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A new domino reaction between thioaurones and malononitrile has been reported. This reaction allows efficient access to
benzothiophene-fused pyran derivatives in good yields under mild reaction conditions. The substrate scope is broad; a series of
benzothiophene-fused pyran derivatives have been synthesized.

1. Introduction

Fused pyran ring existing in both numerous natural prod-
ucts and synthetic compounds is an important heteroatom
framework [1–5], which demonstrate great function on
pharmacological activities, antibacterial, antiviral, anticoag-
ulant, antianaphylactic, anticancer, diuretic activities, neu-
rodegenerative disorders, and so on [6–10]. Recently, 2-
aminochromenes are found to be employed as pigments,
cosmetics, and agrochemicals [11–13]. Furthermore, the ther-
apeutically effect on immune system diseases and dia-
betic complications entitled by substituted 2-amino-ben-
zochromenes have been proved [14]. To date, there have
been only limited methods to construct of a 2-amino-3-
cyan-pyranskeleton. Klimochkin’s group developed a con-
venient one-step synthesis of 4-unsubstituted 2-amino-4H-
chromene-2-carbonitriles from quaternary ammonium salts
(Scheme 1(a)) [15].

Subsequently, Takaki’s research group was given an effi-
cient synthetic strategy for 2-amino-4H-chromenes from
photochemical generated o-quinone methides and malonon-
itrile (Scheme 1(b)) [16]. After that, Rao’s group also designed
and synthesized a series of pyran derivatives in good yields
by utilizing Baylis–Hillman chemistry (Scheme 1(c)) [17]. For
the past decades, there was a rapid development on the
organic small molecule catalyzed domino reaction. During
our ongoing investigation of domino reactions, our research
group has developed many domino reactions on thioaurone.

Many benzothiophene-fused heterocycles were synthesized
(Scheme 2(a)) [18–22]. Herein, we will report another new
domino reaction between thioaurone and malononitrile. To
our surprise, a series of benzothiophene-fused pyran deriva-
tives were obtained (Scheme 2(b)).

2. Materials and Methods

Material 1was synthesized and reported in our previous work
[18, 19] and 2 was purchased from commercial access.

General synthetic procedure for 3 was as follows:
under Ar atmosphere, to a solution of 1 (0.2 mmol) in
dichloromethane (DCM) (2.0 mL) 2 (0.4 mmol) and piperi-
dine (10 mol%) were added and the mixture was stirred at
room temperature for 2 h. After extraction with DCM, the
organic layer was washed with saturated aqueous NaCl and
dried over MgSO4 and then concentrated under reduced
pressure. The residue was purified through flash column
chromatography on silica gel (petroleum ether/ethyl acetate
= 1:1 to 5:1) to afford the desired product 3.

3. Results and Discussion

The reaction between thioaurone 1a and malononitrile 2
in dichloromethane as the solvent under reflux was first
performed. Unfortunately, no product was detected by TLC
(Table 1, entry 1). Then piperidine was added as a catalyst
to promote the reaction. To our surprise, the reaction could
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Scheme 1: Previous methods to establish a 2-amino-3-cyan-pyran skeleton.
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Scheme 2: Our works of domino reaction on thioaurone.

give a quickly and cleanly conversion and the product was
obtained in a 70% yield (Table 1, entry 2). The structure
of the product 3a was established by X-ray crystallography
(Figure 1) [23]. Encouraged by this result, the solvent effect
was examined to optimize the reaction condition. There was
only a feebly variation of the yield given by the different
solvent such as chloroform, acetonitrile, tetrahydrofuran,
and ethyl alcohol; the reaction afforded the yields of 68%-
73% after stirring at the corresponding reflux temperature
(Table 1, entries 3-6). When selecting toluene as the solvent,
there was a negative effect on the conversion; the yield

dropped to 57% (Table 1, entry 7). In the screening process,
the additive effect of acetic acid was also screened. Insignif-
icantly, there was no visible fluctuation on the yield (Table 1,
entry 8). As the reflux temperature provided amoderate yield,
the reaction was performed at room temperature (Table 1,
entries 9-11). After attempting the above studies, the best
reaction condition is at room temperature using piperidine
as catalyst, and the yield up to 83% (entry 10).

With the best reaction conditions in hand, the substrate
scope was examined with a series of thioaurone 1. Firstly,
the ethyl ester on the R2 functional group switched to a
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Table 1: Optimization of condition𝑎.

H3C
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Temp, Solvent 
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H3C

NH2

CN

COOEt

+
COOEt

CNNC

1a 3a2a
Entry Solvent Temp [∘C] Time [min] Yield [%]𝑏

1𝑐 DCM 40 20 NR
2 DCM 40 10 70
3 CHCl3 61 20 68
4 THF 66 15 71
5 CH3CN 84 15 70
6 EtOH 80 10 73
7 Toluene 110 20 57
8𝑑 EtOH 80 10 72
9 EtOH r.t. 15 74
10 DCM r.t. 15 83
11 THF r.t. 10 63
𝑎Reaction conditions: 0.2 mol thioaurone 1a, 0.4 mol malononitrile 2a, 2.0 mL solvent at the corresponding temperature, and 10%mol piperidine as catalyst.
𝑏Isolated yields. 𝑐No catalyst. 𝑑Acetic acid as an additive.

Table 2: Scope of the domino reaction𝑎.
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２
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Entry R1 R2 Time [min] Yield [%]𝑏

1 5-CH3(1a) COOEt 15 83 (3a)
2 5-CH3(1b) COOBn 20 52 (3b)
3 5-CH3(1c) o-PhCl 10 84 (3c)
4 5-CH3(1d) m-PhCl 10 99 (3d)
5 5-CH3(1e) p-PhMe 15 69 (3e)
6 5-F(1f) COOEt 15 60 (3f)
7 5-Br(1g) COOEt 20 59 (3g)
8 6-OMe(1h) COOMe 15 71 (3h)
9 7-Cl(1i) Phenyl 10 80 (3i)
𝑎Reaction conditions: 0.2 mol thioaurone 1, 0.4 mol malononitrile 2a, 2.0 mL DCM at room temperature, and 10% mol piperidine as the catalyst. 𝑏Isolated
yields.

Figure 1: X-ray crystal structure of 3a.

benzyl ester, leading to the desired product in yield of 52%
(Table 2, entry 2). Subsequently, thioaurone 1 with aromatic
groups on the 1 was also examined, for example, o- and m-
chloro substituted 1c and 1d, p-methyl substituted 1e. And as
a consequence, the paramethyl-substituted substrate was not
given an optimistic effect, but the other two were tolerated
well and excellent; the yield was reached to 83% and 99%,
respectively (Table 2, entries 3-5). Furthermore, the effect of
R1 was also studied. When using halogen atom to replace the
methyl on the C5 position, the fluoro and bromo substituted
substrates were given the corresponding products in 60% and
59% yields, respectively (Table 2, entries 6-7). Substrate 1h,
bearing a 6-MeO group (R1), also worked well and furnished
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Figure 2: X-ray crystal structure of 4.

the desired product in 71% yield. In addition, 7-Cl-substituted
substrate 1i was also screened in this domino reaction. The
corresponding product 3i was obtained in yield of 80%
(Table 2, entry 9).

In order to explore the domino reaction scope, ethyl
2-cyanoacetate (2b) was used in this domino reaction
(Scheme 3). To our surprise, the corresponding product4was
obtained in yield of 63%.The structure of 4was confirmed by
X-ray crystal structure analysis (Figure 2) [23].

4. Conclusions

In conclusion, a novel piperidine-catalyzed [4+2] domino
reaction between thioaurone and malononitrile was devel-
oped. A number of benzothiophene ring fused 2-amino-3-
cyano-pyran derivatives were obtained in good yields. The
product structure was identified by NMR, HRMS, and X-ray
crystal structure.

5. Experimental

The 1H- and 13C-NMR spectrum were recorded at ambient
temperature on Bruker 400 instruments. All spectra were
referenced to CDCl3 (

1H 𝛿 7.26 ppm and 13C NMR 𝛿 77.00
ppm) and DMSO-d6 (

1H 𝛿 2.50 ppm and 13C NMR 𝛿 39.52
ppm). HRMS were obtained on Waters Xevo Q-TOF MS
with ESI resource. Melting points were measured on a RY-I
apparatus and are reported to be uncorrected.

Ethyl 2-amino-3-cyano-8-methyl-4H-benzo[4,5]thieno[3,2-
b]pyran-4-carboxylate (3a). Yellow solid, m.p. 182-184∘C;

IR (KBr): 3411, 3332, 2362, 2336, 2192, 1719, 1653, 669 cm−1;
1H NMR (400 MHz, CDCl3) 𝛿 = 7.60 (d, J = 8.3 Hz, 1H,
Ar-H), 7.45 (s, 1H, Ar-H), 7.20 (d, J = 8.3 Hz, 1H, Ar-H),
4.91 (s, 2H, N𝐻2), 4.62 (s, 1H, CH), 4.33 – 4.22 (m, 2H,
OCH2CH3), 2.46 (s, 3H, Ar-C𝐻3), 1.34 (t, J = 7.1 Hz, 3H,
OCH2C𝐻3) ppm; 13C NMR (100 MHz, CDCl3) 𝛿 = 169.8
(COOEt), 160.8, 139.4, 134.8, 133.8, 129.0, 127.6, 122.4, 119.7,
119.1, 110.9, 62.3 (OCH2CH3), 55.0 (CCN), 40.3 (CH), 21.4
(Ar-CH3), 14.2 (OCH2CH3) ppm; ESI-HRMS [M+H] calcd.
for C16H15N2O3S 315.0798, found 315.0801.

Benzyl2-amino-3-cyano-8-methyl-4H-benzo[4,5]thieno[3,2-
b]pyran-4-carboxylate (3b). White solid, m.p. 177-179∘C; IR
(KBr): 3378, 3325, 3211, 2360, 2342, 2205, 1739, 1587, 1540,
734, 799 cm−1; 1H NMR (400 MHz, CDCl3) 𝛿 = 7.60 (d, J =
8.3 Hz, 1H, Ar-H), 7.46 (s, 1H, Ar-H), 7.37 (m, 5H, Ar-H),
7.20 (d, J = 8.3 Hz, 1H, Ar-H), 5.23 (s, 2H, PhC𝐻2), 4.90 (s,
2H, N𝐻2), 4.69 (s, 1H, CH), 2.45 (s, 3H, Ar-C𝐻3) ppm; 13C
NMR (100 MHz, CDCl3) 𝛿 = 169.7 (COOBn), 160.8, 139.4,
135.0, 134.8, 133.82, 129.0, 128.6, 128.5, 128.4, 127.7, 122.4, 119.7,
110.7, 68.0 (OCH2Bn), 54.9 (CCN), 40.3 (CH), 21.4 (Ar-CH3)
ppm; ESI-HRMS [M+H] calcd. for C21H17N2O3S 377.0954,
found 377.0957.

2-amino-4-(2-chlorophenyl)-8-methyl-4H-benzo[4,5]thieno[3,
2-b]pyran-3-carbonitrile (3c). Red solid, m.p. 236-238∘C; IR
(KBr): 3482, 3321, 3284, 2360, 2200, 1650, 1581, 863, 800, 763,
745 cm−1; 1H NMR (400 MHz, CDCl3) 𝛿 = 7.58 – 7.50 (m,
2H, Ar-H), 7.40 (d, J = 8.3 Hz, 1H, Ar-H), 7.33 – 7.29 (m, 1H,
Ar-H), 7.25 – 7.16 (m, 3H, Ar-H), 5.58 (s, 1H, CH), 4.79 (s,
2H, N𝐻2), 2.47 (s, 3H, Ar-C𝐻3) ppm; 13C NMR (100 MHz,
DMSO) 𝛿 = 161.5, 140.9, 138.7, 135.0, 133.3, 132.4, 130.7, 130.3,
129.8, 129.2, 128.5, 127.8, 123.5, 120.4, 119.6, 117.0, 54.8 (CCN),
37.4 (CH), 21.5 (Ar-CH3) ppm; ESI-HRMS [M+H] calcd. for
C19H14N2OSCl 353.0510, found 353.0515.

2-amino-4-(3-chlorophenyl)-8-methyl-4H-benzo[4,5]thieno[3,
2-b]pyran-3-carbonitrile (3d). White solid, m.p. 204-205∘C;
IR (KBr): 3470, 3322, 2360, 2342, 2199, 1661, 1581, 807, 799
cm−1; 1H NMR (400 MHz, CDCl3) 𝛿 = 7.61 – 7.47 (m, 2H,
Ar-H), 7.28 (d, J = 7.8 Hz, 2H, Ar-H), 7.25 (s, 1H, Ar-H), 7.19
(d, J = 7.3 Hz, 2H, Ar-H), 4.93 (s, 1H, CH), 4.80 (s, 2H, N𝐻2),
2.48 (s, 3H, Ar-C𝐻3) ppm; 13C NMR (100 MHz, CDCl3) 𝛿 =
159.8, 144.8, 138.4, 134.9, 133.8, 130.2, 129.2, 128.2, 127.8, 127.4,
125.9, 122.6, 119.8, 119.3, 117.3, 60.2 (CCN), 39.9 (CH), 21.5
(Ar-CH3) ppm; ESI-HRMS [M+H] calcd. for C19H14N2OSCl
353.0510, found 353.0513.

2-amino-8-methyl-4-(p-tolyl)-4H-benzo[4,5]thieno[3,2-b]pyran-
3-carbonitrile (3e). White solid, m.p. 249-251∘C; IR (KBr):
3466, 3314, 2360, 2199, 1660, 1584, 1400, 872, 804 cm−1; 1H
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NMR (400 MHz, CDCl3) 𝛿 = 7.57 – 7.48 (m, 2H, Ar-H), 7.21
– 7.10 (m, 5H, Ar-H), 4.92 (s, 1H, CH), 4.71 (s, 2H, N𝐻2), 2.48
(s, 3H, Ar-C𝐻3), 2.32 (s, 3H, Ar-C𝐻3) ppm; 13C NMR (100
MHz, CDCl3) 𝛿 = 139.9, 138.1, 137.6, 134.7, 133.8, 129.6, 129.3,
127.4, 127.1, 122.56 119.7, 119.5, 118.5, 61.2 (CCN), 39.7 (CH),
21.5 (Ar-CH3), 21.1 (Ar-CH3) ppm; ESI-HRMS [M+H] calcd.
for C20H17N2OS 333.1056, found 333.1058.

Ethyl 2-amino-3-cyano-8-fluoro-4H-benzo[4,5]thieno[3,2-
b]pyran-4-carboxylate (3f ). Gray solid, m.p. 165-167∘C; IR
(KBr): 3424, 3372, 3327, 2198, 1739,1720, 1659, 1586, 854 cm−1;
1HNMR (400MHz, CDCl3) 𝛿 = 7.66 (dd, J = 8.8, 4.5 Hz, 1H,
Ar-H), 7.31 (dd, J = 8.7, 2.2 Hz, 1H, Ar-H), 7.13 (td, J = 8.8, 2.4
Hz, 1H, Ar-H), 4.97 (s, 2H, N𝐻2), 4.64 (s, 1H, CH), 4.36 –
4.21 (m, 2H, OCH2CH3), 1.35 (t, J = 7.1 Hz, 3H, OCH2C𝐻3)
ppm; 13C NMR (100 MHz, CDCl3) 𝛿 =169.6 (COOEt), 160.8
(d, J = 242.3 Hz), 160.6, 139.3 (d, J = 4.3 Hz), 131.8 (d, J = 1.7
Hz), 129.7 (d, J = 9.8 Hz), 124.1 (d, J = 9.2 Hz), 118.9, 114.7 (d,
J = 25.2 Hz), 113.3, 105.7 (d, J = 24.5 Hz), 62.5 (OCH2CH3),
54.7 (CCN), 40.3 (CH), 14.2 (OCH2CH3) ppm; ESI-HRMS
[M+H] calcd. for C15H12N2O3SF 319.0547, found 319.0551.

Ethyl 2-amino-8-bromo-3-cyano-4H-benzo[4,5]thieno[3,2-
b]pyran-4-carboxylate (3g). Yellow solid, m.p. 195-197∘C; IR
(KBr): 3460, 3366, 3314, 2194, 1740, 1720, 1652, 1583, 859, 874
cm−1; 1HNMR (400MHz, CDCl3) 𝛿 = 7.75 (s, 1H, Ar-H), 7.58
(d, J =8.6Hz, 1H,Ar-H), 7.45 (d, J=8.6Hz, 1H,Ar-H), 4.99 (s,
2H, N𝐻2), 4.64 (s, 1H, CH), 4.37 – 4.23 (m, 2H, OCH2CH3),
1.36 (t, J = 7.1 Hz, 3H, OCH2C𝐻3) ppm; 13C NMR (100 MHz,
CDCl3) 𝛿 = 169.5 (COOEt), 160.5, 138.8, 135.2, 130.2, 129.0,
124.1, 122.6, 118.9, 112.8, 62.5 (OCH2CH3), 54.9 (CCN), 40.2
(CH), 14.2 (OCH2CH3) ppm; ESI-HRMS [M+H] calcd. for
C15H12N2O3SBr 378.9747, found 378.9751.

Methyl2-amino-3-cyano-7-methoxy-4H-benzo[4,5]thieno[3,
2-b]pyran-4-carboxylate (3h). Red solid, m.p. 187-189∘C; IR
(KBr): 3447, 3384, 3350, 2196, 1743, 1651, 1584, 848, 831 cm−1;
1H NMR (400 MHz, CDCl3) 𝛿 = 7.54 (d, J = 8.8 Hz, 1H,
Ar-H), 7.19 (d, J = 2.1 Hz, 1H, Ar-H), 7.00 (dd, J = 8.8, 2.1
Hz, 1H, Ar-H), 4.90 (s, 2H, N𝐻2), 4.61 (s, 1H, CH), 3.86 (s,
3H, Ar-OC𝐻3), 3.82 (s, 3H, COOC𝐻3) ppm; 13C NMR (100
MHz, CDCl3) 𝛿 = 170.4 (COOCH3), 160.8, 158.6, 139.4, 138.3,
122.7, 120.5, 119.1, 114.9, 107.7, 105.4, 55.7 (COOCH3), 55.0
(CCN), 53.0 (Ar-OCH3), 40.1 (CH) ppm; ESI-HRMS [M+H]
calcd. for C15H13N2O4S 317.0591, found 317.0598.

2-amino-6-chloro-4-phenyl-4H-benzo[4,5]thieno[3,2-b]pyran-
3-carbonitrile (3i). Yellow solid, m.p. 231-233∘C; IR (KBr):
3345, 3314, 3282, 2205, 1647, 1584, 1172, 817, 784 cm−1; 1H
NMR (400 MHz, CDCl3) 𝛿 = 7.64 (dd, J = 6.6, 2.2 Hz,
1H, Ar-H), 7.37 (m, 4H, Ar-H), 7.30 (m, 3H, Ar-H), 4.99
(s, 1H, CH), 4.78 (s, 2H, N𝐻2) ppm; 13C NMR (100 MHz,
CDCl3) 𝛿 = 159.5, 142.3, 138.6, 135.7, 130.6, 129.0, 128.4, 128.1,
127.6, 126.1, 125.2, 119.7, 119.1, 118.3, 60.9 (CCN), 40.1 (CH)
ppm; ESI-HRMS [M+H] calcd. for C18H12N2OSCl 339.0353,
found 339.0354.

Diethyl 2-amino-8-methyl-4H-benzo[4,5]thieno[3,2-b]pyran-
3,4-dicarboxylate (4). White solid, m.p. 139-141∘C, IR (KBr):

3367, 3271, 2979, 2913, 1724, 1685, 1631, 804, 874 cm−1; 1H
NMR (400 MHz, CDCl3) 𝛿 = 7.55 (d, J = 8.4 Hz, 1H, Ar-H),
7.38 (s, 1H, Ar-H), 7.12 (dd, J = 8.4, 2.0Hz, 1H, Ar-H), 6.64 (br,
2H,N𝐻2), 4.78 (s, 1H,CH), 4.10-4.29 (m, 4H, 2×OCH2CH3),
2.41 (s, 3H, Ar-C𝐻3), 1.31 (t, J = 7.2 Hz, 3H, OCH2C𝐻3),
1.26 (t, J = 7.2 Hz, 3H, OCH2C𝐻3) ppm; 13C NMR (100
MHz, CDCl3) 𝛿 = 172.2 (COOEt), 169.0 (COOEt), 160.6, 139.1,
134.3, 133.5, 129.4, 127.0, 122.2, 119.5, 112.8, 72.8 (CCOOEt), 61.4
(OCH2CH3), 59.7 (OCH2CH3), 40.4 (CH), 21.3 (Ar-CH3),
14.3 (OCH2CH3), 14.3 (OCH2CH3) ppm; ESI-HRMS [M+H]
calcd. for C18H20NO5S 362.1057, found 362.1068.
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