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Study shows that decline exponents of gas wells in Sulige Tight Gas Field vary during their life cycle. However, decline analysis
methods with variable decline exponent have not been developed so far. To address this problem, a simple-yet-effective method
is proposed. In this method, the fracture linear flow regime and the channel linear flow regime, which appear two straight lines
on the coordinate axis (1/q vs.

ffiffi
t

p
), respectively, are used to carry out the decline analysis. Each regime has a different slope and

intercept (in the form of 1/q vs.
ffiffi
t

p
), which leads to a useful graphical technique for predicting gas rate. The graphical technique

is verified by matching actual gas rate and predicting future gas rate trend. Theoretically, the influence of the two slopes and
intercepts in the graphical technique on the rate decline is also studied. Aiming at decline analysis for tight gas wells with
variable decline exponents, this paper proposes a novel method using linear flow characteristics, which ingeniously avoids the
establishment of an empirical method to deal with variable decline exponent. The method in this study can help for better
understanding of decline analysis of tight gas wells in a theoretical manner.

1. Introduction

Asweall know,Arpsdecline-curvemethod [1] is not applicable
for tight gas reservoir. The main reasons are that its assump-
tions are violated in tight gas wells. For example, tight gas wells
rarely reach boundary-dominated flow even after several years
of production, while Arps decline-curve method demands
boundary-dominated flow. Moreover, Kupchenko [2] proved
that decline exponent is variable for fractured tight gas wells.
In linear flow regimes, decline exponent will be bigger than
1, until flow regime enters into boundary-dominated flow.
For gaswells in some extreme low-permeability gas reservoirs,
the decline exponent will be bigger than 1 in their life cycle.

To deal with the new problem, new methods are pro-
posed. Duong [3] introduced an empirically decline model
based on long-term linear flow for tight gas reservoirs. ILK
et al. [4] proposed a method named Power law Exponential
Decline to predict the reserves of unconventional reservoirs.
For A. N. Duong method and ILK method, there are many

parameters to be determined in the fitting process, so multi-
ple solutions are inevitable. Matter et al. [5] proposed modi-
fied power law exponential decline. In 2009, Valko [6]
proposed stretched exponential production decline method
for shale gas. Joshi et al. [7] proposed a method which com-
bined Duong model with hyperbolic decline model. Yu [8]
presented a new improved methodology to determine a more
accurate b to be used in the Arps decline curve analysis for
tight gas reservoirs by developing relationship between
Qcum, Qcum, t-∞, qt, and t. In general, the above method-
ologies are mainly empirical. Neal and Mian [9] presented a
predictive technique by introducing linear flow equation.
Dought and Moridis [10] developed a simple, Excel-based
tool for the analysis of the complex problem of gas produc-
tion from a hydraulically fractured tight/shale gas reservoir,
based on curve fitting a semianalytical solution to production
decline data. In Alem et al.’s [11] opinions, the traditional
hyperbolic decline equation can be used to predict recovery
from tight gas plays by selecting the right decline exponent
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in correspondence with flow regime. Mienzan and Asumadu
[12] present a new set of rate-decline type curves to analyze
and predict gas well performance. The rate-decline type
curves have been developed based on a semianalytical model.
However, the method they proposed whether is applicable to
tight gas is not mentioned.

Unlike the approaches mentioned above, this paper
developed a new approach to handle rate decline with vari-
able decline exponent by utilizing fracture linear flow equa-
tion and channel flow equation, rather than establishing
empirical equations.

In this paper, firstly, the field characteristic is presented.
Then, we employ a numerical model to investigate gas rate
and decline exponents in Sulige gas field. Third, the theory
basis to draw the novel approach in this paper is elaborated.
Forth, practical production data is used to validate the
approach. Fifth, sensitivity analysis of slope(m) and inter-
cept(s) is performed. Finally, a discussion about the novel
approach is presented.

2. Field Characteristic

Sulige gas field is a large lithologic gas reservoir, characterized
by braided river development. The effective reservoir forma-
tions are mainly isolated and stripped, with strong heteroge-
neity. Average formation thickness is 6~7m, porosity is
7.4~8.3%, and average permeability is 0.036md. Reservoir
depth ranges from 3450 to 3730m; average formation pres-
sure is 30MPa, and formation temperature is 110°C.

3. Decline Exponent Investigation

For the purpose of investigating decline exponents for tight
gas wells in Sulige gas field, we commence our study by using
numerical simulation method. According to reservoir char-
acterization and fracturing treatment of Sulige tight gas field,
reservoir model can be simplified into rectangle reservoir
models centered a fracture for the convenience of analysis
(shown in Figure 1). Physical properties used in the reservoir
model present in field characteristic. Gas wells produce at
constant bottom flowing pressure.

Three cases are simulated at different formation perme-
ability, with certain fracture half-length, fracture conductiv-
ity, and drainage area. Simulated gas rate data are shown in
Figure 2. By using Equation (1) [13], decline exponent can
be obtained by calculating simulated gas rate data (shown
in Figure 3).

b = 1/Dð Þ − 1/Dið Þð Þ
t

: ð1Þ

As Figure 3 shows, for permeability less than 0.01md,
decline exponents will be bigger than 1 for a long time; while
for permeability between 0.01md and 0.1md, decline expo-
nents will be bigger than 1 in initial phase of production,
smaller than 1 in late phase of production. However, decline
exponents for traditional Arps decline method are between 0
and 1. Therefore, traditional Arps decline method will not
be applicable.

4. Theory Basis

As the invalidation of Arps model, we turned to find new
method. According to relevant reservoir knowledge, for nar-
row and striped tight formations, flow regime can be divided
into three regimes, which are linear flow regime, elliptical
flow regime, and pseudoradial flow, boundary-dominated
flow. Here, linear flow is of importance for the new method.

Theoretically, there may be three kinds of linear flow,
fracture-related linear flow [14], channel-related linear flow
[15], Watterbargen linear flow [16], equations show in
Table 1. Owing to the fracture length always smaller than
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Figure 1: The rectangle reservoir model.
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Figure 2: Rate vs. time with varied permeability.
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Figure 3: Decline exponent b vs. time with varied permeability.
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channel width, fracture linear flow and channel linear flow
will appear in most tight gas wells in Sulige tight gas field.
Therefore, in this paper, we mainly highlight fracture linear
flow and channel linear flow. From Table 1, we can see, any
kind of linear flow, the inverse dimensionless rate vs. dimen-
sionless square time is linear in coordinate system. Hence, it
is possible to utilize the relationship to perform decline anal-
ysis. The following is detailed information.

4.1. Fracture Linear Flow. For fracture linear flow, dimen-
sionless qD for constant pressure will be given:

qD = ψDffiffiffiffiffiffiffiffi
πtD

p : ð2Þ

According to the definition of dimensionless variables,
Equation (1) can be simplified to

1
qg

=m1
ffiffi
t

p
+ s, ð3Þ

where

m1 =
PscT

ffiffiffi
π

p

2TscΔψ
ffiffiffiffiffiffiffiffi
μCt

p ffiffiffiffiffi
kϕ

p
hxf

: ð4Þ

4.2. Channel Linear Flow. For channel linear flow, dimen-
sionless qD for constant pressure will be given:

1
qD

=
ffiffiffiffiffiffiffiffi
πtD

p
: ð5Þ

Through dimensioning, Equation (5) can be simplified to

1
qg

=m2
ffiffi
t

p
+ s, ð6Þ

where

m2 =
PscT

ffiffiffi
π

p

2hLTscΔψ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kϕμCt

p : ð7Þ

Equation (3) and Equation (6) show that 1/qg and t1/2 are
linearly related during the fracture and channel linear flow.

The total volume produced from t1 to t2 can be found by
integrating Equation (6):

Q = 2
m2 m

ffiffiffiffi
t1

p
−

ffiffiffiffi
t2

p� �
+ s ln s +m

ffiffiffiffi
t1

p� �
− ln s +m

ffiffiffiffi
t2

p� �h in o
:

ð8Þ

Looking at Equation (7), for channel flow, the slope m
can be rewritten as

m = AB
1

hL
ffiffiffiffiffi
kϕ

p
 !

, ð9Þ

where A and B are, respectively, defined as:

A = Psc
ffiffiffi
π

p
2Tsc

, ð10Þ

B = T

Δψ
ffiffiffiffiffiffiffiffi
μCt

p : ð11Þ

A can be treated as a constant independent of a particular
well and independent of a particular reservoir, and B is inde-
pendent of particular well but dependent on its pressure dif-
ference, which impose minor effect on the linear relationship
between 1/qg and t1/2. Therefore, the variation in m among
different wells in the same field would be attributable to
changes in permeability, thickness, and channel width. For
a given tight gas reservoir, porosity varies little compared
with permeability and thickness and can be treated as a con-
stant. As a result, the differences in observed slopes m for
wells in a particular area can often be primarily attributed
to variations in the term 1/ðhL ffiffiffiffiffi

kϕ
p Þ.

Equations (3) and (6) both embodies linear relationship in
the form of 1/qg vs. t1/2 theoretically. Simulated production
performance for long stripped formation verified that relation-
ship. Figure 4 clearly displays these two linear relationships.

5. Practical Application

In order to validate the theory established, practical applica-
tion is essential. Equations (6) and (8) were applied to predict
and match gas well production performance from Sulige
tight gas field. Well information is provided in Table 2. By
plotting rate/time production data 1/qg vs. t1/2, determining
the m and s, then utilizes m and s to match rate/time in a
coordinate system. Plots (1/qg vs. t1/2) for well A, well B, well
C, well D, are presented in Figures 5–8, which exhibit
straight-line behavior. Aided by straight-line, matching
curves (qg vs. t) for well A, well B, well C, and well D are pre-
sented in Figures 9–12. Figures 5–8 suggest that linear flow
was dominant for well A, well B, and well C. In addition, tak-
ing D well for example, launching prediction for well per-
formance in the future during linear flow is also plausible.
For D well, linear relationship was generated only by year
1 and year 2, and year 3 production data is projected in
Figures 8 and 12.

Table 1: Working equation for different linear flow.

Linear flow Working equation

Fracture linear flow 1/qD =
ffiffiffiffiffiffiffiffi
πtD

p
/ψD

Channel linear flow 1/qD =
ffiffiffiffiffiffiffiffi
πtD

p
Wattenbarger linear flow 1/qD = π/2ð Þ

ffiffiffiffiffiffiffiffi
πtD

p
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6. Sensitivity Analysis of m and s

Equation (8) can be employed to describe each gas well’s
production performance during channel linear flow. Slope
m and intercept s dominate gas rate decline tendency. To
examine the effect of these two variables on production
decline, a sensitivity analysis was performed. Figures 13~16
show the results. Figure 13 shows the 1/qg vs. t1/2 curves
where m is varied but s is constant, Figure 14 corresponds
qg vs. t curves. Figure 15 shows the 1/qg vs. t1/2 curves where
s is varied butm is constant; Figure 16 is corresponding qg vs.
t curves. Figure 13 shows that m is indicative of the strength
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Figure 4: Cases with varied slope same intercept.

Table 2: Reservoir and rock data.

Well name Pi (MPa) T (°C) K (mD) h (m) φ (%) Sw (%)

Well A 31.2 110 0.021 5.4 6.2 55

Well B 30.9 112.3 0.058 12.5 7.2 57

Well C 31.2 115.1 0.079 15.8 6.8 54

Well D 31.8 112.4 0.046 16.8 6.4 56.5
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Figure 5: 1/qg vs. t1/2 matching plot for A well.
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Figure 6: 1/qg vs. t1/2 matching plot for B well.
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Figure 7: 1/qg vs. t1/2 matching plot for C well.
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Figure 8: 1/qg vs. t1/2 matching plot for D well.
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Figure 9: qg vs. t matching plot for A well.

q
 (×

10
4 

m
3 /d

)

t (day)

Actual production
Forecast production

0

3

6

9

12

0 300 600 900 1200 1500 1800

Figure 10: qg vs. t matching plot for B well.

q
 (×

10
4 

m
3 /d

)

t (day)

Actual production
Forecast production

0

2

4

6

0 300 600 900 1200 1500 1800

Figure 11: qg vs. t matching plot for C well.
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Figure 12: qg vs. t matching plot for D well.
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of well; a small m predicts a better production performance.
Figure 15 shows that intercept s is only an indication of
near-wellbore conditions.

7. Discussion

In this paper, we focus on taking advantage of linear behav-
iors in tight gas wells to predict well performance, and the
results show well-suited. It is smart to bypass establishing a
model considering variable decline exponent. Also, utilizing
linear flow model to promote decline analysis is more con-
vincing than empirical methods. However, the idea does
not involve the circumstance when some gas wells enter into
boundary-dominated flow. Combining the approach devel-
oped in this paper with Arps model will be a good idea.
Besides, given the point of this paper is decline analysis, so
distinguishing channel linear flow from Watterbarger linear
flow is not discussed in detail. The reason we highlight chan-
nel linear flow in this paper is that the fracture length for
most gas wells in Sulige tight gas field is smaller than the
drainage boundary. Hence, Watterbarger linear flow can be

excluded in most cases. The only possibility for long-term
linear flow would be channel linear flow.

8. Summary and Conclusions

(1) An effective novel approach for predicting future gas
rate and EUR has been developed for tight gas wells
by using linear flow

(2) The inverse of rate vs. the square of time is observed
to fit a straight line in Sulige tight gas field and same
gas field, which can forecast well performance accu-
rately before pseudoradial flow

(3) The slope m obtained from fitting can be used to
indicate the quality of gas formation

(4) It is possible to match the entire production history
for tight gas wells by combining the approach devel-
oped in this paper with Arps model

Nomenclature

b: Decline exponent, dimensionless
D: Decline rate, %
Di: Initial decline rate, %
A: Defined in Equation (10)
B: Defined in Equation (11)
Ct: Total system compressibility, Pa-1

Q: Cumulative gas produced
h: Formation thickness, m
k: Formation permeability, md
m: Slope of inverse rate vs square root of time
Δψ: Real gas pseud pressure change, Pa/s
Psc: Standard pressure, Pa
qg: Flow rate, measured at standard conditions
qD: Dimensionless rate, qD = ðqgPscTÞ/ð2khTscψiÞ (when

fracture linear flow), qD = ðqgPscTÞ/ð2khTscΔψÞ (when
channel linear flow)

s: Inverse rate change caused by skin effects
t: Time, s or day
tD: Dimensionless time, tD = kt/ðϕμctxf 2Þ (when fracture

linear flow), tD = kt/ðϕμctL2Þ (when channel linear
flow)

T : Reservoir temperature, K
Tsc: Standard temperature, K
xf : Fracture half-length, m
L: Channel width, m
μ: Gas viscosity, pa·s
Pi: Initial Pressure, MPa
φ: Effective Porosity, %
Sw: Initial Gas Saturation, %.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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