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Aiming at the problems of the current production and operation status of the progressive cavity pump (PCP) in coalbed methane
(CBM) wells which cannot be timely monitored, quantitatively evaluated, and accurately predicted, a five-step method for
evaluating and predicting the health status of PCP wells is proposed: data preprocessing, principal parameter optimization,
health index construction, health degree division, and health index prediction. Therein, a health index (HI) formulation was
made based on deep learning, and a statistical method was used to define the health status of PCP wells as being healthy,
subhealthy, or faulty. This allowed further research on the HI prediction model of PCP wells based on the long short-term
memory (LSTM) network. As demonstrated in the study, they can reflect both the change trend and the contextual relevance of
the health status of PCP wells with high accuracy to achieve real-time, quantitative, and accurate assessment and prediction. At
the same time, the conclusion gives good guidance on the production performance analysis and failure warning of the PCP wells
and suggests a new direction for the health status assessment and warning of other artificial lift equipment.

1. Introduction

Coalbed methane is a kind of clean energy; it is drained
through depressor desorption; when the reservoir pressure
is reduced to the desorption pressure of methane, the meth-
ane gas in the pores is desorbed, then diffuses and percolates
into the wellbore [1–3]. The progressive cavity pump (PCP)
is one of the lifting methods in CBM wells. The operation
of PCP in CBM wells often fails, resulting in large production
losses and short equipment life. Therefore, the monitoring,
diagnosis, and early warning of the operation and health sta-
tus of the PCP in CBM wells have attracted more and more
attention from researchers and field engineers. Experience
and statistical methods are not possible to evaluate the health
status of the pump in the future and perform predictive
maintenance. Some scholars thus have put forward some
measures on PCP health management based on machine
learning methods. For example, Saghir et al. discussed how

to use data collected from a data acquisition system to apply
data approximation and unsupervised machine learning
methods to time series datasets to help analyze PCP perfor-
mance and detect abnormal pump behavior [4]. Hoday
et al. proposed a method based on abnormal monitoring to
characterize PCP failures, maximize the information value
of monitoring the operating conditions of each well, and
minimize operating costs [5]. Saghir et al. proposed to con-
vert the features extracted from time series data into images,
which helps to detect abnormal behavior of PCP autono-
mously [6]. Prosper and West proposed the use of a machine
learning framework that can be used to customize each work-
over configuration to optimize the service life of PCP while
considering the heterogeneity and life of wells [7].

Due to the large number of parameters collected for
CBM, quantitative evaluation of the health status of the
PCP cannot be achieved and the evaluation results are not
accurate. Some scholars also use some new technologies to
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manage the health status of the PCP. For example, a tool
called the Pressure Actuated Relief Valve (PAR Valve) is used
above the PCP to eliminate solids settling during a shutdown
[8]. Caballeroa et al. involved in supplying PCP technologies
to the Orinoco Belt and have developed the exclusive and
patented HR-PCP (hydraulically regulated PCP) technology
in order to extend the run life of the conventional PCPs in
these fields where the Mean Time Between Failure (MTBF)
has shown a sharp decrease in the last few years [9]. In order
to achieve continuous decision-making and control of the
parameters of PCP wells, taking the maximum cumulative
gas production as the optimization goal, a reinforcement
learning model with the self-optimization ability and a model
framework of the Q learning, Sarsa, Sarsa (lambda) algorithm
were proposed [10]. Based on the above technical methods,
although the service life of PCP can be prolonged and the
output of CBM wells can be increased, real-time evaluation
and prediction of the health status of the lifting equipment
PCP cannot be carried out.

In fact, health status assessment has also been widely
studied and applied in other equipment systems. Most of
them use current detection data and historical operating data
to evaluate the current health status of equipment systems or
subsystems [11]. According to the different strategies of con-
structing the HI curve, it can be divided into two types: direct
HI and indirect HI [12]. The former refers to the direct con-
struction of health values with a certain physical significance
based on the original monitoring data, guided by experts or
empirical knowledge, through simple statistical analysis or
feature extraction. Indirect HI is usually obtained by using
machine learning methods to fuse or reduce the time domain
features or frequency domain features of the sensor. It has no
physical meaning and is often called virtual HI (VHI).
Among the construction methods of VHI, the most popular
is to use dimensionality reduction technology to construct
VHI [13, 14]. Some scholars use the Mahalanobis distance
to construct VHI [15–17] and use linear data transformation
methods to construct VHI by fusing multiple features [18–
20]. In the above method of constructing HI, the VHI con-
structed by dimensionality reduction calculation can best
reflect the data change characteristics of the equipment col-
lected and can better reflect the operating conditions of the
equipment in real time. The methods of VHI provide a refer-
ence for the construction of the PCP health index.

Therefore, in view of the real-time evaluation and predic-
tion of the health status of the PCP wells, this paper proposes
a method based on deep learning to construct a health index
calculation model and prediction model to reflect the before
and after trends of the health status of the PCPs and realize
the real-time, quantitative, and accurate evaluation and pre-
diction of the health status of the wells.

2. Establishment of the HI Model

The health index calculation model is the basis for the analy-
sis and prediction of the production performance of PCP
wells. There are many parameters collected in CBM wells,
and parameters that have an important impact on the health

of PCP wells need to be selected as the principal parameters
to form the input variables of the HI calculation model.

2.1. Principal Parameter Analysis. There are many parame-
ters collected in CBM wells. However, some of these param-
eters have the same change trend, and these parameters show
a strong correlation. There are also some parameters that
cannot characterize whether the PCP fails or the influence
of these parameters is small. Therefore, it is necessary to opti-
mize the principal parameters before predicting the failure of
the PCP. In this study, Pearson’s correlation coefficient
method was used for correlation analysis, and the principal
component analysis method was used for principal parame-
ter selection.

2.1.1. Pearson’s Correlation Coefficient. Pearson’s correlation
coefficient is also called Pearson’s product-moment correla-
tion coefficient; it is a linear correlation coefficient, denoted
as γ, used to reflect the degree of linear correlation between
two variables X and Y . The value of γ is between -1 and 1;
the larger the absolute value, the stronger the correlation.
The calculation formula of γ is

γ =
∑n

i=1 Xi − �X
� �

Y − �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 Xi − �X
� �� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 Yi − �Y

� �� �2q , ð1Þ

where n is the number of samples. i is the serial number of the
sample point.

The relationship between Pearson’s correlation coeffi-
cient and the degree of correlation is shown in Table 1.

In this paper, it is stipulated that the correlation coeffi-
cient between the production parameters of PCP wells is
extremely strong when the correlation coefficient γ is greater
than 0.9.

2.1.2. Principal Component Analysis. The principal compo-
nent analysis (PCA) is a statistical analysis method that
reduces the original multiple variables to a few comprehen-
sive indicators. From a mathematical point of view, this is a
dimensionality reduction processing technology. There are
many parameters automatically collected in PCP wells. Too
many inputs will increase the difficulty and complexity of
analyzing this problem. Therefore, this paper made use of
the correlation between various factors to replace the original
multiple influencing factors with the principal components
after dimensionality reduction.

The input and output are as follows:

Input: n′-dimensional sample set D′ = ðxð1Þ, xð2Þ,⋯,xðn′ÞÞ
, to be reduced to n-dimensional (where xðiÞ represents each
parameter, i = 1, 2,⋯, n).

Output: the sample set D after dimensionality reduction.
The process of dimensionality reduction algorithm is as

follows:

(1) Centralize all samples: xðiÞ = xðiÞ − ð1/nÞ∑n
j=1x

ðjÞ

(2) Calculate the covariance matrix of the sample XXT
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(3) Perform eigenvalue decomposition on the covariance
matrix XXT , and the eigenvalue result is W = ðw1,
w2,⋯,wnÞ

(4) Calculate the weight of each parameter, and the cal-
culation formula is ωi = ðwi/∑

n
i=1wiÞ × 100%. The

weight result is Ω = ðω1, ω2,⋯,ωnÞ
(5) Set the threshold of the principal parameter. Add the

weights of each parameter from large to small. When
the weight sum is greater than 95%, it is considered
that these parameters can characterize all the fea-
tures, and the remaining parameters are removed

2.2. Health Index Calculation. The health index is a compre-
hensive indicator reflecting the health status of the PCP wells.
Through data preprocessing and principal parameter optimi-
zation of the original data, n parameters are selected as the

principal parameters for predicting the health status of the
PCP wells. First, the principal parameters of all the failure
wells are combined, and the PCA method is used to calculate
the covariance matrix A of n principal parameters. Diagonal-
ize the covariance matrix to obtain the eigenvalue of the
covariance matrix, which is the weight of each principal
parameter. Multiply the weights of the n principal parame-
ters and add them together to obtain a comprehensive index
that can reflect the health of the PCP, then normalize it to
obtain the health index.

Assume that the hypothetical dataset is shown in Table 2.
The PCAmethod uses variance to measure the amount of

information, and the sample set is fX = ½X1j, X2j,⋯,Xnj�T 0
≤ j ≤m − 1g, where n is the number of principal parameters,
m is t =m at a certain time, and Xnj = ½xn1, xn2,⋯,xnj�. All
samples are constructed into an n ×m matrix, which is the
covariance matrix. Let the covariance matrix be A; then,

where xnj is the sample attribute value corresponding to the n
th principal parameter in the dataset at t = j. �xn is the average
value of all attribute values of the principal parameter n,
where �xn = ð∑m−1

j=0 xnjÞ/m.
Let the set of eigenvectors of matrix A be υ, and the eigen-

value corresponding to υ is λiði = 1, 2,⋯,nÞ, so the relation-
ship between the matrix, eigenvalue, and eigenvector can be
obtained as

Aυ = λiυ: ð3Þ

Construct the eigenvalue formula for solving the eigen-

matrix:

λiE − Aj j = 0, ð4Þ

where E is the identity matrix.
The principal parameter value input at a certain time t is

Xt = ðx1t , x2t ,⋯,xntÞ; the calculation formula of the compos-
ite index (CIt) is

CIt = λXt
T , ð5Þ

where λ is the eigenvalue vector composed of eigenvalues of
matrix A, where λ = ðλ1, λ2,⋯,λnÞ.

Table 1: Correlation degree.

Pearson’s correlation
coefficient

Correlation

0.8–1.0 Extremely strongly correlated

0.6–0.8 Strongly correlated

0.4–0.6 Moderately correlated

0.2–0.4 Weakly correlated

0.0–0.2
Very weakly correlated or not

correlated

Table 2: Hypothetical dataset.

Time
(t)

Principal
parameter 1

Principal
parameter 2

⋯ Principal
parameter n

0 x10 x20 ⋯ xn0

1 x11 x21 ⋯ xn1
⋮ ⋮ ⋮ ⋮ ⋮

m − 1 x1,m−1 x2,m−1 ⋯ xn ,m−1

A =
1

m − 1

〠
m−1

j=0
x1j − �x1
� �

x1j − �x1
� �

〠
m−1

j=0
x1j − �x1
� �

x2j − �x2
� �

〠
m−1

j=0
x2j − �x2
� �

x1j − �x1
� �

〠
m

j=1
x2j − �x2
� �

x2j − �x2
� �

⋯ 〠
m−1

j=0
x1j − �x1
� �

xnj − �xn
� �

⋯ 〠
m−1

j=0
x2j − �x2
� �

xnj − �xn
� �

⋮ ⋮

〠
m−1

j=0
xnj − �xn
� �

x1j − �x1
� �

〠
m−1

j=0
xnj − �xn
� �

x2j − �x2
� �

⋮ ⋮

⋯ 〠
m−1

j=0
xnj − �xn
� �

xnj − �xn
� �

2
666666666666664

3
777777777777775

, ð2Þ
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The comprehensive index at each moment in the ΔT
period is calculated as

CI = CI0, CI1,⋯,CIΔTð Þ: ð6Þ

Normalize the obtained comprehensive index to obtain
the health index (HI). The formula for calculating the health
index at time t is

HIt =
CIt − CImin
CImax − CImin

: ð7Þ

So the health index at each moment in the ΔT period is

HI = HI0, HI1,⋯,HIΔTð Þ: ð8Þ

2.3. Health Degree Division. The health index will show dif-
ferent trends with the severity of the PCP failure. Before pre-
dicting the health status, the health status should be divided
into different degrees according to the change trend of the
health index, namely, health, subhealth, and fault, as shown
in Figure 1. According to existing data, the range of the health

index of health, subhealth, and failure of all sample wells is
calculated. According to the statistics of the HI scope of all
sample wells, the threshold of HI is obtained as the basis
for the failure alarm.

The healthy state is the normal operation state of the
pump unit, the HI value is close to 1 with little fluctuation,
and the production of the CBM well is stable. The pump is
running in a subhealthy state due to gas interference, stator
swelling, wear, and leakage; the HI value gradually decreases
with time; and the gas production continues to decrease.
Owing to the gas locking, shaft broken, and serious leakage
of the pump, the pump unit runs under the fault condition,
the HI value is close to 0, and almost no gas is produced.
When different faults occur, the drop rate of HI is different.
For example, when the sucker rod is broken, HI will instantly
fall to 0, and when the pump is running dry, HI will slowly
decrease.

3. HI Prediction Model

Aiming at the characteristics of CBM well production data
and the degree of PCP changes over time, a long short-term
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Figure 1: Change curve of the health status.
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memory (LSTM) neural network is selected to establish a HI
deep learning model. LSTM is based on the general recurrent
neural network (RNN) [21], adding memory units to the
neural units of each hidden layer to achieve controllable
memory information in time series. It is suitable for process-
ing and predicting important events with relatively long
intervals and delays in time series. LSTM is generally an arti-
ficial intelligence prediction algorithm based on deep
learning.

3.1. Principle of LSTM. In order to solve the problem of van-
ishing gradient and maintain the long-term memory of the
hidden layer, the long short-term memory (LSTM) network
is improved on the basis of RNN [22]. LSTM uses three “gat-
ing” structures to control the state and output at different
moments. The short-term memory and long-term memory
are combined through the “gating” structure, which can alle-
viate the problem of gradient disappearance. The expansion
of the LSTM structure is exactly the same as RNN in time;
the difference lies in the difference of the cell. The cell calcu-
lation node of LSTM contains more structures, including
update gates, forget gates, and output gates. As shown in
Figure 2, the calculation formulas are as follows:

Γ
th i
f = σ Wf a t⎯1h i, X th i

h i
+ bf

� �
,

c th i = tanh Wc a t⎯1h i, X th i
h i

+ bc
� �

,

Γ
th i
i = σ Wi a

t⎯1h i, X th i
h i

+ bi
� �

,

c th i = Γ
th i
f ∗ c t−1h i + Γ

th i
i ∗~c th i,

Γ th i
o = σ Wo a t⎯1h i, X th i

h i
+ bo

� �
,

a th i = Γ th i
o ∗ tanh c th i

� �
:

ð9Þ

Among them, Γhti
f represents the forget gate. If the value

of a cell in the forget gate is close to 0, LSTM will “forget” the
storage state in the corresponding cell of the previous cell
state. If the value of a cell in the forget gate is close to 1, LSTM
will mainly remember the corresponding value in the storage
state; c hti represents a candidate value, which is a tensor con-
taining information that may be stored in the cell state at the

current time; Γhti
i represents the update gate, which is used to

determine which information of candidate value c  hti is added
to chti; chti is the record of the current cell state information,
and the information is used for transmission in subsequent
time steps; the output gate Γhti

o determines which informa-
tion is used for the prediction of the current time step; ahti
contains the current hidden node information, which is used
to pass to the next time step to calculate the value of each gate
and for label prediction calculation.

By introducing a gating mechanism into the computing
nodes of the hidden layer, LSTM naturally overcomes the
problem of gradient disappearance in the structure and has
more parameters to control the model. By four times the
parameter amount of RNN, time series variables can be pre-
dicted more finely. The prediction of the equipment health
index is a long-term time series information processing pro-
cess. Therefore, this paper chooses LSTM as the prediction
model of HI.

3.2. Steps for HI Prediction. The methods of HI model estab-
lishment, training, and verification are as follows:

(1) Call the interface to create the model and set the ini-
tial parameters. Call the interface on TensorFlow to
create an LSTMmodel; set the number of neural net-
work layers, time series steps, number of neurons,
number of training cycles (epochs), batch size, and
other hyperparameters; and set the activation func-
tion and optimization function

(2) According to the model structure, establish a training
set and a test set. According to the LSTM model

Table 3: Evaluation index of the regression model.

Evaluation index Calculation formula Criteria

Mean absolute
percentage error

MAPE = 〠
n

i=1

yt − ypre
yt

����
���� × 100

n The smaller the MAPE, the smaller the error

Mean absolute
error MAD=

∑n
i=1 yt − ypre
��� ���
n

The smaller the MAD, the smaller the error

Root mean square
error

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yt − ypre

� �2
s

The smaller the RMSE, the smaller the error, and the larger the RMSE, the
larger the error

Theil’s inequality
coefficient TIC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑n

i=1 yt − ypre
� �2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑n

i=1y
2
t

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑n

i=1y
2
pre

q The closer the TIC value is to zero, the higher the prediction accuracy will be;
when it is equal to zero, it means 100% fitting

Decisive factor R2 = 1 −
∑n

i=1 yt − ypre
� �2

∑n
i=1 yt − �ytð Þ2

R2 is between 0 and 1; the larger the value, the better the model fitting
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Table 4: Principal parameters of 30 failure wells.

Well_ID Principal parameter 1 Principal parameter 2 Principal parameter 3 Principal parameter 4

E001 dh_press gas_flow_rate gas_press motor_current

E002 dh_press gas_flow_rate gas_press tubing_press

E003 dh_press gas_flow_rate gas_press tubing_press

E004 dh_press tubing_press — —

E005 dh_press gas_flow_rate gas_press tubing_press

E006 dh_press gas_flow_rate gas_press motor_current

E007 gas_flow_rate pump_speed water_flow_rate tubing_press

E008 dh_press gas_press motor_current pump_speed

E009 dh_press gas_flow_rate gas_press pump_speed

E010 dh_press gas_flow_rate gas_press —

E011 dh_press gas_flow_rate gas_press pump_speed

E012 dh_press gas_flow_rate gas_press motor_current

E013 dh_press gas_press water_flow_rate tubing_press

E014 gas_flow_rate gas_press pump_speed tubing_press

E015 gas_flow_rate gas_pres tubing_press —

E016 gas_flow_rate gas_press pump_speed tubing_press

E017 gas_flow_rate gas_press motor_current tubing_press

E018 gas_flow_rate gas_press motor_current water_flow_rate

E019 dh_press gas_flow_rate gas_press motor_current

E020 gas_flow_rate gas_press motor_current water_flow_rate

E021 gas_press tubing_press dh_press gas_flow_rate

E022 dh_press gas_flow_rate gas_press pump_speed

E023 gas_flow_rate tubing_press pump_speed —

E024 dh_press gas_press pump_speed tubing_press

E025 gas_flow_rate pump_speed water_flow_rate tubing_press

E026 gas_flow_rate gas_press motor_curren tubing_press

E027 pump_speed dh_press gas_flow_rate motor_curren

E028 gas_flow_rate gas_press torque tubing_press

E029 dh_press gas_flow_rate gas_press motor_current

E030 dh_press pump_speed water_flow_rate tubing_press
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structure, extract the PCP health index data, set up
the time series, segment the sample data according
to the set input time length, and create the HI train-
ing set and test set. And 80% of the data of each sam-
ple well is used for model training, and 20% of the
data is used for model testing

(3) For model tuning, through the grid search method,
the optimal hyperparameters, activation function,
and optimization function of the model are selected

(4) For model training, use the tanh function as the acti-
vation function and the Adam function as the opti-
mization function

(5) To verify the model, when evaluating the effect of the
health index prediction model, set the prediction
total of the model to n, the prediction value to ypre,
and the true value to yt . The regression model evalu-
ation indicators in Table 3 can be used to evaluate the
accuracy of the model

(6) For model release, use the test set data to evaluate the
prediction accuracy of the HI machine learning
model. When the accuracy of the prediction result
meets the requirements, the model training is com-
pleted and released as a formal prediction model

4. Application Results

The real-time production data of 30 PCP failure wells and 6
wells under normal conditions in a coalbed methane block
in Australia’s Surat Basin were collected. These data include
downhole pressure, fluid level, gas production, water produc-
tion, current, voltage, torque, tubing pressure, casing pres-
sure, and pump speed. The data acquisition interval is one
minute. The failure types of the collected failure wells include
6 types of failure, such as pump ran dry, tubing plugged, sta-
tor plugged, tubing broken, connection broken, and pump
lost efficiency. The following mainly takes well E001 as an

example to perform production characteristic analysis, health
index calculation, early warning of failure.

4.1. Production Characteristic Analysis of PCP Wells. In the
data preprocessing, the original data was deleted (removed
noise points) and replaced (missing value processing), and
the 10 parameters collected by the CBM well were processed
into 8 items. Pearson’s correlation coefficient analysis of
these 8 parameters is shown in Figure 3.

The lower triangle r in the figure represents the corre-
lation coefficient between the two parameters correspond-
ing to the horizontal and vertical coordinates. A positive
number indicates a positive correlation between the
parameters, and the larger the positive number, the stron-
ger the positive correlation. A negative number indicates a
negative correlation between the parameters, and the
smaller the negative number, the stronger the negative
correlation. The upper triangle represents the correspond-
ing correlation between the two parameters. The closer the
slope of the line is to 1, the stronger the positive correla-
tion between the two parameters; the closer the slope of
the line is to -1, the stronger the negative correlation
between the two parameters.

It is defined that the correlation between the two param-
eters is greater than 0.9, showing a strong correlation. It can
be seen from Figure 3 that the correlation coefficient between
downhole pressure (dh_press) and fluid level (fluid_level) is
0.99, and the correlation coefficient between current
(motor_current) and torque (torque) is 1. Therefore, one of
the downhole pressure and fluid level and current and torque
can be deleted.

The principal component analysis is performed on the
parameters screened by Pearson’s correlation coefficient,
and the weight analysis chart shown in Figure 4 is obtained.
Each histogram in the figure represents the weight of each
parameter, and the line graph represents the sum of the
weight of each parameter. It is defined that when the sum
of the weights of the parameters is greater than 95%, the
parameters obtained can fully represent the characteristics
of all parameters.

In this study, it can be seen from Figure 4 that when
the first four parameters of downhole pressure (dh_press),
gas production (gas_flow_rate), casing pressure (gas_
press), and current (motor_current) are selected, the
cumulative weight is greater than 95%. Therefore, these
four parameters are selected as the principal parameters
in well E001.

In order to make the obtained principal parameters adapt
to the entire failure wells, the principal parameters of 30 fail-
ure wells are statistically analyzed, as shown in Table 4.

From the analysis of Table 4, downhole pressure (dh_
press), gas production (gas_flow_rate), casing pressure
(gas_press), and tubing pressure (tubing_press) are ranked
in the top four for the most cumulative times in all cases.
Therefore, these four parameters are selected as the principal
parameters.

4.2. HI Analysis Results. Using the collected 4 principal
parameters of 30 failure wells, a 4 × 30 sample matrix is
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Figure 7: HI curves of 6 failure wells.

9Geofluids



established, substituting equation (3), and the covariance
matrix A applicable to the entire block is calculated as

A =

1:00 −0:88 −0:83 −0:03

−0:88 1:00 0:76 0:06

−0:83 0:76 1:00 −0:24

−0:03 0:06 −0:24 1:00

2
666664

3
777775: ð10Þ

From equations (4) and (6), the eigenvalue vector com-
posed of the eigenvalues of matrix A can be obtained:

λ = 2:65, 1:06, 0:10, 0:18ð Þ: ð11Þ

The data of 4000 points before and after the failure of well
E001 is selected for health index analysis, and the principal
parameters change with time, as shown in Figure 5. From
formulas (5)~(8), the health index before and after the event
of the Event_001 well can be calculated. As shown in
Figure 6, the health index fluctuated between 0.7 and 1.0
before the failure, and the health index began to decline when
the failure occurred, until the lowest value, fluctuating
between 0 and 0.2.

The health index was calculated for 30 failure wells and 6
normal wells. Figure 7 shows the health index of 6 failure
wells. It can be concluded that when the PCP is operating
normally, the health index is between 0.7 and 1. When a fail-
ure occurs, the health index will gradually decrease. There-
fore, it can accurately reflect the health status of the PCP
operation.

Table 5 shows the range of health index variation of 30
failure wells. It shows that the health index of most wells
under normal operating conditions is between 0.7 and 1,

and the health index under failure conditions is between 0
and 0.4. When the health index is 0.7-1, the PCP is healthy;
when the health index is 0.4-0.7, the PCP is subhealthy; when
the health index is 0-0.4, the PCP is faulty. Therefore, when
the health index is lower than 0.7, a failure warning will be
sent and when it is lower than 0.4, a severe warning will be
sent.

4.3. HI Analysis of Failure Types. The change trend of the
health index curve under different types of working condi-
tions is different. The following three working conditions of
normal, tubing broken, and pump ran dry are taken as exam-
ples for analysis. The health index is shown in Figures 8–10.

It can be seen from Figure 8 that when the well is operat-
ing normally, the health index fluctuates between 0.8 and 1.0,
which meets the scope of health index classification; Figures 9
and 10 show the HI curves of two different failures at the
same time period.

Both mechanism analysis and data analysis have con-
firmed that tubing broken occurs in an instant, the process
is fast, and the change in the health index appears to be a sud-
den drop; pump ran dry is a slow occurrence, the process is
relatively longer, and the change in the health index appears
to be a slow decline. This study counts the approximate time
required for all wells from the beginning of the failure to the
end of the failure according to different types of failures, as
shown in Table 6.

Table 6 demonstrates that the health index not only can
accurately represent the real-time health status of the PCP
wells but also can be used for fault diagnosis.

When the pump is running dry, the time period from the
beginning to the complete failure is greater than 3000
minutes, and the time period from the beginning to the com-
plete failure of other failures is less than 3000minutes. There-
fore, the severity of the fault can be judged by analyzing the
slowness of the change of the health index curve. If the health
index drops suddenly, it can be concluded that this type of
fault is a serious fault; if the health index drops slowly, it is
a slight failure.

4.4. Early Warning of Failure. First, initialize the LSTM neu-
ral network parameters randomly and set the number of neu-
ral network layers to 2, the time step to 200 minutes, the
number of neurons to 8, the number of training cycles
(epochs) to 8, and the batch size to 8.

Then, use the training data for model training. After the
model training is completed, the grid search and the learning
curve are drawn on the validation set to obtain the optimal
network structure parameters of the LSTM model: epochs
= 10, batch_size = 256, and time_step = 200.

The number of neurons in the first layer is 64; the num-
ber of neurons in the second layer is 16. The change process
of the loss function with the training times during the train-
ing process is shown in Figure 11.

It can be seen from Figure 11 that the loss function of the
model gradually decreases and tends to zero as the number of
training increases. It shows that the LSTM prediction model
has no overfitting or underfitting, and the model has good

Table 5: HI range of 30 failure wells.

Well_
ID

HI range in
normal
condition

HI range
in failure
condition

Well_
ID

HI range in
normal
condition

HI range
in failure
condition

E001 0.8-1.0 0-0.2 E016 0.8-1.0 0-0.4

E002 0.7-1.0 0-0.3 E017 0.8-1 0-0.1

E003 0.8-0.1 0-0.2 E018 0.8-1 0-0.2

E004 0.8-1.0 0-0.2 E019 0.6-1.0 0-0.3

E005 0.7-1.0 0-0.3 E020 0.9-1.0 0.7-0.8

E006 0.7-1 0-0.2 E021 0.7-1 0-0.4

E007 0.8-1.0 0-0.2 E022 0.7-1 0-0.2

E008 0.7-1.0 0-0.3 E023 0.6-1.0 0-0.3

E009 0.7-1.0 0-0.3 E024 0.7-1.0 0-0.3

E010 0.8-1 0.5-0.7 E025 0.8-0.1 0-0.4

E011 0.8-1.0 0-0.2 E026 0.8-1 0-0.2

E012 0.8-1.0 0-0.2 E027 0.7-0.8 0.6-0.7

E013 0.7-1 0.4-0.6 E028 0.7-1 0-0.5

E014 0.8-1 0.1-0.3 E029 0.8-1.0 0-0.2

E015 0.7-1 0-0.2 E030 0.7-1 0.5-0.7
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Figure 8: HI curve of the normal well.
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generalization ability and can be used for pumping well
power prediction.

Figure 12 shows the training and prediction effects of the
LSTM model.

Table 7 shows the LSTM model evaluation results based
on the model evaluation method.

It can be seen that the average percentage errorMAPE of
the model on the training set and test set is 0.6 and 32.8,
respectively; the average absolute error MAD, root mean
square error RMSE, and Theil’s inequality coefficient TIC
are all close to 0; and the evaluation coefficient R2 is 0.98
on both the test set and the training set, which is close to 1.

Therefore, the LSTM prediction model accurately grasps
the trend of the health index change and the correlation
before and after and can accurately predict the health status
of the PCP wells in real time.

5. Conclusions

This study proposed an artificial intelligence-based method
for evaluating and predicting the health status of PCP in
CBM wells and established a five-step method for failure pre-
diction: data preprocessing, optimization of principal param-
eters, health index construction, health degree division, and
health index prediction.

(1) Through data preprocessing and optimization of
principal parameters for 10 production parameters
of PCP wells, four principal parameters that are
strongly related to the health status of the wells are
determined, and a comprehensive index (health
index) is constructed. According to the statistics of

Table 6: Statistics of the failure time range of different failure types.

Failure type
Well_
ID

Failure time range
(minutes)

Well_
ID

Failure time range
(minutes)

Well_
ID

Failure time range
(minutes)

Tubing broken

E003 1500 E005 1000 E006 1000

E009 1000 E011 1200 E012 100

E013 1200 E016 1200 E023 1400

E024 1200 E025 1400 — —

Tubing plugged E001 2200 E010 1300 E027 2200

Stator plugged

E002 3000 E015 2000 E018 1000

E019 1200 E020 3000 E022 1200

E026 1200 E028 3200 E029 2500

E030 1400 — — — —

Pump ran dry E007 3200 E021 4000 E026 6000

Pump lost
efficiency

E008 1700 E014 5000 E014 2200

0
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Figure 11: Change curve of training set loss with training times.
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Table 7: Evaluation result of the LSTM model.

MAPE MAD RMSE TIC R2

Training set 0.6 0.005 0.013 0.007 0.98

Testing set 32.8 0.009 0.012 0.024 0.98
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the HI scope of all sample wells, the health status of
PCP wells is characterized by degrees: health (0.7-
1.0), subhealth (0.4-0.7), and failure (0-0.4).

(2) Use the long short-term memory (LSTM) neural net-
work to train the sample set to obtain the machine
learning model of the health index. This model can
accurately predict the health status of PCP wells in
real time and can realize early warning of well failures

(3) The health index model and LSTM prediction model
in this study can reflect the health status of PCP wells
timely and can realize early warning of failure, quan-
titative evaluation, and accurate prediction of the
health status of the PCP in CBM wells
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