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Background. Butylphthalide (NBP), approved by the China National Medical Products Administration (NMPA) for the treatment
of ischemic stroke (IS), showed pleiotropic potentials against central nervous system (CNS) diseases, including neuroprotection
and cognitive deficits improvement. However, the effects and corresponding modes of action were not fully explored. /is study
was designed to investigate the potential of NBP against IS-associated CNS diseases based on network pharmacology (NP) and
molecular docking (MD).Methods. IS was inputted as the index disease to retrieve the “associated diseases” in DisGeNET./ree-
database-based IS genes were obtained and integrated (DisGeNET, Malacards, and OMIM). /en, IS-associated genes were
identified by combining these genes. Meanwhile, PubMed references and online databases were applied to identify NBP target
genes. /e IS-related disease-disease association (DDA) network and NBP-disease regulation network were constructed and
analyzed in Cytoscape. In silicoMD and references were used to validate the binding affinity of NBP with critical targets and the
potential of NBP against certain IS-related CNS disease regulation. Results. 175 NBP target genes were obtained, while 312 IS-
related disease genes were identified. 36 NBP target genes were predicted to be associated with IS-related CNS diseases, including
Alzheimer’s disease (AD), epilepsy, major depressive disorder (MDD), amyotrophic lateral sclerosis (ALS), and dementia. Six
target genes (i.e., GRIN1, PTGIS, PTGES, ADRA1A, CDK5, and SULT1E1) indicating disease specificity index (DSI) >0.5 showed
certain to good degree binding affinity with NBP, ranging from −9.2 to −6.7 kcal/mol. And the binding modes may be mainly
related to hydrogen bonds and hydrophobic “bonds.” Further literature validations inferred that these critical NBP targets had a
tight association with AD, epilepsy, ALS, and depression. Conclusions. Our study proposed a drug-target-disease integrated
method to predict the drug repurposing potentials to associated diseases by application of NP and MD, which could be an
attractive alternative to facilitate the development of CNS disease therapies. NBP may be promising and showed potentials to be
repurposed for treatments for AD, epilepsy, ALS, and depression, and further investigations are warranted to be carefully designed
and conducted.

1. Introduction

Brain/central nervous system (CNS) diseases are multi-
factorial and polygenic diseases, including stroke, Alz-
heimer’s disease (AD), and epilepsy, which remain an
urgent and unmet medical need nowadays. /e WHO
statistics titled “Global Health Estimates 2016: Estimated
deaths by age, sex, and cause” showed that there were

56873805 deaths globally in which noncommunicable
diseases (NCDs) contributed 71.29% (40545176 deaths).
Currently, NCDs are the main reasons to cause deaths,
and ischemic heart disease (IHD) and stroke are ranked 1st
and 2nd, respectively, among the top 10 causes of death.
/e data indicated that brain/CNS-related NCDs of
stroke, neurological conditions, and brain/nervous system
cancers contributed to 15% of deaths. Meanwhile, the
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proportions of IHD and stroke are 16.59% and 10.16%,
respectively.

It has a high failure rate to develop therapies for brain/
CNS-related NCDs, as AD, epilepsy, Parkinson’s disease,
and dementia, which will be costly, lengthy, and charac-
terized by poor/no understanding of the underlying path-
ophysiology [1]. New strategies to develop drugs for CNS
diseases treatments are urgently needed. Fortunately, mul-
tiple CNS-disease-related pathways have been identified,
and CNS diseases were found to share common pathways,
which will provide possible opportunities for applying
existing drugs for other indications based on disease-disease
associations (DDAs) [2]. Diseases with overlapping disease
modules display similar underlying molecular mechanisms
and clinical symptoms [3], which will favor us to find ap-
proved drugs of one indication to other indications based on
DDAs.

As de novo discovering and developing new drugs are
extremely tough works with time-consuming, high-cost, and
low-success rate. For CNS drug development, it is partic-
ularly tough as researchers need to conquer the hurdles
encountered, like the blood-brain barrier (BBB) and the
translations from animal to human, etc. [4]. Drug repur-
posing or drug repositioning would be an attractive way to
develop therapies for CNS diseases. While de novo drug
development and approval require at least 12–16 years and
1-2 billion dollars, drug repositioning only needs 6 years and
300 million dollars. As most repurposed drugs have already
passed the preclinical development and clinical testing, drug
repositioning may facilitate the efficiency of drug develop-
ment and it would be an important alternative to develop
drugs for new indications [5]. Several examples have applied
a drug repurposing strategy to accelerate drug development
processes. Minocycline was repurposed for acute ischemic
stroke (IS), as it showed effects of anti-inflammation and
MMP-9 inhibition, which would be attractive to use in
combination with tissue plasminogen activator (tPA) [6].
AD is a chronic and progressive neurodegenerative disease
and one study reviewed priority candidate drugs for repo-
sitioning in AD [7], such as benperidol [8] and cinitapride
[9]. Another study combining RNA sequencing and
zebrafish model of seizures repurposed FDA-approved
metformin, nifedipine, and pyrantel tartrate as candidate
antiepilepsy drugs [10]. As dementia and type 2 diabetes
(T2D) share some underlying pathophysiology, studies tried
to repurpose T2D drugs for dementia treatment. Intranasal
insulin, metformin, and GLP-1 receptor agonists are at-
tractive candidate drugs; however, more studies are required
before clinicians recommend candidate diabetes therapies
for dementia [11]. Amyotrophic lateral sclerosis (ALS), as
CNS rare disease, is a progressive fatal disorder. /e free
radical scavenger edaravone has been developed for the
treatment of ALS [12]. In our previous study, we tried to find
approved cardiovascular drugs for ischemic cerebrovascular
disease based on disease-disease-associated prediction,
which may provide a promising alternative to infer novel
disease indications for known drugs [13]. DDAs link dif-
ferent diseases sharing common underlying molecular
mechanisms together and provide beneficial information for

drug repurposing investigation. What’s more, the drug
discovery paradigm has shifted from “magic bullet” to
“multitarget drugs,” as polypharmacology is the nature of
most ligand/drugs, and the proportion of drugs that in
theory could be repositioned is about 75 [5, 14, 15]. In 2002,
dl-3n-butylphthalide (NBP) proved its safety and thera-
peutic effect on cerebral ischemia and received approval
from the National Medical Products Administration
(NMPA) of China for the treatment of acute ischemic stroke.
NBP has shown potentials for treatment in the field of CNS
diseases; several investigations have reported the effects of
NBP including neuroprotection and cognitive deficits im-
provement [16–18]. In 2018, NBP was granted orphan drug
designation by the US FDA for the treatment of ALS.

In order to repurpose NBP for the treatment of IS-
associated CNS diseases and to decipher the potential un-
derlying mechanisms, our study identified NBP potential
targets by integration of targets from public databases like
PubMed, PharmMapper [19], DRAR-CPI [20], and SymMap
[21], while IS and other IS-associated CNS disease-related
targets were obtained from DisGeNET [21], Malacards [22],
and OMIM [23]. As mentioned above, CNS diseases may
share common pathways, and disease-associated genes can
be collected from disease databases (DisGeNET, Malacards,
and OMIM). Network pharmacology and in silicomolecular
docking were integrated to uncover the underlying modes of
action.

/e schematic diagram can be attained in Figure 1 which
depicted the three-layer drug-target-diseases network of
NBP. In summary, our study has proposed a drug-target-
disease integrating method to predict the drug repurposing
potentials to other associated diseases by application of
network pharmacology and molecular docking, which could
be an attractive alternative to facilitate CNS disease therapy
development.

2. Materials and Methods

/e network pharmacology and molecular modeling soft-
ware used included AutoDock Tools (Version 1.5.6),
AutoDock Vina software [24], LigPlot+ (Version 2.2), and
Cytoscape 3.8.0 software [25].

2.1. NBP Potential Target Identification and Integration.
NBP targets were collected and integrated from three re-
sources, i.e., PubMed references, online database prediction
(PharmMapper and DRAR-CPI), and SymMap. Firstly,
butylphthalide was selected as a keyword to retrieve targets
from PubMed by applying PALM-IST (https://www.hpppi.
iicb.res.in/ctm/index.html) ranging from 2000 to 2014, while
other targets from 2015 to 30th May 2019 of NBP were
obtained from PubMed with further reading and manually
confirmation. Secondly, PharmMapper Server was applied
to identify potential target candidates of NBP, and the .mol2
file was generated with ChemDraw and Chem3D software
(version 17.1) according to the structure in PubChem
(PubChem CID: 61361). In PharmMapper, the inclusion
standard was Fit score ≥2 with Human species. DRAR-CPI
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was another database applied to predict potential targets of
NBP through inputting a .mol file from Drugbank (ID
DB12749). In DRAR-CPI, the putative target selection
standard was docking score >−50 and Z′-score >−0.5.
Targets from PharmMapper and DRAR-CPI were nor-
malized, and their overlapped target genes were collected.
/irdly, SymMap database was used to retrieve potential
targets of NBP with the keyword “Dl-3N-Butylphthalide.”
Duplicated NBP target candidates from different sources
were removed, and the left target genes were used for further
analysis.

2.2. IS-Related Disease-Disease Association (DDA) Network.
DisGeNET database was applied to retrieve IS-related dis-
eases and their corresponding genes. “Ischemic stroke” was
used as index-disease (Index-disease-id: C0948008), and the
“associated diseases” were obtained. According to the
number of shared genes with IS, five CNS diseases were
selected as examples for further investigation, including
Alzheimer’s disease (AD, associated_disease_id: C0002395),
epilepsy (associated_disease_id: C0014544), major depressive
disorder (MDD, associated_disease_id: C1269683), amyo-
trophic lateral sclerosis (ALS, associated_disease_id:
C0002736), and dementia (associated_disease_id: C0497327).

/ese genes were combined and sorted into different
categories. Genes of IS and IS shared genes of AD, epilepsy,
MDD, ALS, and dementia were designated as 1, 2, 3, 4, 5, and
6, respectively.

PPI relationships among disease genes of the above-
mentioned IS and its associated five CNS diseases were
attained from STRING [26]. IS-related DDA network was
created with the application of Cytoscape (Version 3.8.0).

2.3. IS-Related Gene Collection and Integration. We manu-
ally searched and collected IS-associated genes from public
databases, i.e., DisGeNET, Malacards, and OMIM, the
different gene symbols were normalized, and duplicated
genes were further removed to get three-database-based IS-
related genes. /en, these genes were integrated with genes
of index disease (id: C0948008) to get the final genes of IS.

2.4. NBP Regulation on IS-Related DDA Network. NBP po-
tential target genes were integrated into IS DDA network to
get the NBP regulation network. /e common genes of NBP
and diseases may be the potential targets of NBP to show its
modulation effects on diseases, i.e., IS, AD, epilepsy, MDD,
ALS, and dementia. In order to indicate and visualize the
gene-disease association (GDA) among genes and diseases,
the DisGeNET Disease Specificity Index (DSI, range 0.25 to
1) and the Disease Pleiotropy Index (DPI, range 0 to 1) were
cited to evaluate each gene [27]. /e common target genes
were listed in the bar figure ranked by DSI and DPI. Finally,
the NBP-regulated network was constructed with Cytoscape
(Version 3.8.0). Target gene nodes were tagged with different
colors according to certain gene-disease associations.

2.5. Validation of Potential NBP Targets with Molecular
Docking. /e potential target genes of NBP with DSI >0.5
were selected, which had much bigger specificity to a certain
disease. 3D target protein structures were obtained from the
RCSB PDB database, and the target protein structures were
pretreated by the application of AutoDock Tools (Version
1.5.6) to generate PDBQT files for molecular docking. NBP
.mol2 file was generated with ChemDraw and Chem3D
software according to the structure in PubChem (PubChem
CID: 61361). /e file was further processed and prepared for
molecular docking in AutoDock Vina software.

3. Results

3.1. NBP Potential Target Identification and Integration.
/ere were a total of 146 potential NBP target genes re-
trieved and identified from PubMed references. In
PharmMapper and DRAR-CPI, 15 potential or putative
target genes were manually identified and selected. Another
17 potential target genes were retrieved from the SymMap
database. After removing duplicated genes, 175 NBP po-
tential target genes were identified for investigation in deep.
/e 175 genes were listed in Supplementary Table (Addi-
tional file 1).

3.2. IS-Related Gene Collection and Integration.
DisGeNET, Malacards, and OMIMwere the three sources to
obtain IS-associated disease genes./ere were 167 IS-related
genes attained fromDisGeNET, while 168 and 20 genes were
obtained from Malacards and OMIM, respectively. /ese
gene names were normalized into official gene symbols, and
duplicated symbols were removed. Finally, 312 IS-related
genes were obtained for subsequent study (Additional file 2).

Butylphthalide

Target PPI network

DDA network

Figure 1: /e three-layer drug-target-disease network of
butylphthalide. PPI: protein-protein interaction; DDAs: disease-
disease associations; AD: Alzheimer’s disease; MDD: major de-
pressive disorder; ALS: amyotrophic lateral sclerosis. /e thickness
of edges in the DDA network is in proportion to the number of
shared target genes in the target PPI network.
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3.3. IS-RelatedDDANetwork. “Ischemic stroke” was used as
index disease (Index-disease-id: C0948008), and a list of 393
genes was retrieved from DisGeNET (5th Dec. 2019) (Ad-
ditional file 3). /ese 393 genes were integrated with the
abovementioned 312 genes obtained from three sources to
get the final 94 IS-associated disease genes (Additional file 4).

Shared gene lists of AD with IS were retrieved through
DDAs (Index-disease-id: C0948008) in DisGeNET, and the
same procession was conducted with epilepsy, MDD, ALS,
and dementia to obtain their respective shared genes with IS.
/ere were 189 shared genes of AD and IS, while the
numbers for epilepsy, MDD, ALS, and dementia were 77, 75,

67, and 64, respectively. /ese shared genes were listed in
Supplementary Table (Additional file 5). IS DDA network
was constructed according to PPI relationships obtained
from STRING. /e network contained 241 disease gene
nodes and 3433 edges. /e node size and color were in
proportion to the number of interacted nodes; the more
nodes one node linked, the bigger size and deeper color it
showed (Figure 2).

3.4. NBP Regulation on IS-Related DDA Network. /e 175
potential target genes of NBP were integrated into IS DDAs
network, and the NBP regulation network was created, in
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and deeper color it showed.
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which 36 common genes of NBP and diseases were identified
and these 36 nodes were marked as V shape (Figure 3).

As each node may be associated with different diseases,
the 36 nodes were marked with different colors according to
attributions (Figure 4). In node pie chart color scheme, 1, 2,
3, 4, 5, and 6 represent IS, shared genes of ADwith IS, shared
genes of epilepsy with IS, shared genes of MDD with IS,
shared genes of ALS with IS, and shared genes of dementia
with IS, respectively.

With network analysis, the associated relationships be-
tween the target gene and IS-related disease were predicted;
i.e., GRIN1 is associated with AD and epilepsy, PTGES is

related to AD and ALS, ADRA1A has a link with depression,
CDK5 connects with AD, depression, and ALS, while
SULT1E1 may have an association with ALS. /ese inferred
associations could be the underlying basis of repositioning of
NBP for IS-associated CNS diseases, and further pieces of
evidence were obtained in the discussion section.

/e corresponding color was red, blue, green, yellow,
cyan, and purple for 1, 2, 3, 4, 5, and 6 (Figure 5(a)). DSI and
DPI properties of the 36 node genes were also visualized, in
which the 6 NBP potential target genes, i.e., GRIN1, PTGIS,
PTGES, ADRA1A, CDK5, and SULT1E1, showed DSI >0.5
(Figure 5(b)). DSI, which is short for disease specificity index
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Figure 3: Butylphthalide (NBP) regulation on ischemic stroke- (IS-) related disease-disease association (DDA) network. /e 175 potential
target genes of NBP were integrated into IS DDA network, and the NBP regulation network was created, in which 36 common genes of NBP
and diseases were identified and these 36 nodes were marked as V shape. /e node size and color were in proportion to the number of
interacted nodes; the more nodes one node linked, the bigger size and deeper color it showed.
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in DisGeNET, shows the association degree of a certain gene
with several or fewer diseases. And DSI >0.5 meant that
genes were more related to IS. All of the 6 genes had DPI
values of more than 0.4. NBP, as the approved drug by
NMPA for IS treatment may show potential regulation ef-
fects on several IS-associated CNS diseases through mod-
ulation of certain critical DDAs underlying shared genes.

3.5. Validation of Potential NBP Targets with Molecular
Docking. Six potential targets of NBP, i.e., GRIN1, PTGIS,
PTGES, ADRA1A, CDK5, and SULT1E1, were selected for
further validation with in silico molecular docking. Protein
structures were obtained from the RCSB PDB database:
GRIN1 (PDB: 6IRA, Electron microscopy, 4.50 Å resolu-
tion), PTGIS (PDB: 3B6H, X-ray diffraction, 1.62 Å
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Figure 4: Pie chart of butylphthalide (NBP) with its regulation on ischemic stroke- (IS-) related disease-disease association (DDA) network.
Node pie chart color represents different types of disease genes, i.e., genes of IS (in red), shared genes of ADwith IS (in blue), shared genes of
epilepsy with IS (in green), shared genes of MDD with IS (in yellow), shared genes of ALS with IS (in cyan), and shared genes of dementia
with IS (in purple), respectively. /e pie chart was generated in Cytoscape 3.8.0.
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resolution), PTGES (PDB: 3DWW, Electron microscopy,
3.50 Å resolution), CDK5 (PDB: 1UNL, X-ray diffraction,
2.20 Å resolution), and SULT1E1 (PDB: 1G3M, X-ray dif-
fraction, 1.70 Å resolution) while the HUMAN-Homology
model ADRA1A was achieved from SWISS-MODEL data-
base (P35348, https://swissmodel.expasy.org/repository/
uniprot/P35348?template�4ej4.1.A&range�22-336).

A docking score was applied to evaluate the binding
degree between drug and target. /ree levels of the score
were used to evaluate the binding activity.When the docking
score was less than “−5”, this meant that the drug had a

certain binding affinity with the target protein. When the
docking score was less than “−7”, this showed that the drug
had good binding activity. When the docking score was less
than “−9”, this indicated that the drug had a strong binding
ability [28].

As shown in Figure 6, NBP had a strong binding activity
with PTGES (affinity � −9.2 kcal/mol), certain binding
ability with GRIN1 (affinity � −6.7 kcal/mol), and good
binding ability with PTGIS, ADRA1A, CDK5, and
SULT1E1 (affinity � −7.0, −7.8, −7.5 and −7.7 kcal/mol,
respectively).
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Figure 5:/e 36 potential butylphthalide (NBP) target genes in the regulation network of NBP. (a) Gene associations with diseases. 1, 2, 3, 4,
5, and 6 represent IS, shared genes of ADwith IS, shared genes of epilepsy with IS, shared genes ofMDDwith IS, shared genes of ALS with IS,
and shared genes of dementia with IS, respectively./e corresponding color was red, blue, green, yellow, cyan, and purple for 1, 2, 3, 4, 5, and
6. (b) DSI and DPI properties of the 36 potential NBP target genes.
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/e binding modes of NBP with potential target proteins
were analyzed by LigPlot+ (Version 2.2). As depicted in
Figure 7, GRIN1 had three hydrogen bonds (H-bonds) with
NBP (Chain A: Ser 700; Chain B: Asn 432, Lys 457) together
with five hydrophobic interactions (Chain A: Arg 673, Glu
698, /r 701; Chain B: Leu 794, Trp 795). Intriguingly, six
conformation structures of NBP possessed a certain binding
affinity with GRIN1 or the interface of GRIN1 and GRIN2A
in the agonist binding domain (ABD) of a heterotetramer
NMDA receptor (details shown in Additional file 6). NBP
showed one H-bond with PTGIS (Chain A: /r 358) and
seven hydrophobic interactions (Chain A: Phe 46, Val 74,
Tyr 99, Phe 356, Arg 382, Leu 384, and Gly 482). For PTGES,
the main interactions between NBP and protein were hy-
drophobic “bonds” (Chain A: Tyr 80, Leu 83, Phe 84, Phe 87,
Val 88 and Phe 91; Chain B: Leu 83, Phe 87 and Phe 91). As
for ADRA1A, NBP showed two H-bonds, i.e., Chain A: Ser
188 and Ser 192. /ree hydrophobic interactions (Chain A:
Asp 106, Val 107, and Cys 110) contributed to the inter-
actions between NBP and ADRA1A. What’s more, NBP had
one H-bond (Chain A: Cys 83) with CDK5 and 10 hy-
drophobic interactions (Chain A: Ile 10, Ala 31, Lys 33, Glu
51, Val 64, Phe 80, Phe 82, Leu 133, Ala 143, and Asn 144).
And for SULT1E1, NBP possessed two H-bonds and six
hydrophobic “bonds” (H-bonds, Chain B: Arg 129; hy-
drophobic interactions, Chain B: Lys 47, Gly 49, Trp 52, Tyr
192, Phe 228, and Gly 258).

4. Discussion

CNS diseases are complex and polygenic diseases lacking
clinical effective drugs for treatment. Drug repurposing/
repositioning is one of the feasible and attractive strategies to
“recycle” the currently approved drugs. Based on the DDAs,
diseases sharing common disease modules, i.e., the under-
lying disease-associated gene clusters, may have similar

symptoms and high comorbidity [3]. IS, as a complex
multifactorial disorder to cause brain tissue ischemia and
injury, may induce or accompany comorbidities. Human
symptoms-disease network [29] showed the IS-related CNS
diseases including AD, dementia, epilepsy, glioblastoma/
glioma, motor neuron disease, meningioma, listeriosis, and
MDD, with Symptom Similarity Score ≥0.2. Our study set
IS-related CNS diseases (i.e., AD, dementia, epilepsy, ALS,
and MDD) as examples to elucidate the potential effects of
NMPA-approved anti-IS drug NBP on these 5 diseases. NBP
showed pleiotropic neuroprotective effects, which may be
the underlying molecular mechanisms for its repurposing
for the treatment of those five diseases. DisGeNET, Mala-
cards, and OMIM were open-access and high-quality public
online disease databases, which contributed to the credibility
of the disease-related gene acquisition. STRING was used to
retrieve PPI relationships, while network pharmacology
methods were applied to construct the DDA network and
drug-disease network. With network analysis, critical in-
formation contained in networks was extracted, such as the
common genes of DDAs, which could be the underlying
molecular basis of NBP repositioning.

/rough the strategy proposed in this study, six potential
targets of NBP, i.e., GRIN1, PTGIS, PTGES, ADRA1A,
CDK5, and SULT1E1, were selected for further validation
with in silicomolecular docking./e pieces of evidence were
obtained from references to support these associations
among targets and diseases as follows.

4.1. GRIN1. GRIN1 is an indispensable component of the
heterotetramer of NMDA receptor complexes and plays a
critical role in the plasticity of synapses. Our results indi-
cated that it had associations with IS, AD, and epilepsy. /e
learning and memory-related GRIN1 gene was found
downregulated in ovariectomized AD rats [30]. Studies
reported that GRIN1 was one of the top 25 core genes of the
AD network [31]. Another study showed GRIN1 as one of
the target genes of the approved anti-AD drug memantine
[32].

GRIN1 was also one of the top candidate genes for
epileptogenesis [33]. /e whole-exome sequencing analysis
of patients found that GRIN1 mutations caused seizures and
movement disorders [34]. GRIN1 mutation associated with
intellectual disability alters NMDA receptor trafficking and
function [35]. 70%–80% of epilepsy is attributed to genetic
factors, the GRIN1 gene encodes the NMDA receptor GluN1
subunit, and the NMDA receptor has an important role in
epilepsy [36].

4.2. PTGES. Molecular docking results indicated that NBP
had a strong binding activity with PTGES
(affinity� −9.2 kcal/mol). As we know, PTGES encodes
prostaglandin E synthase, which catalyzes the glutathione-
dependent oxidoreduction of prostaglandin endoperoxide
H2 (PGH2) to prostaglandin E2 (PGE2) in response to in-
flammatory stimuli. Studies showed that microsomal
prostaglandin E synthase 1 (mPGES-1) expression was
significantly elevated in middle frontal gyrus tissues of AD
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Figure 6: Binding affinity of butylphthalide (NBP) with the six key
targets. NBP had a strong binding activity with PTGES
(affinity� −9.2 kcal/mol), certain binding ability with GRIN1
(affinity� −6.7 kcal/mol), and good binding ability with PTGIS,
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(a) (b)

(c) (d)

(e) (f )

Figure 7: /e binding modes of NBP with potential target proteins. Binding modes were analyzed by LigPlot+ (Version 2.2). /e green
dashed lines stand for hydrogen bonds (H-bonds), while the green numbers on lines stand for distances (Å). /e purple bonds stand for
ligand bonds, while the brown color stands for nonligand bonds. And the brick red color represents hydrophobic “bonds.” For atoms, the
blue colors stand for nitrogen atoms, the red color stands for oxygen atoms, the yellow color was for sulfur atoms, and the black color
represents carbon atoms. (a) NBP_GRIN1. (b) NBP_PTGIS. (c) NBP_PTGES. (d) NBP_ADRA1A. (e) NBP_CDK5. (f ) NBP_SULT1E1.

Evidence-Based Complementary and Alternative Medicine 9



patients compared with controls, and the proinflammatory
PGE2 [37] was found to be elevated in the cerebrospinal fluid
early in AD [38]. However, the effect of PGE2 depends on its
concentration and to which receptor it binds [39]. Reports
indicated that mPGES-1 was induced in Aβ-mediated
neuronal cell death, and PGE2 was an important factor
involved in Aβ-induced neurotoxicity [40]. mPGES-1 may
play a role in AD pathology [41].

ALS is a progressive neurodegenerative disorder char-
acterized by the selective death of motor neurons. PGE2 was
elevated in the serum and CSF of ALS patients, and mPGES-
1 inhibition may reduce microglial activation and motor
neuron loss [42]. /us, mPGES-1 in motor neurons may
play a role in the pathogenesis of ALS [43]. Another work
reported that the concurrent inhibition of mPGES-1 and free
radicals would be a promising strategy to combat neuro-
degeneration in ALS [44].

4.3. ADRA1A. As for depression disorder, tricyclic antide-
pressant (TCA) drugs can also target α1-adrenergic receptor
(AR) as antagonists, which may be the underlying mecha-
nisms for therapy [45]. Further investigations into the
subtypes of α1-AR indicated that α1A-AR may be a useful
therapeutic target for the treatment of depression [46].
What’s more, norepinephrine (NE) plays an important
role in behavior and cognition and involves depression
regulation [47]. While α1A-AR was associated with antide-
pressant-like effects, chronic α1B-AR stimulation showed
prodepressant [48]. Deeper investigations deserve to be
designed and conducted to clarify the involvement role of
α1A-AR against depression.

4.4. CDK5. CKD5 is a versatile kinase showing a pivotal role
in modulating the function of postmitotic neurons in the
developing CNS; the dysregulation of CDK5 is involved in
the pathology of neurodegenerative diseases, such as AD,
ALS, and IS [49, 50]. CDK5 deregulation contributes to the
pathogenesis of AD through inducing deposition of Aβ in
senile plaques and intracellular accumulations of hyper-
phosphorylated tau. /e balance of CDK5/P35 and CDK5/
P25 is crucial for neuronal migration and differentiation,
neurite outgrowth, synaptic growth, and functions. Elevated
and sustained Cdk5/p25 activity consequently leads to DNA
damage, cell death, and neurodegeneration, whereas the
Cdk5/p35 complex is neuroprotective [51, 52]. /us, CDK5
could be a potential therapeutic target for AD [53–55].

As suppression of overactivated or deregulated CDK5
offers neuroprotection and prevention of motor neuron loss.
ALS, the progressive and fatal neurodegenerative disorder
leading to muscle atrophy, loss of movement, and eventually
death, could gain benefits through inhibition of CDK5
[51, 56–58].

CDK5 was reported to have an association with de-
pression, but the underlying mechanisms may be complex.
CDK5 in the dentate gyrus was found to participate in the
process of depressive-like behavior in rats. Inhibition of
CDK5 in the dentate gyrus contributed to the antidepressant
actions and ameliorated the depressive-like symptoms [59].

CDK5 loss of function in the ventral tegmental area (VTA)
induced anxiety- and depressive-like behaviors in mouse
models which were associated with inhibited tyrosine hy-
droxylase phosphorylation at Ser31 and Ser 40 [60]. In an
MDD mouse model, studies indicated that CDK5-mediated
phosphorylation of Sirt2 at Ser 368 and 372 in amygdala
accounting for social defeat stress induced depressive-like
behavior. /us, inhibition of CDK5-dependent Sirt2
phosphorylation at Ser 368 and 372 may be a promising
strategy for antidepression therapy development [61]. An-
other study showed Cdk5 in the nucleus accumbens as a
critical contributor to depressive-like behaviors in Hun-
tington’s disease mouse models [62].

4.5. SULT1E1. Estrogen sulfotransferase (EST, encoded by
SULT1E1) catalyzes the sulfoconjugation and inactivation of
estrogen. Reports showed that estrogen exerts neuro-
protective and anti-inflammatory effects in ALS [63, 64]. As
EST mediates the metabolic deactivation of estrogen [65],
drugs targeting EST may have potential regulation effects
against ALS.

In summary, our study proposed a network pharma-
cology and molecular docking integrated strategy to predict
several critical targets of NBP with drug repurposing po-
tential; in silicomolecular docking and literature validations
were conducted to support these findings. However, more
works in deep are warranted to design and investigate the
associations between NBP and AD, epilepsy, ALS, and
depression.

5. Conclusions

NBP, an NMPA-approved drug for IS treatment, shows
multitarget and pleiotropic effects. IS has DDAs with several
CNS diseases, including AD, ALS, epilepsy, MDD, and
dementia. Network pharmacology could facilitate the con-
struction of NBP-regulated disease networks to explore the
underlying molecular mechanisms of potential effects.
36 potential target genes of NBP were identified for IS-
associated CNS diseases, and 6 of them, i.e., GRIN1, PTGIS,
PTGES, ADRA1A, CDK5, and SULT1E1 were validated by
the application of in silico molecular docking. All of the six
targets indicated certain to good binding affinity with NBP.
References were retrieved to further validate the association
between target genes and IS-related CNS diseases. Based on
network analysis and validations, NBP may have the po-
tential to be repositioned for AD, epilepsy, ALS, and de-
pression treatments.

In summary, our study has proposed a drug-target-
disease integrating method to predict the drug repurposing
potentials to other associated diseases by the application of
network pharmacology and molecular docking, which could
be an attractive alternative to facilitate the development of
CNS disease therapies. As this drug repositioning strategy is
based on databases, in silico molecular docking, and pub-
lished references, further in-deep investigations are war-
ranted to be carefully designed and conducted.
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