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�is work reports an e�cient method for the oxidation reaction of aliphatic, aromatic allylic, and benzylic alcohols into aldehydes
catalyzed by the cyclopentadienyl ruthenium(II) complex (RuCpCl(PPh3)2) with bubbled O2. �rough further optimizing
controlled studies, the tendency order of oxidation reactivity was determined as follows: benzylic alcohols> aromatic allylic
alcohols>> aliphatic alcohols. In addition, this method has several advantages, including a small amount of catalyst (0.5mol%)
and selective application of high discrimination activity of aliphatic, aromatic allylic, and benzylic alcohols.

1. Introduction

Oxidation reactions are very useful functional trans-
formations in organic synthesis [1, 2]. Many of the metal-
based oxidizing reagents have been developed to achieve the
e�cient oxidation of alcohols such as PI Au [3], ARP-Pt [4],
Ru/Al2O3 [5, 6], Pd/HAP [7, 8], Au-Pd/TiO2 [9], and HB Ru
[10]. However, these catalysts are generally di�cult to obtain
because of their expensive cost and harsh production. In
addition, other oxidation methods for alcohols using the
readily available carbon-supported metal catalysts [11–14]
including many famous Pd/C [15–17], Pt/C [18–23], or Au/
C [24–30] catalysts [31, 32] were also enthusiastically in-
vestigated. Unfortunately, these catalysts needed addition of

adjunctionmetals such as Co or Cd, or presence of oxygen or
air under higher pressure and/or temperature, and/or
stronger basic conditions to obtain the desired products.
Furthermore, the rare earth elements have occupied an
especially important place in the past two decades because of
their high reactivity in various catalytic processes [33–39].
One of these rare elements is ruthenium. Some species of
ruthenium have been widely developed and used as e�cient
catalysts for oxidation reactions [40, 41].

Among a variety of catalysts reported in the literature for
the redox process of carbonyl compounds [42], the use of
ruthenium complexes has garnished signi¥cant attention. For
example, several ruthenium complexes have been employed as
catalysts for the hydrogenation of carbonyl compounds,
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providing an efficient access to their corresponding alcohols.
For example, several ruthenium complexes [43] including
RuCpCl(PPh3)2, Ru(indenyl)Cl(PPh3)2, [RuCp(MeCN)2(PR3)]
PF6 [44], [RuCp(MeCN)3]PF6 [45], and RuCpCl(diphosphine)
have been employed as catalysts for the isomerization of both
aliphatic [46] and aromatic [47–50] allylic alcohols into ketones
or aldehydes.

Literature has reported oxidation of allylic and benzylic
alcohols for functional transformation such as that reported
by Prof. Pearson using trimethylamine-N-oxide in the
presence of iron carbonyl as a significant catalyst [51].
However, several issues limit these catalysts’ applications
such as the need for a toxic solvent, tedious complex re-
agents, and troublesome procedures. /erefore, we reported
a novel and interesting cyclopentadienyl ruthenium(II)
complex (RuCpCl(PPh3)2), which oxidizes aromatic allylic
and benzylic alcohols into carbonyl compounds. Based on
the further controlled experimental studies, we found the
tendency order of oxidative reactivity as benzylic alcohol-
s> aromatic allylic alcohols>> aliphatic alcohols.

2. Results and Discussion

Benzyl alcohol 1a is an important precursor for organic
synthesis and a useful solvent because of its polarity, low
toxicity, mildly pleasant aromatic odor, and low vapor
pressure [52–54]. /e chemoselective oxidation property of
compound 1a was also very useful in functional trans-
formations for the preparation of aldehydes [55, 56] and
their dicarboxyl analogues [57, 58]. For these reasons, we
carried out a plausible oxidation of benzyl alcohol 1a. We
preliminarily investigated a versatile oxidation method for
compound 1a with 0.5mol% amount of the cyclo-
pentadienyl ruthenium(II) complex (RuCpCl(PPh3)2) cat-
alyst with bubbled O2 in CH2Cl2 solution at reflux for 24 h.
However, only trace amounts of benzaldehyde 2a were
achieved (entry 1 in Table 1). We then increased the reaction
time to 48 h, which resulted in the desired oxidation product
2a, but at a low yield (<10%; entry 2 in Table 1). To identify
the optimal reaction conditions, we attempted to screen the

ACS grade of solvents (i.e., benzene, acetone, and THF) and
the reaction time at room temperature or reflux. Based on
the experimental results in Table 1, we observed that the
ideal conditions for this reaction were to use THF as the
reaction solvent and to reflux for 48 h. /e corresponding
oxidation product 2a can be afforded in 71% isolated yield
(entry 8 in Table 1). Consequently, optimization of the
amount of the catalyst from 0.5, 1.0, 2.0, to 5mol% was
performed. However, this did not lead to any further im-
provement. /e structure of product 2a was completely
characterized by spectroscopic methods and consistent with
an Aldrich-authentic sample. Following the results in Ta-
ble 1, we found that RuCpCl(PPh3)2 possessed the oxidation
reactivity necessary for transferring benzyl alcohols to the
corresponding benzaldehydes.

In order to explore the substrate scope of the new oxidation
reaction, we first examined the reactions of substituted benzylic
alcohols 1b–f containing either electron-donating or electron-
withdrawing groups 1b–d and disubstituted benzylic alcohols
1e-f. Fortunately, most of the substituted benzylic alcohols
1b–f were successfully converted to the corresponding alde-
hyde products 2b–f in moderate yields (>68%; Table 2). On the
contrary, benzylic alcohols with para-Me (1b) and para-OMe
(1c) electron-donating groups were oxidized to give the cor-
responding aldehyde products 2b-c in 73% and 80% yields,
respectively (entries 1 and 2 in Table 2). In addition, the
conversion of para-CN-benzylic alcohol 1d to aldehyde 2d in
68% yield seemed to have lower reactivity compared to benzylic
alcohols with electron-donating groups 1b-c (entries 1 and 2 in
Table 2). For disubstituted benzylic alcohols 1e and 1f, themost
effective results were achieved in 82% and 86% yields, re-
spectively, demonstrating a strong and significant electron-
assisted effect (entries 4 and 5 in Table 2). Following the above
study, it was found the cyclopentadienyl ruthenium(II) com-
plex (RuCpCl(PPh3)2) possessed significant oxidizing activity
for discrimination of benzylic alcohols.

To further expand our study, we investigated simplified
allylic systems such as (E)-3-arylprop-2-en-1-ols (1g) and
cyclohex-2-enol (1h)./e RuCpCl(PPh3)2 catalyst (0.5mol%)
successfully reacted towards (E)-3-arylprop-2-en-1-ols (1g)

Table 1: Study of oxidation conditions of benzyl alcohol 1a with RuCpCl(PPh3)2.

1a

OH

2a

H

O

RuCpCl(PPh3)2

O2, solvent, at reflux

Entry Substrate Solvent Reaction condition Product Yield (%)
1 1a CH2Cl2 Reflux for 24 h 2a Trace
2 1a CH2Cl2 Reflux for 48 h 2a <10
3 1a Benzene Reflux for 24 h 2a Trace
4 1a Benzene Reflux for 48 h 2a <6
5 1a Acetone Reflux for 24 h 2a Nondetectable
6 1a Acetone Reflux for 48 h 2a Nondetectable
7 1a THF Reflux for 24 h 2a 54
8 1a THF Reflux for 48 h 2a 71
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Table 2: Oxidation results of alcohols with RuCpCl(PPh3)2 at reflux in anhydrous THF solution.

Entry Alcohols 1b–k Reaction time (h) Yields of products 2b–k Yields (%)

1 1b

OH

Me ∼48 h 2b
Me

O

H
73

2 1c MeO

OH

∼48 h 2c
MeO

O

H
80

3 1d

OH

NC ∼48 h 2d

O

H

NC
68

4 1e

MeO

MeO

OH
∼48 h 2e

MeO

MeO

O

H
82

5 1f

MeO
OH

Bno ∼48 h 2f
MeO

O

H

Bno
86

6 1g
OH

∼48 h 2g

O

H
68

7 1h
OH

∼48 h 2h
O

69

8 1i
OH

∼48 h 2i

O

H
17a

9 1j CH3(CH2)5CH2OH ∼48 h 2j CH3(CH2)5CHO 35

10 1k Me

OH

∼48 h 2k — —a

a/e starting material was recovered.
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and cyclohex-2-enol (1h) in the presence of THF at reflux for
∼48 h to give the desired oxidation products 2g and 2h in 68%
and 69% yields, respectively (entries 6 and 7 in Table 2). /e
yielding results of the allylic system 1g-h were noticeably
lower than the conversion of benzylic alcohols 1e-f.

To evaluate the substrate scope and limitation, this
study has been extended to a variety of aliphatic or ali-
cyclic alcohols such as 3-arylpropan-1-ols (1i), heptan-1-
ol (1j), and 2-isopropyl-5-methylcyclohexanol (1k). In
general, a longer reaction time (∼60 h) was required
compared to benzyl and allylic alcohols 1a–h for oxidation
reaction (entries 8–10 in Table 2). Under the same con-
dition, aliphatic or alicyclic alcohols 1i–k presented poor
oxidizing reactivity, resulting in trace to 35% yields. For
compound 1k, no trace of the oxidation product was
detected in the 1H NMR spectrum of the crude reaction
mixture (entry 10 in Table 2). Following the above study, it
was found the cyclopentadienyl ruthenium(II) complex
(RuCpCl(PPh3)2) possessed significant oxidizing activity
for discrimination of aromatic allylic and benzylic

alcohols. In addition, the oxidation reaction of benzylic
alcohol 1a with the RuCpCl(PPh3)2 catalyst (0.5 mol%)
was found to produce better isolated yields compared to
both allylic alcohol 1g and aliphatic alcohol 1i.

4-(Hydroxymethyl)benzenepropanol 3 was synthesized
by the reported method as the important bifunctional sub-
strate for the chemoreactivity oxidation study [59]. We
initially carried out a careful study of possible oxidations of
compound 3 with 1.25mol% amount of the cyclopentadienyl
ruthenium(II) complex (RuCpCl(PPh3)2) catalyst with
bubbled O2 in CH2Cl2 solution at reflux for 48 h./e versatile
oxidation was monitored by TLC and sampled for 1H NMR
characteristic identification (see Figure 1). When the reaction
was performed for 4 h, the crude solution was sampled,
worked up, and eluted from the column. Most of starting
material 3 was recovered, and the corresponding mixture
products 4-(3-hydroxypropyl)benzaldehyde 4 and the small
amount of 4-(3-oxopropyl)benzaldehyde 5 were given out in
21% and <5% yields, respectively (see Scheme 1 and Fig-
ure 1). When the reaction time was prolonged from 4h to

H

O

HO
5

OH

HO
4

OH

HO
3

10 9 8 7 6 5 4 3
ppm

Figure 1: 1H NMR characteristic identification of compounds 3 (□), 4 (○), and 5 (∆).
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+

Scheme 1: Chemoreactivity oxidation results of 4-(hydroxymethyl)benzenepropanol 3.
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24 h or 48 h under the same condition, we observed that the
expected oxidation product 4 was significantly promoted
from 21% to 48% or 54% yields, respectively [60].
Comparatively, only a small amount of oxidation product
4-(3-oxopropyl)benzaldehyde 5 was achieved (∼5% to
12% and 15%; Scheme 1) [60]. Based on the above ex-
perimental results, we proved again that the benzylic
alcohol possessed more efficient oxidative reactivity than
the aliphatic alcohol.

3. Conclusions

We have successfully developed the oxidation reaction for
aliphatic, aromatic allylic, and benzylic alcohols with
0.5mol% of the cyclopentadienyl ruthenium(II) complex
(RuCpCl(PPh3)2). Based on the further controlled studies,
the reactive tendency was determined as follows: benzylic
alcohols> aromatic allylic alcohols>> aliphatic alcohols.
On the contrary, mono- and disubstituted benzylic alcohols
with electron-donating groups can provide the best oxi-
dation results. In addition, this new method has several
advantages including a small amount of catalyst (0.5mol%)
and high discrimination activity of aliphatic, aromatic al-
lylic, and benzylic alcohols.

4. Experimental Section

All reagents were used as obtained commercially. All re-
actions were carried out under argon or nitrogen atmo-
sphere and monitored by TLC. Flash column
chromatography was carried out on silica gel (230–
400mesh). An analytical thin-layer chromatography (TLC)
was performed using precoated plates (silica gel 60 F-254)
purchased from Merck Inc. Flash column chromatography
purification was carried out by gradient elution using n-
hexane in ethyl acetate (EtOAc) unless otherwise stated.
Infrared (IR) spectra were measured with a Bomem
Michelson Series FT-IR spectrometer. /e wavenumbers
reported are referenced to the polystyrene absorption at
1601 cm− 1. Absorption intensities are recorded by the fol-
lowing abbreviations: s, strong; m, medium; and w, weak. All
proton and carbon-13 NMR spectra were obtained by
Bruker instruments (400MHz and100MHz, respectively).
Proton and carbon-13 NMR spectra were acquired using
deuterochloroform (CDCl3) solvent. Multiplicities are
recorded by the following abbreviations: s, singlet; d, dou-
blet; t, triplet; q, quartet; m, multiplet; and J, coupling
constant (Hz). ESI-MS analyses were performed on an
Applied Biosystems API 300 mass spectrometer. High-
resolution mass spectra were obtained from a JEOL JMS-
HX110 mass spectrometer.

4.1. Standard Procedure for the Oxidation of Aliphatic, Aro-
matic Allylic, and Benzylic Alcohols 1a–j to Corresponding
Aldehydes 2a–j with Cyclopentadienyl Ruthenium(II)
Complex. Aliphatic, aromatic allylic, or benzylic alcohols
(1a–j, ∼1.0mmol, 1.0 equiv) and RuCpCl(PPh3)2 (∼0.5mol
%) with bubbled O2 were stirred in anhydrous THF (2.0mL)
and heated at reflux for 24–48 h under the argon

atmospheric pressure. When the oxidization reaction was
completed, the solution was filtered through Celite, and the
Celite bed was washed with hot THF. /e filtrate was
concentrated to remove THF under reduced pressure. /e
residue was added (CH2Cl2, 15mL), washed with saturated
aqueous NaHCO3 (15mL), and extracted with CH2Cl2
(10mL× 2). /e combined organic layers were washed with
brine (15mL), dried over MgSO4, filtered, and concentrated
under reduced pressure. /e residue was purified by column
chromatography (n-hexane/EtOAc� 4/1) on silica gel to
give the corresponding aldehyde products 2a–j in 17–86%
yields. /e physical properties and spectroscopic charac-
teristics of the isolated aliphatic, aromatic allylic, and
benzylic alcohols, including 2a–j, were consistent with those
of the authentic sample [61].

Benzaldehyde (2a) [61]: light yellow liquid; 1H NMR
(CDCl3, 400MHz): δ 7.48–7.52 (m, 2H, ArH), 7.58–
7.63 (m, 1H, ArH), 7.84–7.87 (m, 2H, ArH), and 9.99 (s,
1H, CHO); 13C NMR (CDCl3, 100MHz): δ 129.94
(2×CH), 129.69 (2×CH), 134.41, 136.34, and 192.37;
IR (KBr): 3071, 2832, 2674, 2560, 1686, 1424, 1325,
1291, 934, and 709 cm− 1; MS (EI): 106 (78), 105 (100),
78 (15), 77 (83), 51 (37), and 50 (13).
4-Tolualdehyde (2b) [61]: colorless liquid; 1H NMR
(CDCl3, 400MHz): δ 2.42 (s, 3H, Me), 7.31 (d,
J� 7.9Hz, 2H, ArH), 7.75 (dd, J� 6.6 and 1.6Hz, 2H,
ArH), and 9.94 (s, 1H, CHO); 13C NMR (CDCl3,
100MHz): δ 21.85, 129.68 (2×CH), 129.83 (2×CH),
134.16, 145.54, and 192.01; IR (KBr): 3043, 2945, 1672,
1574, 1282, 959, 947, 838, and 752 cm− 1; MS (EI): 120
(34), 119 (100), 92 (11), 91 (97), and 65 (18).
4-Methoxybenzaldehyde (2c) [61]: light yellow liquid;
1H NMR (CDCl3, 400MHz): δ 3.79 (s, 3H, OMe),
6.90–6.93 (m, 2H, ArH), 7.73–7.76 (m, 2H, ArH), and
9.79 (s, 1H, CHO); 13C NMR (CDCl3, 100MHz): δ
54.74, 113.61 (2×CH), 129.24, 131.16 (2×CH), 163.89,
and 189.98; IR (KBr): 3520, 3356, 2969, 2839, 2741,
1682, 1601, 1577, 1512, 1315, 1260, 1158, and
1026 cm− 1; MS (EI): 136 (72), 135 (100), 92 (14),
77.0(24), and 65 (10).
4-Cyanobenzaldehyde (2d) [61]: white crystal, m.p.
99–102°C; 1H NMR (CDCl3, 400MHz): δ 7.83 (d,
J� 8.2Hz, 2H, ArH), 7.98 (d, J� 8.2Hz, 2H, ArH), and
10.07 (s, 1H, CHO); 13C NMR (CDCl3, 100MHz): δ
117.57, 117.74, 129.90 (2×CH), 132.92 (2×CH),
138.74, and 190.70; IR (KBr): 2850, 2231, 1707, 1608,
1571, 1387, 1295, 1203, 1172, 832, 737, and 546 cm− 1;
MS (EI): 131 (84), 130 (100), 105 (28), 103 (23),
102.0(57), 91 (12), 77 (16), 76 (18), 75 (12), and 51 (12).
3,4-Dimethoxybenzaldehyde (2e) [61]: light yellow
liquid; 1H NMR (CDCl3, 400MHz): δ 3.93 (s, 3H,-
OMe), 3.96 (s, 3H,-OMe), 6.98 (d, J� 8.2Hz, 1H, ArH),
7.40 (d, J� 7.6Hz, 1H, ArH), 7.45 (dd, J� 8.2 and
1.9Hz, 1H, ArH), and 9.84 (s, 1H, CHO); 13C NMR
(CDCl3, 100MHz): δ 55.60, 55.80, 108.63, 110.11,
126.42, 129.79, 149.26, 154.13, and 190.47; IR (KBr):
2938, 2840, 1683, 1588, 1513, 1462, 1421, 1268, 1243,
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1135, 1021, 811, and 731 cm− 1; MS (EI): 167 (18), 166
(100), 165 (71), 159 (22), 95 (33), 91.0(40), 79 (14), 77
(22), 73 (26), and 60 (15).
4-Benzyloxy-3-methoxybenzaldehyde (2f ) [61]: orange
liquid; 1H NMR (CDCl3, 400MHz): δ 3.89 (s, 3H,
OMe), 5.19 (s, 2H, OCH2), 6.95 (d, J� 8.2Hz, 1H,
ArH), 7.30 (d, J� 7.3Hz, 1H, ArH), 7.33–7.37 (m, 3H,
ArH), 7.39–7.42 (m, 3H, ArH), and 9.79 (s, 1H, CHO);
13C NMR (CDCl3, 100MHz): δ 55.85, 70.67, 109.22,
112.24, 126.39, 127.08 (2×CH), 128.05, 128.56
(2×CH), 130.14, 135.87, 149.90, 153.44, and 190.72; IR
(KBr): 2938, 2833, 2731, 1683, 1588, 1509, 1462, 1424,
1264, 1237, 1135, 1026, and 734 cm− 1; MS (EI): 242
(45), 92 (43), 91 (100), and 65 (41).
Cinnamaldehyde (2g) [61]: light yellow liquid; 1HNMR
(CDCl3, 400MHz): δ 6.71 (qd, J� 1.82 and 7.70Hz, 1H,
Me), 7.41–7.43 (m, 3H, ArH), 7.44 (d, J� 1.88Hz, 1H,
Me), 7.54–7.56 (m, 2H, ArH), and 9.69 (dd, J� 7.70 and
2.42Hz, CHO); 13C NMR (CDCl3, 100MHz): δ 128.42
(3×CH), 129.01 (2×CH), 131.21, 133.88, 152.81, and
193.73; IR (KBr): 3024, 2844, 1681, 1634, 1449, 1311,
and 1286 cm− 1; MS (EI): 132 (38), 131 (69), 130 (36),
103 (98), 102 (63), 91 (59), 78 (41), 77 (94), 76 (40), and
51 (65).
2-Cyclohexen-1-one (2h) [61]: colorless liquid; 1H
NMR (CDCl3, 400MHz): δ 1.90–1.96 (m, 2H), 2.24–
2.29 (m, 2H), 2.33 (t, J� 13.48Hz, 2H), 5.92 (d,
J� 10.12Hz, 1H), and 6.89–6.94 (m, 1H); 13C NMR
(CDCl3, 100MHz): δ 22.56, 25.49, 37.92, 129.63, 150.61,
and 199.40; IR (KBr) 3299, 2918, 2847, 1513, 1707,
1380, 1241, 1210, and 832 cm− 1; MS (EI): 96 (36) and 68
(100).
3-Phenylpropionaldehyde (2i) [61]: colorless liquid; 1H
NMR (CDCl3, 400MHz): δ 2.77 (td, J� 7.28 and
0.87Hz, 2H), 2.96 (t, J� 7.56Hz, 2H), 7.20 (t,
J� 7.38Hz, 3H), 7.30 (t, J� 7.30Hz, 2H), and 9.81 (t,
J� 1.34Hz, CHO); 13C NMR (CDCl3, 100MHz): δ
28.08, 45.18, 126.28 (2×CH), 128.35, 128.60 (2×CH),
140.57, and 201.46; IR (KBr): 3029, 2929, 1709, 1604,
1496, 1456, and 1298 cm− 1; MS (EI): 135 (22), 134 (100),
133 (10), 118 (12), 117 (20), 105 (27), 92 (58), 91 (96), 78
(23), and 77 (11).
Heptanal (2j) [61]: colorless liquid; 1H NMR (CDCl3,
400MHz): δ 0.87 (t, J � 6.9 Hz, 3H, Me), 1.25–1.33 (m,
6H), 1.57–1.63 (m, 2H, CH2CH2CHO), 2.40 (td,
J � 7.4 and 1.9 Hz, 2H, CH2CHO), and 9.75 (t,
J � 1.9 Hz); 13C NMR (CDCl3, 100MHz): δ 13.96,
22.02, 22.42, 28.80, 31.50, 43.89, and 202.94; IR (KBr):
3421, 2955, 2928, 2856, 1716, 1461, 1376, 1145, and
947 cm− 1; MS (EI): 96 (23), 86 (20), 81 (27), 72 (13), 71
(25), 70 (100), 69 (10), 68 (21), 67 (12), 60 (12), 57
(47), and 55 (59).
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[30] Y. Önal, S. Schimpf, and P. Claus, “Structure sensitivity and
kinetics of D-glucose oxidation to D-gluconic acid over
carbon-supported gold catalysts,” Journal of Catalysis,
vol. 223, no. 1, pp. 122–133, 2004.
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