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Shield tunnel lining structure is usually under very complex loading conditions in the underground space. As a kind of the common
concrete structures, any defect in the tunnel lining segment may deteriorate its bearing capacity and even cause severe disasters.
Three-dimensional numerical models of shield tunnel lining segments with initial cracks are built using the Symmetric Galerkin
Boundary Element Method- (SGBEM-) Finite Element Method (FEM) Alternating Method. The cracking load and ultimate load
of the tunnel segments are obtained, and crack propagation under fatigue load is also simulated by employing the Paris Fatigue
Law. Results show that loading eccentricity has a very large influence on the bearing capacity of the cracked lining segment; the
larger the loading eccentricity, the smaller the bearing capacity. Deformation and damage of the lining segment show obvious
phases, which consist of the initial crack, cracking stage, steady crack propagation, unsteady crack propagation, and eventual
failure.

1. Introduction

As the construction technology in underground engineering
develops rapidly nowadays, the shield tunnel has gradually
become the main form of urban metro tunnel. The support-
ing structure of the shield tunnel is a precast reinforced con-
crete lining segment, which may contain various flaws such
as initial cracks during the pouring of concrete or the assem-
bling of the lining ring. These flaws obviously reduce the
effective force-bearing area of the lining segment, thus deteri-
orating the safety level of the tunnel supporting system. In
the worst situation, it may even cause entire failure of the
shield tunnel.

Over the past several decades, plenty of numerical and
experimental studies have been performed to investigate
the mechanical behavior of shield tunnel lining structures.
A simplified comparative static computation of an under-
ground metro concrete tunnel lining was shown by Hudoba
[1], and different means of assembly and coupling were
used. Three lining models were investigated and compared
in the paper by Kavvadas et al. [2], which included contin-

uous shell without joints, shell with aligned joints (2D joint
configuration), and shell with staggered (rotated) joints,
which is the most realistic 3D lining model. Yan et al. [3]
conducted extended finite element analysis to investigate
the cracking and failure characteristics of the segmental lin-
ing structure of an underwater shield tunnel upon a
derailed high-speed train impact, allowing for the optimiza-
tion of tunnel design under accidental conditions. Wu et al.
[4] investigated the thermal behavior of tunnel segment
joints when exposed to fire, and the effectiveness of using
concrete-filled steel tubes (CFSTs) to restore joint strength
after a fire was also investigated. Wang et al. [5] proposed
a novel multiscale modeling method in which potentially
damaged and undamaged zones were recognized according
to preanalysis results and then simulated at different scales.
In their model, mesoscopic features within the potentially
damaged zones were modeled using a mesostructure cohe-
sive zone method, while the other zones were simulated
as macroscopic homogeneous materials. To investigate the
mechanical behavior of the segment joint in a shield TBM
tunnel, full-scale joint tests were conducted, and a
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mechanical model of segment joints has been proposed by
Ding et al. [6]. Li et al. studied the development of longitu-
dinal joint opening with bending moment under different
axial stress levels, and investigated the longitudinal joint
opening in the Ultimate Limit State (ULS), by both experi-
mental and analytical methods [7]. A series of customized
model tests were conducted by Zheng et al. to investigate
the mechanism underlying tunnel collapse due to the con-
struction of a connecting passage [8]. Liu et al. designed
and performed full-scale experiments relating to the struc-
tural bearing capacity of stagger joint assembled shield tun-
nels based on an unloading situation [9], which combined
engineering practices relevant to the current urban metro
with circumferential disturbances. Based on the field inves-
tigation and analysis, Wang et al. compared and analyzed
the mechanical characteristics of the segment structure in
shield tunnels under the circumstances of different concrete
spalling regions by the method of the similarity model
experiment [10]. A novel loading setup was developed by
Huang et al. [11] for performing full-scale loading tests
on “standing” segmental lining of a subrectangular shield
tunnel, which for the first time allowed the mechanical
behavior of the segmental lining subject to self-weight to
be assessed in a full-scale loading test. To study the influ-
ence of the dynamic load on underground tunnel stability,
a theoretical method to predict underground tunnel behav-
ior considering the peak particle velocity (PPV) and the
stress distribution was presented, and the influence of
explosion-induced wave from an underground charge tun-
nel on an adjacent tunnel was explicitly considered in order
to evaluate tunnel stability [12]. Tian et al. conducted a
prototype load test on a cracked shield tunnel lining
segment to study its fracture properties and found that
the lining segment with an initial crack finally showed the
I-type fracture property, and the failure mode was
dominated by the initial crack [13]. Besides, many other
researches [14–19] were conducted by numerical simula-
tion or in situ test to study the fracture evolution and fail-
ure process of underground engineering.

Almost all of these researches are mainly focused on
intact tunnel lining structures, while little research has been
done on the mechanical behavior and fracture properties of
the shield tunnel lining segment with initial flaws, and
researches on the propagation law of existing cracks and
the failure mode of a cracked tunnel lining structure are
rare. Considering the existing body of the literature, there
exists the possibility and need for further study on the frac-
ture and fatigue properties of concrete shield tunnel lining
structures with various flaws. In this paper, cracked tunnel
lining segments under different loading conditions are stud-
ied by numerical methods. Three-dimensional numerical
models of lining segments with initial cracks are built.
The Stress Intensity Factors of the crack front are computed
during each step of the crack increment by employing the
SGBEM-FEM Alternating Method. The crack growth rates
are determined by the Paris Fatigue Law. The crack propa-
gation paths and number of loading cycles are also
predicted to estimate the fatigue life of the tunnel lining
segment.

2. Theoretical Background

2.1. SGBEM-FEM Alternating Method. Compared with the
traditional and dual Boundary Element Methods [20, 21],
the Symmetric Galerkin Boundary Element Method
(SGBEM) has many advantages. SGBEM has a symmetrical
coefficient matrix of the equation system, and there is no
need to specially treat sharp corners for numerical
simulation. The early work on SGBEM mainly focused on
the regularization of hypersingular integrals [22–25]. The
nonhypersingular integral equations for tractions were devel-
oped in [26, 27], then a systematic way was proposed to
obtain the weakly singular symmetric Galerkin boundary
integral equations in [28, 29]. This method was employed
to make analyses on cracked three-dimensional solids with
various surface flaws [30, 31].

As shown in Figure 1, for a domain of interest with source
point x and target point ξ, three-dimensional weakly singular
symmetric Galerkin boundary integral equations for dis-
placements and tractions are developed as the following.
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Figure 1: A solution domain with source point x and target point ξ.
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Figure 2: A defective solid with arbitrary cavities and cracks.
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The displacement boundary integral equation is
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And the corresponding traction boundary integral equa-
tion is
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In Equations (1) and (2), Da is a surface tangential oper-
ator:

Da ξð Þ = nr ξð Þersa
∂
∂ξs

,

Da xð Þ = nr xð Þersa
∂
∂xs

:

ð3Þ

u∗pj ,G∗q
ab , φ

∗q
ab , and H∗

abq are kernel functions and can be
found in reference [31]. These kernel functions are all weakly
singular, so the implementation of the current boundary
integral equations is very simple and convenient.

As shown in Figure 2, a symmetric system of equations
can be finally obtained by applying Equation (1) to Su, where
displacements are prescribed, and applying Equation (2) to St ,
where tractions are prescribed.
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In the above equations, p, q, and r denote the unknown
tractions at Su, unknown displacements at St′, and unknown
displacement discontinuities at Sc, respectively.

Since the coefficient matrix of SGBEM is fully populated,
it is unwise to simulate large scale structures using the pure
SGBEM. A better way is to make use of the advantages of
both SGBEM and FEM. As shown in Figure 3, the uncracked
global structure is modeled with FEM, and the cracked local
subdomain is modeled with SGBEM. An alternating proce-
dure was conducted to impose the residual stresses at the
global and local boundaries. By superposing the solution of
each individual subproblem, the solution of the original
problem was finally obtained. This method is named as the

SGBEM-FEM Alternating Method. By employing the
SGBEM-FEM Alternating Method, Tian et al. conducted
three-dimensional fracture and fatigue analyses of many typ-
ical structure components in civil and mechanical engineer-
ing and obtained a series of numerical results with
reference values for practical engineering [32–34].

2.2. Stress Intensity Factors. In Linear Elastic Fracture
Mechanics, Stress Intensity Factors (SIFs) are the most
important coefficients to describe the fracture properties of
the structure. By employing the SGBEM-FEM Alternating
Method, the SIFs of three-dimensional complex cracks can
be acquired very conveniently. As shown in Figure 4, the
quarter-point singular element is used to capture the singu-
larity at the crack front, which is a specially designed 8-
noded quadrangular element, with its middle nodes moved
1/4 length of its side to the crack front.

The corresponding SIFs can be captured by the displace-
ments near the crack front, using the following equations:
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ð5Þ

where E denotes the elastic modulus, ν denotes Poisson’s
ratio, r denotes the distance to the crack front, and u1, u2, and
u3 denote the discontinuities of displacement at the crack
surface.

2.3. Simulation of Fatigue-Crack Propagation. SGBEM is very
efficient for modeling cracks and their fatigue propagation.
For fatigue-crack propagation, it is unnecessary to use any
other special technique such as the Level Sets to depict the
crack surface since the crack surface is already efficiently
modeled by boundary elements. In every fatigue analysis
step, the Stress Intensity Factors along the crack front are
obtained by the SGBEM-FEM Alternating Method. Then,
the crack propagation is simulated by adding a layer of addi-
tional elements at the crack front, in the direction determined
by the Eshelby-force vector [35], with the size determined by
the Paris Fatigue Law.

As shown in Figure 5, the direction of crack growth is
determined by the direction of vector ΔJ , which can be
acquired by the following equations:
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Figure 4: Quarter-point singular element to capture the singularity
at the crack front.

S
t
FEM = S

t

S
c

c
pFEM

SI

𝛺FEM

uFEM = u

SFEM = S
u

pFEM = p

u

(a)

S
t
SGBEM

p = 0SGBEM

= S
c

SGBEMS
c

S
u = SISGBEM

uSGBEM = 0

pSGBEM

u

𝛺 SGBEM

p
c
SGBEM

(b)

SI S
0

pFEM

S
u

= S
u

FEM

S
t

FEM= S
t

𝛺FEM

(c)

pFEM = p

SI

uFEM

uSGBEM = 0
pFEM = –pSGBEM

pSGBEM = 0

uFEM = u

S
u

0S
t

pFEM = p

S
c

FEM= –p
c

SGBEMp
c

𝛺

(d)

Figure 3: Superposition principle for SGBEM-FEM Alternating Method: (a) the uncracked global structure modeled by simple FEM; (b) the
cracked local subdomainmodeled by SGBEM; (c) the FEMmodel subjected to residual stresses; (d) alternating solution for the original problem.
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Based on the Paris Fatigue Law, the fatigue life of the
cracked structure is estimated as

N =
ðaf
a0

1
C ΔKð Þn da: ð7Þ

Thus, at each fatigue-growth step, the maximum value of
ΔK along the crack front is computed by the SGBEM-FEM
Alternating Method, and Equation (7) is numerically evalu-
ated using the trapezoidal rule.

Indeed, plasticity-induced crack closure can be very use-
ful to account for the effects of plate thickness on crack
growth rates. Here, the simple Paris Law is used to predict
the fatigue growth rate. However, other models which
account for the effect of the thickness can also be incorpo-
rated in the framework of the current SGBEM-FEM Alter-
nating Method, which will be our future study. Moreover,
some 3D effects of fracture mechanics are also neglected in
this study, such as 3D corner singularity and mode II and
III coupling, which are expected to have an insignificant
effect for the damage tolerance of the cracked structures.

3. Numerical Simulation

3.1. Geometry of the Specimen and Numerical Model. The
present numerical models of shield tunnel lining segments

are built based on the prototype shield tunnel of Shanghai
Metro Line 12 in China. The supporting structure of the tun-
nel is a concrete lining ring, which has an outer radius of
3.1m, inner radius of 2.75m, and width of 1.2m. The con-
crete strength grade is C55, elastic modulus of the concrete
is E = 3:55 × 1010 Pa, and Poisson’s ratio ν = 0:2. The initial
crack is generated by cutting a straight crack on the inner
surface of the lining segment, which is 50mm in depth and
runs through the entire lining segment. The schematic dia-
gram of the loaded specimen is shown in Figure 6.

Since the specimen is symmetrically loaded, only half of it
is used to make the force analysis. As shown in Figure 7, the
moment at the centroid of the cross-section is

M = P +Wð ÞL1 − PL2 −WL3 −Nh1, ð8Þ

where M and N are the bending moment and the axial
force on the cross-section of the lining segment, respectively;
P is the vertical load; andW is the self-weight of the segment.

The loading eccentricity is defined as

e = M
N

, ð9Þ
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Figure 6: Schematic diagram of the loaded specimen (unit: mm).
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where e denotes the loading eccentricity andM andN are
the corresponding bending moment and axial force,
respectively.

The numerical models of the tunnel lining segment with
initial cracks are built by employing the SGBEM-FEM Alter-
nating Method. As shown in Figures 8 and 9, the global struc-
ture with no crack is modeled using finite elements (10-
noded tetrahedron elements), and the initial crack surface is
modeled independently using boundary elements (8-noded
quadrilateral elements). Two different numerical models
with different loading eccentricities are built in this study.
When loading eccentricity e is 0.24m, the numerical model
is named Z1, while the numerical model with e of 0.12m is
named Z2.

3.2. Fracture Properties of the Lining Segment.Double-K frac-
ture criterion of concrete [36] is employed to analyze the
fracture properties of the cracked tunnel lining segment.
The SIFs along the crack front are captured by the SGBEM-
FEM Alternating Method and are constantly compared with
the fracture toughness of concrete C55. According to the
double-K fracture criterion of concrete, the fracture tough-
ness of concrete C55 is set as K ini

Ic = 0:53 × 106 Pa ffiffiffiffimp
and

Kun
Ic = 1:42 × 106 Pa ffiffiffiffimp

.
By simultaneously adjusting the load N and P, to make

the computed SIFs reach the concrete’s fracture toughness,
the initial cracking load N ini and Pini and the ultimate load
Nun and Pun are finally obtained. Here, the cracking load of
the specimen is defined as the load that makes the initial
crack start to grow. The ultimate load is defined as the largest
load that the specimen can bear.

Since it is a mixed-mode fracture problem, the efficient
SIF is defined as

Keff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I + K2
II +

K2
III

1 − ν

r
: ð10Þ

For the numerical model Z1, the results are N ini = 295 kN
, Pini = 150:439 kN, and K ini

eff = 0:53 × 106 Pa ffiffiffiffimp
and Nun =

695 kN, Pun = 367:582 kN, and Kun
eff = 1:42 × 106 Pa ffiffiffiffimp

.

For numerical model Z2, the results are N ini = 2350 kN,
Pini = 863:154 kN, and K ini

eff = 0:53 × 106 Pa ffiffiffiffimp
and Nun =

5640 kN, Pun = 2085:154 kN, and Kun
eff = 1:42 × 106 Pa ffiffiffiffimp

.
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Figure 8: Meshes for the cracked tunnel lining segment: (a) the uncracked global structure is molded with finite elements (10-noded
tetrahedron elements); (b) the initial crack surface is molded independently with boundary elements (8-noded quadrilateral elements).

Figure 9: Numerical model for the tunnel lining segment with
initial surface crack.
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3.3. Crack Propagation under Fatigue Load. For the shield
tunnel lining structure, its surrounding pressure usually
changes seasonally, such as the water pressure and temper-
ature pressure. Besides, the lining structure will bear the
vibration load of the train in the long term. All of these
loads will bring fatigue problems. A microcrack may initi-
ate inside the concrete structure under all these fatigue
loads, and the existing cracks will propagate. Thus, it is of
importance to study the fracture mechanism and fatigue-
crack propagation of the shield tunnel lining structure
under fatigue loads.

Paris Fatigue Law can be used for the fatigue analyses of
concrete structures [37]. For the concrete structure with ini-

tial cracks, its Paris Fatigue Law is

da
dN

= 3:43 × 10−3 ΔKð Þ−17:393 a0/Dð Þ+12:844: ð11Þ

In the above equation, da/dN is the crack growth during
the cyclic load step, ΔK is the change of SIF, a0 is the initial
depth of the crack, and D is the thickness of the concrete
structure.

The amplitude of fatigue load is set to 0:7Nmax; Nmax is
the ultimate load of the specimen for monotonic loading.
The stress ratio, which is the ratio of the minimum stress to
the maximum stress, is set to 0.1. The numerical model Z1

(a) (b)

(c) (d)

(e) (f)

Figure 11: Crack propagation in tunnel lining segment of numerical model Z1: (a–e) 3D view; (f) 2D view (the final crack in the segment).
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is firstly studied under such a fatigue load. Figure 10 illus-
trates the crack growth along with the load cycles, and the
process of fatigue-crack growth is shown in Figure 11.

As shown in Figure 10, after about 34,184 load cycles,
the SIF along the crack front of specimen Z1 reaches the
fracture toughness of the concrete, and the structure is bro-
ken. The increment of the fatigue crack is about 0.102m.
For numerical model Z2, its fatigue-crack growth is shown
in Figure 12.

As can be seen from Figures 11 and 12, for the case of
small loading eccentricity, the fatigue crack deflects more
seriously during the propagation process compared with
the case of large loading eccentricity, and it finally grows to
a local crack, not as the cut-through crack in Figure 11. So,
a simple conclusion can be drawn: for a cracked shield tunnel

lining segment, large loading eccentricity is more dangerous
than small loading eccentricity for the structure.

4. Results and Discussion

In Figure 13, the numerical results in this study and the
experimental results by Tian et al. [13] on crack propagation
in the lining segment under large loading eccentricity are
compared, which show good agreement with each other. It
can be seen that the initial crack does not propagate strictly
along the original direction; in fact, it deflects and extends
to the midpoint of the vertical load.

The cracking loads of the tunnel lining segment obtained
by experiment [13] and this numerical simulation are listed

(a) (b)

(c) (d)

(e) (f)

Figure 12: Crack propagation in tunnel lining segment of numerical model Z2: (a–e) 3D view; (f) 2D view (the final crack in the segment).
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and compared in Table 1; quite good agreement is reached
with each other.

5. Conclusions

In the present paper, three-dimensional numerical models of
shield tunnel lining segments with initial surface cracks are
built, for which the Stress Intensity Factor analyses and
fatigue-crack growth simulations under different load condi-
tions are carried out by employing the three-dimensional
SGBEM-FEM Alternating Method. The following conclu-
sions can be drawn:

(1) The SGBEM-FEM Alternating Method requires
independent and very coarse meshes for both the
uncracked tunnel lining segment and the crack
surface; it only requires very minimal human-labor
cost as well as minimal computational burden to
make fracture analyses and model the fatigue-crack
propagation in shield tunnel lining segments

(2) By employing the SGBEM-FEM Alternating Method,
the whole crack growth path up to failure of the lin-
ing segment can be easily simulated

(3) Loading eccentricity has a very large influence on the
bearing capacity of the lining segment; the larger the

loading eccentricity, the smaller the bearing capacity
of the lining segment. For the case of the small load-
ing eccentricity, the fatigue crack deflects more seri-
ously during the propagation process compared
with the case of the large loading eccentricity, and it
finally grows to a local crack, not as the cut-through
crack for the large loading eccentricity. So, for a
cracked shield tunnel lining segment, the large load-
ing eccentricity is more dangerous than the small
loading eccentricity of the structure

(4) The lining segment with an initial crack mainly
shows the I-type fracture property, and its failure
mode is dominated by the initial crack
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