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In this paper, a recognition model based on the improved hybrid particle swarm optimisation (HPSO) optimised backpropagation
network (BP) is proposed to improve the efficiency of radar working state recognition. First, the model improves the HPSO
algorithm through the nonlinear decreasing inertia weight by adding the deceleration factor and asynchronous learning factor.
+en, the BP neural network’s initial weights and thresholds are optimised to overcome the shortcomings of slow convergence rate
and falling into local optima. In the simulation experiment, improved HPSO-BP recognitionmodels were established based on the
datasets for three radar types, and these models were subsequently compared to other recognition models. +e results reveal that
the improved HPSO-BP recognition model has better prediction accuracy and convergence rate. +e recognition accuracy of
different radar types exceeded 97%, which demonstrates the feasibility and generalisation of the model applied to radar working
state recognition.

1. Introduction

Radar working state recognition is used in developing
models of the reconnaissance pulse signal characteristics and
estimating the internal working state of a radar with prior
knowledge. +e rapid and accurate recognition of the radar
working state is important for determining the radar threat
level, evaluating the radar interference effect, and realising
the interference decision.

When the radar is in a different working state, the signal
parameter characteristic exhibits an obvious change. +e
radar working state recognition can be summarised as a
pattern-classification problem. +e existing research
methods can be summarised as follows: methods based on
statistical decisions, methods based on ambiguity decisions,
methods based on syntactic structures, and methods based
on artificial intelligence [1]. Various studies [2, 3] have
solved the radar working pattern matching problem based
on the Dempster–Shafer (D–S) evidence theory fusion
method. However, for multifunctional radars with complex
signals, the calculation of information fusion exhibits ex-
ponential growth. Other studies [4, 5] have introduced the
recognition algorithm of the fuzzy function, which objec-
tively reflects the samples’ real attributes, but the selection of

the ambiguity function was not theoretical. Some studies
[6–8] have proposed a syntactic model for accurately
extracting radar words from an intercepted radar pulse train
for multifunctional radar state recognition. However, these
studies did not consider the influence of unstable factors,
such as inaccurate prior information and poor signal data,
which resulted in poor fault tolerance and generalisation
ability. +us, the improvement of the efficiency of radar
working state recognition requires further investigation.

+e backpropagation (BP) neural network has been
widely used [9, 10] owing to its good self-learning and
adaptive ability and has been applied to radar working state
recognition. Some studies [11, 12] have used neural net-
works to establish the corresponding relationship between
the signal characteristic parameters and the radar working
state to form a recognition database and then identify un-
known working states. However, the BP neural network has
high requirements regarding the dataset quality and is
sensitive to the initial network weights and thresholds of the
gradient descent algorithm. Moreover, the BP can easily fall
into local optima and has slow convergence speed. Con-
sidering the abovementioned problems, related studies
[13, 14] have used swarm intelligence optimisation algo-
rithms to optimise the BP neural network parameters. Since
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Kennedy and Ebarhant [15] proposed particle swarm op-
timisation (PSO) based on the influence of bird predation
behaviour by group movement, numerous studies have
increasingly analysed the phenomenon of different bio-
logical populations and were inspired by it to propose
various metaheuristics. For example, Mirjalili [16] pro-
posed a moth search algorithm (MSA) based on the way
that moths spiral around a light source at night. Wang et al.
[17] proposed monarch butterfly optimisation (MBO)
inspired by the behaviour of monarch butterflies with
seasonal changes. Heidari et al. [18] proposed Harris hawk
optimisation (HHO) based on Harris’ surprise predation
mechanism. Li et al. [19] proposed the slime mould al-
gorithm (SMA) based on the behaviour and morphological
changes of slime mould in the spread and foraging process.
+e PSO method finds the optimal solution through col-
laboration and information sharing between the individ-
uals in the group and has the characteristics of simple
principles, fewer parameters, and strong global search
capabilities. +erefore, this method has been widely used in
function optimisation [20], neural network training [21],
fuzzy control systems [22], and other fields, and the al-
gorithm is considered to be relatively mature. However,
PSO may easily converge prematurely. Similar to other
swarm intelligence optimisation algorithms, PSO has the
disadvantages of slow convergence speed, low optimisation
accuracy, and ease of falling into local optima [23] when
solving complex optimisation problems.

Considering the problems of the traditional PSO algo-
rithm, this paper proposes the improved HPSO algorithm
based on the following three aspects:

(1) Crossover and mutation operations in the genetic
algorithm (GA) are introduced to update the par-
ticles, the hybrid population information is used to
enhance the population diversity, and the algo-
rithm’s convergence speed and accuracy are
improved

(2) Improved nonlinear decreasing inertia weights are
used to balance the development and exploration of
the algorithm

(3) An asynchronous learning factor update strategy is
used to achieve stronger global search capabilities
and faster convergence

+is study considered the multifunctional phased array
radar to investigate the quick and accurate identification of
the radar’s working state. A radar working state recognition
model based on the improved hybrid PSO BP neural net-
work (HPSO-BP) is proposed, using the improved HPSO
global optimisation ability to optimise the structural pa-
rameters of the BP network and improve the recognition
ability of the BP neural network. In this study, three types of
radars were selected to construct the working state recog-
nition models. +e simulation results were compared to the
results obtained by the BP, GA-BP, and PSO-BP to verify the
accuracy, timeliness, and generalisation of the improved
algorithm.

+e rest of this paper is organised as follows. A detailed
introduction to the HPSO algorithm and a description of the
relevant optimisation technique are presented in Section 2.
+e radar working state recognition model is presented in
Section 3. +e simulation experiment and analysis of the
results are presented in Section 4. Finally, the conclusions
drawn from this study are discussed in Section 5.

2. Improved HPSO Algorithm

2.1. HPSO Algorithm. When the population converges, the
similarity of the particles increases; therefore, the traditional
PSO algorithm cannot easily jump out of a locally optimal
solution. +e HPSO algorithm abandons the method
wherein the traditional PSO algorithm updates the particles
by tracking the extremum and learns from chromosomal
crossover and mutation operations in the GA. By combining
the characteristics of the GA’s global optimisation, the
HPSO algorithm searches for the optimal solution through
particle swarm crossover and mutation. +e steps of the
algorithm are summarised as follows:

Step 1. Initialise the particle velocity, position, and
parameters, and set the population size k and maxi-
mum number of iterations T.
Step 2. Calculate the fitness value, individual extremum,
and group extremum.
Step 3. Equations (1) and (2) are used to update the
particle velocity and position, respectively:

Vi(t + 1) � ωVi(t) + c1r1 Pi(t) − Xi(t)( 􏼁

+ c2r2 Pg(t) − Xi(t)􏼐 􏼑,
(1)

Xi(t + 1) � Xi(t) + Vi(t + 1), (2)

where i ∈ k, r1 and r2 are randomnumbers between [0, 1],
t is the current iteration number,Vi represents the particle
velocity, Pi represents the individual extreme value, Pg

represents the group extreme value, Xi represents the
particle position, ω is the inertia factor, c1 is the individual
learning factor, and c2 is the group learning factor.
Step 4. Equations (3)–(5) are used to perform cross and
mutation operations on particles Xm and Xn:

Xm t′ + 1( 􏼁 � (1 − α)∗Xm t′( 􏼁 + α∗Xn t′( 􏼁

Xn t′ + 1( 􏼁 � (1 − α)∗Xn t′( 􏼁 + α∗Xm t′( 􏼁

⎧⎪⎨

⎪⎩
,

(3)

Xmn �
Xmn + Xmn − Xmax( 􏼁∗f(g), r1 ≥ 0.5
Xmn + Xmin − Xmn( 􏼁∗f(g), r1 < 0.5

􏼨 ,

(4)

f(g) � r2 ∗ 1 −
t

T
􏼒 􏼓

2
,

(5)
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where α is the crossover probability, Xmn is the new
particle of variation, and Xmax and Xmin are the upper
and lower bounds of the particle values, respectively.
Step 5. Update fitness value, individual extremum, and
group extremum.
Step 6 (Interiteration Optimisation). When the maxi-
mum number of iterations is reached, the optimal value
should be the output. Otherwise, Steps 3–5 are repeated
until the maximum number is reached.

In the HPSO algorithm, the selection of parameters, such
as the inertia weight and learning factor, affects the opti-
misation ability of the algorithm. +erefore, these param-
eters must be improved.

2.2. Improvement of Inertia Weight. +e inertia weight ω
reflects the ability of inheriting the velocity of the previous
particles. As the value of ω increases, the global search is
improved. As the value of ω decreases, the local search is
improved. In the traditional PSO algorithm, the fixed ω
influences the algorithm’s convergence. +e linear re-
gression of ω results in the algorithm falling into local
optima and requires many iterations. A previous study
[24] proposed a nonlinearly decreasing ω to improve the
PSO algorithm and search efficiency. However, in the early
stage of the algorithm’s iterations, ω decreases too fast,
which results in local convergence instead of the globally
optimal solution. Accordingly, this study added two de-
celeration factors to ω so as to stably maintain a larger
value in the early iteration for global optimisation and
rapidly maintain a smaller value in the late iteration for
algorithm convergence. +erefore, the convergence ability
is improved and the global optimal solution is ensured.
+e improved nonlinear decreasing inertia weight is
expressed as follows:

ω � ωmin + ωmax − ωmin( 􏼁exp −a
t

T
􏼒 􏼓

b

􏼠 􏼡, (6)

where ωmax is the initial inertia weight, ωmin is the inertia
weight when the iteration reaches the maximum number,
ωmax � 0.9 and ωmin � 0.4, and a and b are deceleration
factors.

2.3. Improvement of LearningFactors. +e learning factors c1
and c2 determine the maximum length of the particle’s flight
toward the optimal direction of the individual or group. A
larger c1 will result in the particles tending to search in their
own neighbourhood, while a larger c2 will result in the
particles searching within the groups’ scope. To ensure that
the algorithm maintains an effective balance between global
search and local search, this study used an asynchronous
learning factor, as expressed in equation (7). In the early
stage of the search, c1 is larger and c2 is smaller, which
improves the self-learning ability of the HPSO. In the later
stage of the search, c1 is smaller and c2 is larger, which makes
the HPSO algorithm quickly approach the global optimal
solution:

C1 � C1, start + C1, en d − C1, start􏼐 􏼑∗
t

T

C2 � C2, start + C2, en d − C2, start􏼐 􏼑∗
t

T

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (7)

where C1, start � C2, en d � 2.5, C1, en d � C2, start � 0.5, t is the
current number of iterations, andT is the maximum number
of iterations.

3. Recognition of Radar Working State

3.1. Structure of Radar Working State Recognition Model.
+is study combined the three-layer BP neural network with
the improved HPSO algorithm. +e structure of the radar
working state recognition model based on the improved
HPSO-BP is shown in Figure 1.

Generally, the modelling steps of the improved HPSO-
BP are as follows:

(1) Extract the characteristic signal parameters: the
characteristics of the radar signal intercepted by the
reconnaissance plane include the carrier frequency,
pulse repetition period, and pulse width. +e ranges of
the characteristic parameters corresponding to each
working state of the radar are different.
(2) Generate and test the dataset: a random number
generation method is used to generate the dataset. To
reflect the characteristics of the radar signal parameters,
the uniformity and independence of the dataset must be
tested. After normalisation, the dataset is divided into
the training and test sets.
(3) Train the improved HPSO-BP neural network
model: after building the neural network model, the
characteristic parameters of the training set are used as
the model’s input, and the working state of the radar is
used as the output of the model to realise supervised
autonomous learning. +en, the model performance is
tested using the test set.
(4) Radar working state recognition: the trained neural
network model is used as the knowledge base for the
radar working state recognition. With this model, the
radar working state can be assessed, and the radar’s
threat level can be estimated in real time.

3.2. Recognition Procedure Based on Improved HPSO-BP.
To prevent the BP neural network from falling into local
minima and improve the prediction accuracy and conver-
gence rate of the network, this study used the global search
capability of the improved HPSO algorithm to find the
network’s optimal initial weight and threshold such that the
BP neural network can achieve better recognition perfor-
mance. +e algorithm’s step flow is illustrated in Figure 2.

+e specific steps of the algorithm are as follows:

Step 1. During the data preprocessing, the dataset is
generated using the random number generation
method. After verifying that the dataset has uniform
distribution characteristics, the input parameters are
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normalised in the interval of [0, 1]. +e dataset is di-
vided into a training set and a test set.
Step 2. +e structure of the BP network and the PSO
parameters are determined. +e structure of the BP
network is determined by the dimensions of the input
feature vector and the expected output dimension, and
the calculation formula is expressed by equation (8).+e
BP network structure determines the particle dimension,
and the calculation formula is expressed by equation (9):

m �
����
n + l

√
+ α, α ∈ [1, 10], (8)

D � n∗m + m∗ l + m + l, (9)

where n is the number of nodes in the input layer, l is
the number of nodes in the output layer, m is the
number of nodes in the hidden layer, and D is the
particle dimension.

Step 3. +e network training error is set as the fitness
value of the particle:

f �
1
2

􏽘

N

k�1
dk − ok( 􏼁

2
, (10)

where dk is the expected output of the network, ok is the
actual output, and N is the set size. As the fitness value
decreases, the particle performance is improved.
Step 4. +e particle position is updated according to
equations (1)–(7) and the particle with the smallest
error in each generation is considered as the current
optimal particle.
Step 5. When the maximum number of the particle
swarm iterations is reached, the output optimal particle
position is used as the network’s initial weight and
threshold value. Otherwise, steps 4–5 are repeated.

Start

Data preprocessing

Determine the parameters of BP network and
improved HPSO algorithm

BP network training error is set to fitness value

Update the particle velocity and position
according to formula (1)–(7)

Satisfy ending conditionN Y

�e optimal BP neural network initial weights
and thresholds

Calculate the network training error

Update weights and thresholds

Satisfy ending condition

Predict results

End

N

Y

Figure 2: Flow of improved HPSO-BP algorithm.

Extract signal characteristic parameters

Generate and test data set

Satisfy uniformity
and independence

Y

N

Train improved HPSO-BP neural network model

Radar working state recognition

Test sample

Recognition results

Figure 1: Structure of radar working state recognition model based on improved HPSO-BP.
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Step 6. +e neural network is trained until the training
target error is achieved, and the test set’s result is
predicted.

Combined with the implementation steps of the im-
proved HPSO-BP algorithm, the specific pseudocode is
summarised in Algorithm 1

According to the pseudocode of the algorithm, we
gradually analysed the time complexity of the algorithm as
described below:

(1) In steps 2–5, the population is randomly initialised,
and the fitness is calculated.+e population size is N,
the solution dimension is D, and the time complexity
is O(N∗D).

(2) In steps 7–20, there are two loop levels.+e loop times
are T and N, respectively. In the loop, the time
complexity is mainly affected by steps 10–12. In step
10, the time complexity of updating the particle’s D-
dimensional velocity vector and position vector is
O(D). In step 11, the worst case is that all individuals
participate in crossover and mutation, and the time
complexity is O(N). In step 12, the time complexity of
the individual fitness calculation is O(D). +e sum of
the worst time complexity of the operations from steps
10 to 12 is O(D + N + D), and the time complexity
magnitude is O(D + N). +erefore, the total time
complexity of steps 7–20 is O(T∗N∗ (D + N)).

(3) In steps 22–24, according to the pseudocode analysis
of the BP algorithm in the literature [25], the training

time complexity of the BP neural network is
O(K∗D), where K is the number of samples.

+erefore, the time complexity of the entire optimisation
algorithm is O(N∗D) + O(T∗N∗ (D + N)) + O(K∗D)

� O(T∗N2 + T∗N∗D + N∗D + K∗D), and the time
complexity magnitude is O(T∗N2 + T∗N∗D + K∗D).
Hence, the time complexity of the improved HPSO-BP al-
gorithm is related to the total number of particles, number of
training samples, dimensionality of the solution dimension
(BP network structure), and number of iterations of the al-
gorithm and is mainly affected by the total number of particles.

4. Simulation Experiment and
Analysis of Results

+is experiment considered an airborne-phased array radar
in air-air combat mode [26] as an example and used the
improved HPSO-BP neural network model to identify its
working state. +e results were compared to the simulation
results obtained using the BP, GA-BP, and PSO-BP models
in terms of recognition accuracy and convergence. Addi-
tionally, the working state parameters of radars A and B
obtained from the literature [27] were used to verify the
model’s generalisation performance.

4.1. Generation and Verification of Datasets. In a complex
electromagnetic environment, the radar signal parameters
typically exhibit obvious randomness. Owing to the radar’s

(1) Begin
(2) For (i � 1 to N) // N is the particle population size
(3) Initialise velocity Vi and position Xi for particle i;
(4) Calculate the fitness value fit of particle i and set Pi � Xi; //Pi is the individual extreme value
(5)End for i

(6) Pg � min Pi􏼈 􏼉;//Pg is the group extreme value
(7) For (t � 1 to T) // T is the maximum number of iterations
(8) Improve ω, c1, and c2 according to equations (6) and (7);
(9) For (i � 1 to N)
(10) Update Vi and Xi according to equations (1) and (2);
(11) Apply the crossover and mutation operator to particle i according to equations (3)–(5);
(12) Calculate the fitness value fit of particle i;
(13) If (fit(Xi)<fit(Pi))
(14) Pi � Xi;
(15) End if
(16) If (fit(Pi)<fit(Pg))
(17) Pg � Pi;
(18) End if
(19) End for i

(20) End for t

(21) Determine the optimal weight and threshold of the BP neural network according to Pg ;
(22) While (the training target error is not reached)
(23) Train the BP neural network;
(24) End while
(25) Predict the results on the test set;
(26) End

ALGORITHM 1: Pseudocode of improved HPSO-BP algorithm.
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military-level sensitivity, it is currently difficult to obtain real
data for the radar operating parameters. Some studies
[26, 27] have randomly generated data based on a table of
radar operating parameter ranges, but have not tested the
randomness of the data. Uniformity and independence are
two important indicators for testing the randomness of data.
In this study, classical random number generation methods,
such as the square method, linear congruence method, and
Mersenne rotation algorithm, were used to generate the
dataset. +e dataset’s uniformity and independence were
tested to select the dataset generation method used in this
experiment. Table 1 lists the radar operating parameter
ranges obtained from the literature [26].

4.1.1. Uniformity Test. In this study, the chi-square test was
used to assess the uniformity. Under the same significance
level, as the chi-square value decreased, the significance
probability increased, and the uniformity improved. By
considering the repetition variable of the S1 state in Table 1
as an example, the 1000 randomly generated sample data
were normalised and divided into ten groups. +e unifor-
mity test results are presented in Table 2.

As presented in Table 2, when the standard significance
level α was set to 0.05, because the probability of the pro-
gressive significance was greater than 0.05, there was no
significant difference between the actual and theoretical
distributions, which indicates that the data generated by
each method were uniformly distributed in each interval.

+e chi-square value calculated by the Mersenne Twister
algorithmwasminimum,while the progressive significance was
maximum, which indicates that the uniformity was optimal.

4.1.2. Independence Test. In this study, the correlation co-
efficient test was used to perform the independence test. As
the correlation coefficient decreased, the significance
probability increased, and the independence of the data was
enhanced.+e autocorrelation test results obtained using the
SPSS software are shown in Figure 3.

As shown in Figure 3, when the degree of freedom was
greater than 13, the significance probability of the random
numbers generated by the linear congruence algorithm was
less than 0.05, which indicates that the random numbers are
correlated. In contrast, the significance probability of the
random numbers generated by the other two algorithms was
greater than 0.05, which indicates that the random numbers
generated by the Mersenne Twister algorithm and middle-
square algorithm have a stable distribution and satisfy the
independence condition.

Combined with the two abovementioned testing methods,
the random numbers generated by the Mersenne Twister al-
gorithm have higher quality and satisfy the uniform distri-
bution conditions, compared with the other two algorithms.

4.2. Model Evaluation Index. To quantitatively evaluate the
prediction accuracy of the model, this study adopted the
recognition accuracy rate (ACC) and determination

coefficient (R2) as the evaluation indices. +e convergence
rate was evaluated based on the number of convergent steps.
With a larger ACC, the result was more accurate. Moreover,
R2 was in the range of [0, 1], and the performance of the
model improved as R2 approached 1. With fewer convergent
steps, the performance of the model also improved. +e
specific calculation formulas of the relevant indices are as
follows:

ACC �
􏽐

N
m�1 sm

k
,

(11)

R
2

�
k 􏽐

k
i�1 dioi − 􏽐

k
i�1 di 􏽐

k
i�1 oi􏼐 􏼑

2

k 􏽐
k
i�1 d

2
i − 􏽐

k
i�1 di􏼐 􏼑

2
􏼒 􏼓 − k 􏽐

k
i�1 o

2
i − 􏽐

k
i�1 oi􏼐 􏼑

2
􏼒 􏼓

,

(12)

where k is the number of samples,N is the number of sample
categories, sm is the number of correctly identified samples
of class m, di is the actual output of the sample, and i and oi

are the ideal output of sample i.

4.3. Model Parameters’ Settings

4.3.1. Parameters’ Setting for BP Network Structure.
+ere are five characteristic variables in the airborne-phased
array radar, and the number of input layer nodes was set to 5.
+e output results corresponding to the six states are rep-
resented by values 1–6, and the number of output layer
nodes is set to 1. +e results obtained using the trial and
error method demonstrate that the error was minimised
when the number of hidden layer nodes was eight; therefore,
the network structure was 5-8-1, as shown in Figure 4. +e
main parameters of the BP network were set as follows:

(i) Activation function of hidden layer: Tansig
(ii) Activation function of output layer: Purelin
(iii) Training function of neural network: Trainlm
(iv) Maximum iteration step of neural network: 1000
(v) Training target error of neural network: 0.001
(vi) Learning rate factor of neural network: 0.01

To avoid the shock of network training, the selection of
sample categories should be balanced, the number of
samples in each category should be approximately equal, and
cross input is required for the samples belonging to different
categories. +is study adopted the Mersenne Twister algo-
rithm to randomly generate 100 samples for each radar
working state, and each sample had the five abovementioned
characteristic variables.

4.3.2. Parameters’ Settings for Improved HPSO

(1) Comparison of Inertia Weight of Improved PSO.
According to the improved formula of the inertia weight
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presented in Section 2.2, when the deceleration factor a was
8 and b was 3, the proposed improved nonlinearly de-
creasing ω, the nonlinearly decreasing ω [20], and linearly
decreasing ω are shown in Figure 5.

From Figure 5, the following conclusions can be drawn:

(i) +e linearly decreasing ω can easily fall into local
optima

(ii) In the early phase of iteration, the nonlinearly de-
creasing ω maintains a large value search, but the
decline rate is too fast and may easily lead to local
convergence without a global optimal search.

(iii) +e deceleration factor decelerates the decreasing
rate of the improved nonlinearω in the early stage of
iteration, which results in maintaining a large global

Input Output

Hidden layer Output layer

5

8 1

1

X Y

W1 W2

b1 b2

Figure 4: Neural network structure.

Table 1: Radar operating parameter ranges.

State Re-frequency (KHz) Pulse width (ms) Duty ratio (%) Pulse pressure ratio Instantaneous bandwidth (MHz)
S1 2–20 1–200 0.1–10 1–16384 0.2–100
S2 2–300 0.1–60 0.01–50 1–16384 0.2–500
S3 0.5–5 1–50 1–10 1–13 0.1–1
S4 0–20 0.1–0.5 0.1–1 1–5 1–10
S5 10–300 1–20 1–33 1–16 0.1–1
S6 6–20 1–20 1–25 5–526 1–10
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Figure 3: Significance level test of three methods.

Table 2: Comparison of uniformity test indices of three methods.

Test variables Mersenne Twister algorithm Middle-square algorithm Linear congruence algorithm
Chi-square value 5.320 11.500 9.100
Progressive significant 0.806 0.243 0.428
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search value. Additionally, its rapid decrease in the
late stage of iteration results in maintaining a stable
value for local search and is more conducive to
convergence.

Figure 6 compares the relationship between the fitness
values and iteration times of the particles under different
inertia weight methods. Compared with the other two
methods, the number of iterations of the improved non-
linear PSO that is required to reach the optimal fitness is
significantly reduced to avoid falling into local optima, and
the optimal fitness of the proposed method is smaller.
+erefore, the setting of the deceleration factor is reasonable.
Furthermore, this demonstrates that the improved PSO
algorithm can overcome the shortcomings of the slow it-
eration of particles and falling into local optima. When the
number of PSO iterations is 20, the fitness curve of the IPSO-
BP model converges, and the algorithm searches for the
optimal value. If the search continues, the time cost of the
search increases.

(2) Comparison of Learning Factor of Improved PSO. +e
value of the PSO learning factor affects the efficiency of
information transfer between the individual particles and
the group and ultimately determines the particle change
speed and convergence effect. In most cases, this was
considered to be constant. To prevent the basic PSO algo-
rithm from falling into local optima and appearing pre-
mature during the optimisation, a shrinkage factor was
introduced into equation (1), according to the literature [28],
to eliminate the speed boundary limit and ensure the
bounded and convergence characteristics of the PSO algo-
rithm. +e shrinkage factor calculation formula is expressed
as follows:

Vi(t + 1) � φ∗ ωVi(t) + c1r1 Pi(t) − Xi(t)( 􏼁( 􏼁

+ c2r2 Pg(t) − Xi(t)􏼐 􏼑.
(13)

+e shrinkage factor calculation formula is expressed as
follows:

φ �
2

2 − c −
������
c
2

− 4c
􏽰􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

, c � c1 + c2, c> 4, (14)

where φ is the contraction factor and c is the learning factor.
To compare the advantages of using asynchronous

learning factors for improving the PSO algorithm, this
study adopted three learning factors, namely, the asyn-
chronous learning factor, synchronous learning factor, and
shrinkage factor. Under the same change trend of the
inertia factor, the relationship between the fitness values of
different learning factors and the number of iterations was
established. As shown in Figure 7, the introduction of the
shrinkage factor still has the problem of easily falling into
local optima and requiring more iterations. +e optimal
fitness value achieved by the synchronous learning factor of
the improved PSO was significantly lower compared with
that of the shrinkage factor of the improved PSO. However,
the required number of iterations was still high. +e dy-
namic adaptive change of the asynchronous learning factor
satisfies the requirements of fast optimisation and has a low
number of evolutions. Hence, the parameter optimisation
problems, such as falling into local optima and having low
recognition accuracy, are avoided. After the optimal BP is
obtained, the algorithm’s recognition accuracy and search
efficiency are improved.

In this study, the mean square error between the actual
output and the BP neural network’s ideal output was selected
as the fitness function. +e total number of network weights
and thresholds were considered as the PSO dimension.
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Figure 5: Comparison curve of inertia weight of three PSO
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According to the common value range of the other
parameters, the improved operating parameters of the
HPSO algorithm were set as presented in Table 3.

4.4. Analysis of Results

4.4.1. Comparison of Prediction Accuracy. In this study, the
neural network toolbox in MATLAB was used in the simu-
lation experiment. After the normalisation process, the dataset
was used as the model input. In each state, 80% of the 100
samples were randomly used as training samples and the
remaining 20% were used as test samples. To facilitate the
comparative analysis of the model, the training sets were used
to train the BP, GA-BP, PSO-BP, and improved HPSO-BP
neural network, while the test sets were used to test the trained
network. +e comparison of the prediction accuracy was
evaluated by considering the recognition accuracy and de-
termination coefficient. +e network structures of the four
models were identical.+e simulation program for eachmodel
was run in MATLAB, and the results are shown in Figure 8.

To further verify each model’s prediction performance,
the calculation results of each prediction model’s evaluation
indices are presented in Table 4.

As shown in Figure 8, the four models can realise the
correct recognition of the radar working state. +e overall
recognition result of the improved HPSO-BP model is the
most similar to the actual value, followed by the PSO-BP
model, GA-BP model, and BP model with the worst recog-
nition performance, respectively. +is indicates that the PSO
can overcome the shortcoming of the BP model’s low rec-
ognition accuracy. However, owing to the limitations of PSO,
the recognition results for some mutations have larger errors
compared with the actual values. +e improved HPSO-BP
algorithm improves this shortcoming. +e recognition ac-
curacy and R2 were 0.975 and 0.986, respectively, both of
which are higher comparedwith those of the BP, PSO-BP, and
GA-BP models. +is indicates that the improved HPSO-BP

model has the highest degree of fit and best recognition
accuracy among the four models. Compared with PSO-BP,
the recognition accuracy and R2 increased by 8.3% and 4.6%,
respectively, which further demonstrates that the proposed
algorithm improves the model’s performance compared with
the traditional PSO algorithm.

4.4.2. Convergence Comparison. To evaluate the conver-
gence, the number of convergent steps was considered. +e
test results are shown in Figure 9.

By comparing the error curves of the four network
models during training, it can be seen that the mean square
error decreased as the number of training steps increased.
+e following conclusions are drawn:

(i) +e traditional BP neural network model tends to
fall into local optima, and the convergence speed is
slow.

(ii) +e GA-BP model improves the convergence rate,
but the parameter optimisation time is still long
owing to the introduction of the GA’s coding, se-
lection, crossover, mutation, and other operations.

(iii) +e PSO-BP model algorithm is simple and has fast
convergence speed, but the PSO algorithm can
easily fall into local optima.

(iv) Owing to the global search optimisation ability of
PSO, the improved HPSO-BP network model tends
to converge at step 26 with the best performance of
0.006375. +e convergence speed is significantly
higher compared with that of the other three
algorithms.

+e improved PSO algorithm is feasible and superior
when applied to the optimisation of the BP neural network
weights and threshold parameters. +erefore, the improved
HPSO-BP algorithm is more efficient in identifying the radar
working state.
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Figure 7: Comparison of fitness curve of three PSO algorithms.
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4.4.3. Model Generalization Performance Verification. To
test the generalisation performance of the improved HPSO-
BP radar working state recognition model, we selected the
operating state parameter ranges of the model A and model
B radars [27] as presented in Table 5.

First, according to the Mersenne Twister algorithm, 100
samples were randomly generated for each working state of
each radar type; 80% of the samples were randomly selected
as the training set, and 20% of the samples were selected as
the test set. +erefore, 80 test samples were used for each

Table 3: Parameter settings of improved HPSO algorithm.

Population size Iterations Particle dimension Speed range Position scope Crossover probability
50 100 57 [-1, 1] [-5, 5] 0.7
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Figure 8: Comparison of prediction results obtained by various models of the airborne-phased array radar. (a) Improved HPSO-BP; (b)
PSO-BP; (c) GA-BP; (d) BP.

Table 4: Comparison of evaluation indices of various models of the airborne-phased array radar.

Model ACC R2

Improved HPSO-BP 0.975 0.986
PSO-BP 0.892 0.940
GA-BP 0.833 0.906
BP 0.733 0.873

10 International Journal of Antennas and Propagation



radar. Secondly, the number of the input layer nodes of the
network was set to 3, the number of output layer nodes was
set to 1, and the number of hidden layer nodes was set to 7.
Hence, the network structure was 3-7-1, as shown in

Figure 10. +e other parameters were set using the method
described in Section 4.3.

Table 6 compares the proposed model’s evaluation in-
dices to those of the BP, GA-BP, and PSO-BP models.

Table 5: Radar A and B operating parameter ranges.

Radar type State Re-frequency (GHz) Pulse re-interval (µs) Pulse width (µs)

A

S1 9.7–9.9 3–10 1–3
S2 9.7–9.9 3–125 0.1–20
S3 9.5–9.8 50–100 0.1–0.5
S4 9.5–9.8 50–500 1–200

B

S1 9.15–9.45 500–2000 1–200
S2 9.15–9.45 50–500 0.1–10
S3 8.5–10.6 125–1000 0.1–10
S4 8.5–10.6 100–1000 3–60
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Figure 9: Comparison of each model’s convergence. (a) Improved HPSO-BP; (b) PSO-BP; (c) GA-BP; (d) BP.

International Journal of Antennas and Propagation 11



As presented in Table 6, the accuracy of the improved
HPSO-BP model was increased by up to 24.3%, and the
improved HPSO-BP model had the highest recognition
accuracy and minimum number of convergence steps, fol-
lowed by the PSO-BP model, GA-BP model, and BP model
with the worst performance, respectively. Because the data
quality of different radar models is different, there may exist
interference from abnormal data such as random noise;
therefore, the accuracy improvement is also different.
However, the indices of the radar working state recognition
model based on the improved HPSO-BP are superior to
those of other recognition models.

Based on the three abovementioned types of radar
recognition results, it is demonstrated that the proposed
method has good generalisation ability in the classification
and recognition of the radar working state.

5. Conclusions

A model based on the improved HPSO-BP is proposed to
identify the radar working state. +e conclusions drawn
from this study are as follows:

(1) By introducing cross variation based on PSO, an
improved nonlinear decreasing inertia weight
strategy, and an asynchronous learning factor, the
improved HPSO algorithm achieved better global
optimisation and particle searching speed and
avoided falling into local optima.

(2) By combining the global optimisation capability of
the improved HPSO algorithm with the recognition
capability of the BP neural network, the corre-
sponding relationship between the radar signal pa-
rameters and the working mode was established, and

the working state recognition model of the radar was
built.

(3) +e proposed model overcomes the shortcomings of
the traditional BP neural network, such as the slow
convergence rate and low recognition accuracy.
Compared with the standard BP network, GA-BP
network, and PSO-BP network, the proposed model
has higher accuracy and faster convergence rate.
Additionally, the proposed model has higher rec-
ognition rate for different radar types and better
generalisation.

+is study has various limitations. For example, the BP
algorithm is a supervised learning algorithm, and the rec-
ognition of newly arrived category samples lacks adapt-
ability. In an actual combat environment, the radar is an
enemy and its working state is unknown. +erefore, the
scope of future work is to investigate an unsupervised in-
cremental target state recognition method and give full play
to the cognitive electronic countermeasure system’s
adaptability and timeliness.
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Table 6: Performance comparison of each model.

Radar type Model ACC R2 Convergence steps

A

Improved HPSO-BP 0.994 0.988 18
PSO-BP 0.943 0.953 35
GA-BP 0.906 0.940 67
BP 0.751 0.852 96

B

Improved HPSO-BP 0.972 0.981 20
PSO-BP 0.901 0.942 42
GA-BP 0.892 0.937 73
BP 0.785 0.877 105
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