNA2499 (1.47-fold; P< 0.01), hsa_circ_0003423 (1.31-
fold; P< 0.01), hsa_circ_0006702 (1.69-fold; P< 0.0001), and
hsa_circ_0070562 (1.09-fold; P< 0.05) were also significantly
upregulated in the berberine-treated group of HGC27 cells.
(e RT-qPCR results of circRNA2499, hsa_circ_0003423,
and hsa_circ_0006702 in AGS and HGC27 cells agreed with
those of RNA-seq (Figure 5).

3.6. circRNA-miRNA-mRNA Network and Biological Func-
tion Prediction for Validated circRNAs. To estimate the
functions of circRNA2499, hsa_circ_0003423, and hsa_-
circ_0006702, the circRNAs were assumed to act as miRNA
sponges and take part in a circRNA-miRNA-mRNA net-
work. (e top five miRNAs predicted to bind to the
circRNAs as well as each miRNA’s top ten target mRNAs are
shown in Figures 6(a)–6(c). (e target mRNAs represented
by their transcript IDs in Figures 6(a)–6(c) are listed in
Supplementary Table S2.

To further evaluate the circRNAs, enrichment analysis
based on putative target mRNAs was conducted and the
results were visualized using the Metascape database.
Analysis of each circRNA (Figure 6(d) and Table S3) in-
dicated that the target genes of circRNA2499 were associated
with terms such as mitotic prometaphase (R-HSA-68877);
target genes of hsa_circ_0003423 were associated with terms
such as MAPK family signaling cascades (R-HSA-5683057)
and response to endoplasmic reticulum stress (GO:
0034976); and target genes of hsa_circ_0006702 were as-
sociated with terms such as NIK/NF-κB signaling (GO:
0038061), hormone metabolic process (GO:0042445), and
G2/M transition of the mitotic cell cycle (GO:0000086). In
addition, the merged target genes of these three circRNAs
(Figure 6(e) and Table S4) were associated with terms such as
cell-substrate adhesion (GO:0031589), apoptosis (R-HSA-
109581), and PTEN regulation (R-HSA-6807070). MCODE
module analysis using the Metascape database showed that
the target mRNAs were mainly enriched in the biological
process of cell cycle (Table 1).

4. Discussion

(e use of berberine, a compound isolated from medicinal
plants such as Coptis chinensis, has been reported for pre-
venting and treating GC via targeting the AMPK/HNF4α/
WNT5A pathway [19], Akt/mTOR/p70S6/S6 pathway [20],
interleukin-8 [21], and survivin and STAT3 [22]. Our study
focused on the effects of berberine on circRNA expression
profiles in human GC cells.

After observing berberine-induced changes in GC cell
viability, cell colony formation rate, cell apoptosis, and Δψm,
the circRNA expression alterations in AGS cells treated with
berberine were compared with those in the control group.
(e length of most circRNAs was 0–1000 nt, which is
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Figure 1: Continued.
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Figure 1: Continued.
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consistent with the findings of a previous study [23].
CircRNAs are mainly derived from exons or introns of their
host linear transcripts and are involved in regulating their
host gene expression [24, 25]. Accordingly, after screening

31 DE circRNAs induced by berberine, the annotations of
their host genes were estimated by GO and KEGG analyses.
Numerous pathways have been demonstrated to exert im-
portant effects in the mechanisms of GC onset and
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Figure 1: Anticancer effects of berberine (BBR) in gastric cancer cells. (a) AGS and HGC27 cell viability following berberine treatment for
24, 48, and 72 h determined using CCK-8 assay. (b) Colony formation assay showed the clone number in AGS and HGC27 cells treated with
50 μM BBR or control. (c) AGS and HGC27 cell apoptosis after treatment with BBR for 48 h determined using flow cytometry. (d)
Mitochondrial membrane potential of AGS cells following treatment with BBR for 48 h and staining with JC-1 probe. Data are presented as
the means± SEM; P value significance: 0≤ ∗∗∗∗＜ 0.0001≤ ∗∗∗＜ 0.001≤ ∗∗＜ 0.01≤ ∗＜ 0.05≤ ns; ns: not significant.
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Figure 2: Overview of circular RNA (circRNA) profiles based on RNA-seq analysis. (a) Distribution of identified circRNAs on the human
chromosome. (b) Length distribution of the circRNAs. (c) Genomic origin of the identified circRNAs (circRNA: exonic origin; ciRNA:
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development, including interleukin-1 [26], NF-κB [27], and
the Notch signaling pathway [28].

Analyses of host genes cannot completely reveal the roles
of circRNAs. circRNAs can also function as miRNA sponges
[29]. In this study, such circRNAs (circRNA2499, hsa_-
circ_0003423, and hsa_circ_0006702) were identified and
further analyzed. circRNA2499 is a newly predicted circRNA
in our current RNA-seq analysis. circRNA-miRNA-mRNA
networks with these validated circRNAs were constructed to
predict their biological functions. Several functions were
reported to be closely associated with GC, including cell

cycle, cell-substrate adhesion, apoptosis, and the NF-κB and
MAPK signaling pathways.

In enrichment analyses, cell apoptosis and mitochon-
drion alterations induced by berberine were validated in our
study. Several crucial regulators of apoptosis maintain or
destroy the integrity of the mitochondrial membrane [30].
Our results indicate that berberine can reduce Δψm in AGS
cells. NF-κB is one of the most important transcription
factors linking chronic inflammation and cancer and is
activated in cancer cells and the tumor microenvironments
of most cancers [31]. Previous reports demonstrated that
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Figure 3: Differentially expressed (DE) circRNAs in AGS cells after treatment with berberine (BBR). (a) Clustered heatmap showing all DE
circRNAs between the BBR-treated group and control group. (b) Volcano plot filtering identified DE circRNAs selected with |log2(fold
change)|≥ 1 and P value< 0.05. (c) Total number of up- and downregulated DE circRNAs.
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Figure 4: GO and KEGG pathway analyses of DE circRNA-hosting genes. (a) Representative GO terms of biological processes, cellular
components, and molecular functions, (b) top 20 GO analyses, and (c) top 20 KEGG analyses.
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berberine can suppress NF-κB expression in gastric [32],
colon [33], lung [34], breast [35], and prostate [36] cancer
cells to exert anticancer effects. (e MAPK family signaling
cascade, which includes JNK, p38MAPK, and ERK, is one of
the main intracellular pathways for apoptosis [37]. It has

been reported that berberine can induce colon cancer cell
apoptosis through continuous phosphorylation of JNK and
p38 MAPK [38], whereas another study reported that
berberine inhibits GC cell growth by inactivating the p38/
JNK pathway [32]. Our findings indicate that circRNA-
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Figure 6: circRNA-miRNA-mRNA network and biological function prediction of validated circRNAs. circRNA-miRNA-mRNA regulation
networks of (a) circRNA2499, (b) hsa_circ_0003423, and (c) hsa_circ_0006702 visualized using Cytoscape v3.7.2. Enrichment analysis of (d)
target genes of each circRNA and (e) merged target genes of the three circRNAs using Metascape database.

Table 1: MCODEmodule enrichment analysis of merged target genes in three validated circRNAs in the circRNA-miRNA-mRNA network
based on the Metascape database.

Term Category Description Log10 (P)
R-HSA-69278 Reactome gene sets Cell cycle, mitotic −6.1
R-HSA-68877 Reactome gene sets Mitotic prometaphase −5.8
R-HSA-1640170 Reactome gene sets Cell cycle −5.6

14 Evidence-Based Complementary and Alternative Medicine



miRNA-mRNA regulatory interactions play important roles
in the treatment of GC with berberine.

Our study provides novel insight into the treatment of
GC using berberine. Nevertheless, the animal and clinical
assays are needed to investigate the regulatory relationships
between DE circRNAs and their target miRNAs and
mRNAs.

5. Conclusions

To summarize, circRNA sequencing analysis was conducted
on berberine-treated and untreated AGS cells after
investigating the appropriate concentrations and treatment
durations for berberine to exert its anti-GC effects. (e
results, for the first time, demonstrated that berberine may
influence cancer-related pathways by regulating circRNA
expression and provided novel understandings of the
mechanisms of berberine treatment for GC. (e identified
circRNAs, such as circRNA2499, hsa_circ_0003423, and
hsa_circ_0006702, could be potential targets for GC treat-
ment. Further studies are needed to evaluate the precise
functions of these DE circRNAs in GC.
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