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With the rapid development of materials science and medical imaging technology, traditional optimization algorithms cannot
solve the problem of inverse scattering of complex scatterers well. ,erefore, more and more imaging algorithms for solving
complex scatterers were proposed. In this paper, a novel hybrid algorithm is put forward for the microwave imaging problem.
First, the proposed algorithm improves the search path of the traditional sine cosine algorithm, which obtains better global search
capability. Second, the least square is introduced to form judging and contrasting mechanisms, which forms the parallel algorithm
simultaneously, in order to make the proposed algorithmmore suitable for the diverse microwave imaging problem. To prove the
efficiency of the proposed algorithm, several examples, including ten benchmark functions, two engineering design problems, and
three different microwave imaging problem tests are adopted. As expected, the results show that the proposed algorithm achieves
not only superior optimal value but also the reconstruction of the complicated permittivity of the scatterer compared with several
traditional optimization algorithms.

1. Introduction

,e research of microwave imaging has been widely applied
in medical imaging, underground detection, and other
engineering fields [1–3]. However, such microwave imaging
problems are nonlinear and ill-posed. Traditional methods
are based on gradient information. Although the compu-
tational efficiency is high, it is easy to get the local optimum,
instead of the global optimum. Especially, with the rapid
development of the field of artificial metamaterials, the
permittivity distribution of materials is becoming more and
more complicated. Traditional methods based on gradient
information cannot reconstruct the permittivity distribution
of such scatterers well.

Traditional stochastic optimization algorithms have been
widely used in microwave imaging [4–6]. Researchers
transformed the traditional microwave imaging problem
into an optimization problem and solved it through opti-
mization algorithms. For instance, researchers [7–10] in-
troduced particle swarm optimization (PSO) to solve the

inverse scattering problems, and the results proved the
feasibility of PSO. Researchers introduced the engineering
application of PSO and differential evolution (DE) to re-
construct the shape of a perfect electrical conductor, human
tissue, scatterer profile, and shape from the measurement
data of the scattered field [11–13].

An improved evolution strategy was proposed, and it
was applied to themicrowave imaging.,e advantages of the
proposed algorithm were proved by the numerical results
[14]. In [15], bat algorithm (BA), as a natural heuristic
optimization algorithm with excellent performance, was
used to solve microwave imaging problems. In [16], the
whale optimization algorithm (WOA) was applied to solve
the inverse scattering problem, which was a problem solving
the reconstruction of an imperfect conductor with corners.

Although the stochastic optimization algorithm provides a
new solution to the microwave imaging problem, there are still
some performance problems, such as slower convergence rate
and large error, when solving complicated microwave imaging
problem, such as layered media and materials with bubbles.
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Researchers have been studying and exploring new
stochastic optimization methods during these ten years.
Many optimization algorithms with good performance have
been proposed, such as the naked mole-rat (NMR) algo-
rithm [17] and several improved whale optimization algo-
rithms. ,e researchers [18] proposed a novel optimization
algorithm, called the sine cosine algorithm (SCA). SCA has
been widely applied in the engineering field due to its good
performance [19–22].,e results of applications proved that
SCA performed well because it had more flexible search path
and very few algorithm parameters [23–25]. In the iterative
process, it easily found the global optimum with high search
efficiency. Meanwhile, different researchers have been
constantly improving the SCA according to specific engi-
neering problems and obtaining good performance [26–28].

To summarize, it is all known that there is currently no
SCA method applied to microwave imaging. Furthermore,
when traditional stochastic optimization algorithms are
applied to solve microwave imaging problems with com-
plicated scatterers, such as layered media and materials
containing bubbles, accurate results cannot be obtained due
to the high degree of nonlinearity and morbidity of the
problem.

In this paper, a hybrid algorithm (HA) based on an
improved sine cosine algorithm and least square is proposed.
A novel parameter is introduced to improve the search path,
so as to be more widely applied in complex inverse scattering
problems.

To prove the property of the proposed algorithm, the
benchmark function test, engineering design problems, and
three microwave imaging problems are applied. ,e results
are compared with that of the traditional metaheuristic
algorithm, such as particle swarm optimization (PSO) [29],
gray wolf optimizer (GWO), and moth-flame optimization
(MFO). ,e results show that the proposed algorithm can
overcome the shortcoming of being easily trapped in the
local minimum and that it is more suitable for the com-
plicated microwave imaging problem.

,e composition of paper is arranged as follows. In
Section 2, the mathematical model of the two-dimensional
microwave imaging problem is described. In Section 3, the
hybrid algorithm is introduced. In Section 4, the benchmark
function tests, engineering design problems, and three
different microwave imaging problems are applied to verify
the property of the proposed hybrid algorithm (HA).

2. Problem Description

As shown in Figure 1, the incident field is generated by the
incident antenna, and the scattered field of the scatterer can
be received at the receiving line by the scattering effect of
unknown objects in the detection area. ,e intensity of the
scattered field is determined by the distribution of elec-
tromagnetic parameters of the scatterers in the imaging
domain. Under the condition that the parameter distribu-
tion of the scatterer is known, the mathematical process of
calculating the scattering field is the forward scattering of the
electromagnetic field, and the process of calculating the
parameter distribution of the object in the electromagnetic

field through the scattering field at the receiving antenna is
the inverse scattering problem [30].

In the process of solving this problem, an important
relationship is used. ,e total field can be counted as the
superposition of the incident field and the scattered field
[30]:

Etot � Einc + Esca, (1)

where Etot represents the total field, Einc represents the
incident field, and Esca represents the scattered field.

As it is known, the incident field satisfies the following
Helmholtz equation:

∇2Einc + k
2
0Einc � 0, (2)

where k2
0 � ω2ε0μ0.

,en, the Dyadic Green function is used. ,e solution of
the scattering field is as follows:

Esca(r) � iωμ0􏽚
D

G r, r′( 􏼁J r′( 􏼁dr′, (3)

where D represents the imaging domain. When the incident
wave vector lies in the plane of the two-dimensional object,

G r, r′( 􏼁 �
i

4
H

1
0 k0 r − r′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (4)

Finally, the Lippman–Schwinger equation is obtained:

E(r) � Einc(r) + iωμ0􏽚
D

G r, r′( 􏼁J r′( 􏼁dr, (5)

where J(r′) � − iωε0[εr(r′) − 1]E(r′).
It is obvious that equation (5) is nonlinear and highly ill-

posed. εr is unknown.

3. A Hybrid Algorithm

,e sine cosine algorithm (SCA) was proposed by Seyedali
Mirjalili in 2016 [18]. More details of the proposed algorithm
could be found in detail in Section 3 of [18]. ,e search path
is shown as follows:

Incident 
antenna

Imaging domain

Scatterer

Receiving 
antenna

Figure 1: ,e simplified model of microwave imaging.
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Due to the serious morbidity and nonlinearity of
equation (5), traditional SCA cannot solve the microwave
imaging problem well, especially the complicated permit-
tivity distribution (the specific performance results will be
shown in Section 4).

Inspired from the PSO, the traditional search path has
been improved. ,e improved search path is

X
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r1X
k
i + c1ω P

k
best− i − X
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⎧⎪⎪⎪⎨

⎪⎪⎪⎩

,

(7)

where ω �
sin(r2), r3 < 0.5
cos(r2), r3 > 0.5􏼨 , Xk

i is the current position of

the particle, Pk
best is individual extreme, Gk

best is global ex-
tremum, r1 is the convergence factor, c1 and c2 are constants,
and ω is the trigonometric coefficient.

In the improvement of the search path, the search paths
of sine and cosine are retained to keep the search feature of
the sine and cosine dual path. ,e absolute value in the
traditional path is cancelled to make the search range larger,
which is conducive to finding the global optimum. In ad-
dition, global variable Gbest is introduced into the path at the
same time. Under the common constraints of global variable
Gbest and individual variable Pbest, the global optimum can
be better found.

,rough the improvement above, the search range will
rapidly narrow towards the global optimum. ,e search will
follow a smoother path to find the global best point, which is
shown in Figure 2.

In [31, 32], a novel parameter called empirical optimal
parameter Ebest was introduced into the search path. It had
been successfully used into the antenna pattern optimization
and the good performance had been obtained. ,erefore, in
the improved search path, empirical parameter Ebest is also
introduced. ,e definition of Ebest can be found in [31, 32].
Finally, the final search path is shown as follows:
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(8)

where ω �
sin(r2), r3 < 0.5
cos(r2), r3 > 0.5􏼨 .

In equation (8), c1, c2, and c3 are constants. r2 ∈ [0, π/2],
and r3 is a random number.

,e correct setting of the convergence factor plays a very
important role in an optimization algorithm. ,e conver-
gence factor is also improved in equation (8), which is
defined as follows:

r1 � rmax − rmax − rmin( 􏼁
t

T
, (9)

where rmax and rmin are constants.
Diversified parameter settings can make the optimiza-

tion algorithm more widely applicable to engineering
problems.

,e least square is a traditional mathematical optimi-
zation technique and is a deterministic method. It is all
known that the single stochastic optimization algorithm is
not suitable for microwave imaging of complicated scatterer.
To make the algorithm more suitable for a wider range of
microwave imaging problems, the least square method is
combined with the modified SCA to form a hybrid and
parallel algorithm. ,rough the combination of traditional
stochastic optimization algorithms and deterministic algo-
rithms and parallel computing, the proposed hybrid algo-
rithm can adapt to more diverse electromagnetic field
inverse problems. ,e flowchart of the hybrid algorithm is
presented in Figure 3.

,e specific process of the algorithm is as follows:

Step 1. First, the initial population is generated, that is, the
relative permittivity is generated according to the number
of blocks N into which the scatterer is divided and the
upper and lower bounds are searched by the algorithm.
Step 2. ,e generated relative permittivity is brought
into the objective function (fitness function), and the
first objective function value is calculated. ,e scat-
tering data of the forward electromagnetic field will be
calculated according to the method of moments
(MoM).
Step 3. ,e algorithm iteration starts; as the conver-
gence factor continues to shrink, the search range for
the relative permittivity gradually becomes smaller, and
the boundary violation is handled to prevent the al-
gorithm from crossing the boundary.
Step 4. ,e algorithm continues to iterate. After
reaching the maximum number of iterations, the it-
eration is stopped and the relative permittivity gbest1
generated by the iteration is outputted.
Step 5. In the process of steps (2)–(4), the least square
method is used at the same time to obtain another set of
relative permittivity gbest2.

A

B

A: Traditional range change
B: Improved range change

Figure 2: Traditional and improved range change.
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Step 6. gbest1 and gbest2 are substituted into the
original scattering field solution formula, the error is
calculated, the relative permittivity is selected with the
smallest error to output, and the result is obtained.

4. Experimental Results and Comparisons

In this part, to measure the performance of the proposed
method, ten benchmark functions which are chosen from
[18], two engineering design, and three inverse scattering
problems are applied. Microwaving imaging problems in-
clude the reconstructions of the uniform permittivity dis-
tribution, the layered permittivity distribution, and the
materials with bubbles. All the data, the parameters of the
listed algorithms and the settings of benchmark functions
can be found in the following part.

4.1. BenchmarkFunctionsTest. ,e performance of proposed
algorithm is compared with traditional optimization algo-
rithms genetic algorithm (GA), DE, PSO, moth-flame opti-
mization (MFO), gray wolf optimizer (GWO), and SCA. ,e
parameters of the algorithm settings are shown in Table 1.

,e details of the benchmark functions are shown in
Table 2.

,e optimal function values are listed in Table 3.
Based on the results and considering all of the bench-

mark function test results, for the benchmark function “F5,”
the proposed hybrid algorithm (HA) cannot get the better
solution than the others, and for the function F10, the
proposed HA cannot get the better solution as DE within the
tolerance of error. For the other functions, the proposed
algorithm is more efficient and accurate at solving the
benchmark function tests, and it can obtain the superior
optimal solution than the traditional algorithms listed.

4.2. Tension/Compression Spring Design Problem.
Figure 4 shows the sketch map of this problem. It is a classic
problem of verifying the performance of the proposed op-
timization algorithms. ,ere are three variables in this
problem: D, P, and d.

,is problem is described in mathematical language as
follows:

Consider X � x1 x2 x3􏼂 􏼃 � d D P􏼂 􏼃

Minimize f(X) � (x3 + 2)x2x
2
1

Subject to g1(X) � 1 − x3
2x3/71785x4

1 ≤ 0g2(X) � 4x2
2 −

x1x2/12566 (x2x
3
1 − x4

1) + 1/5108x2
1 ≤ 0g3(X) � 1 −

140.45x1/x2
2x3 ≤ 0 g4(X) � x1 + x2/1.5 − 1≤ 0, where

0.05≤x1 ≤ 2, 0.25≤ x2 ≤ 1.30, and 2.00≤ x3 ≤ 15.
,e detailed description of the problem can be found in

[35]. ,e optimization results of all algorithms used are

Start

Initial population

Fitness calculation

Sine search path Cosine search path

Solving border violations

Max iteration reached
Get the optimal solution gbest1 Get the optimal solution gbest2

Compare two results, output the global
optimal solution with smallest error

End

Ordinary least squares

r3 > 0.5r3 < 0.5 r3

Figure 3: A flowchart of the hybrid algorithm.

Table 1: ,e parameter setting of algorithm.

Algorithm Parameter settings N

PSO

Wmax� 0.9

30Wmin� 0.4
c1� 0.5
c2� 0.5

GA Pc� 0.8 30Pm� 0.2 gap� 0.9

DE Mutation rate: F0� 0.5 30Cross probability: CR� 0.9
GWO ,e same as [33] 30
MFO ,e same as [34] 30
SCA a� 2 30

Proposed algorithm
rmax � 0.9

30rmin � 0.4
c1� c2� 0.5

,e number of search agents 30
,e number of iterations 500
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shown in Table 4, which are from [35] (more details can be
found in the network link https://e-tarjome.com/storage/
panel/fileuploads/2019-08-22/1566462251_E11587-e-tarjome.
pdf).

From the optimization results, it can be seen that the
proposed hybrid algorithm (HA) can achieve the best op-
timal cost compared with the other algorithm listed.

4.3. Pressure Vessel Design Problem. Figure 5 shows the
sketch map of this problem.

,is problem is described in mathematical language as
follows:

Consider X � x1 x2 x3 x4􏼂 􏼃 � Ts Th R L􏼂 􏼃

Minimize f(X) � 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661

x2
1x4 + 19.84x2

1x3
Subject to g1(X) � − x 1 + 0.00193x3 ≤ 0 g2 (X) � − x3 +

0.00954x3 ≤ 0 g3(X) � − π x2
3x4 − 4/3πx2

3 + 129600≤ 0 g4
(X) � x4 − 240≤ 0, where 0≤ x1, x2 ≤ 99, 10≤ x3, x4 ≤ 200.

,e detailed description of the problem can be found
in [35]. All the results can be found in Table 5, which are
from [35] (more details can be found in the network link
https://e-tarjome.com/storage/panel/fileuploads/2019-08-22/
1566462251_E11587-e-tarjome.pdf).

From the optimization results, it can be seen that
the proposed hybrid algorithm (HA) can achieve the
best optimal cost compared with the other algorithm
listed.

Table 2: ,e setting of benchmark functions.

Function Dim Range fmin

Unimodal functions

f1(x) � 􏽐
n
i�1 x2

i 10 x ∈ [− 100, 100] 0
f2(x) � 􏽐

n
i�1 |xi| + 􏽑

n
i�1 |xi| 10 x ∈ [− 10, 10] 0

f3(x) � 􏽐
n
i�1 (􏽐

i
j− 1 xj)

2 10 x ∈ [− 100, 100] 0

f4(x) � max
i

|xi|, 1≤ i≤ n􏼈 􏼉 10 x ∈ [− 100, 100] 0

Multimodal functions
f5(x) � 􏽐

n
i�1 − xi sin(

���
|xi|

􏽰
) 10 x ∈ [− 500, 500] − 418.9829× 5

f6(x) � 􏽐
n
i�1[x2

i − 10 cos(2πxi) + 10] 10 x ∈ [− 5.12, 5.12] 0

Multimodal functions

f7(x) � − 20 exp(− 0.2
�����������

(1/n)􏽘
n

i�1x
2
i

􏽱

)

− exp((1/n) 􏽘
n

i�1
cos(2πxi)) + 20 + e

10
x ∈ [− 32, 32] 0

f8(x) � (1/400) 􏽐
n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 10 x ∈ [− 600, 600] 0

Fixed-dimensions multimodal
benchmark function

f9(x) � ((1/500) + 􏽐
25
j�11/j + 􏽐

2
i�1 (xi − aij)

6)− 1 2 x ∈ [− 65.536, 65.536] 1

f10(x) � 􏽐
11
i�1[ai − (x1(b2i + bix2)/b2i + bix3 + x4)]

2 4 x ∈ [− 5, 5] 0.0003

Table 3: Optimal values of the benchmark functions.

F GA DE PSO MFO GWO SCA Proposed algorithm
F1 5.0726 9.6466×10− 12 120.3183 6.0858×10− 14 8.5943×10− 58 6.6230×10− 16 2.1488 × 10− 71

F2 25.2404 1.8883×10− 6 5.2907 1.4231× 10− 8 7.6446×10− 33 5.1195×10− 9 2.1747 × 10− 35

F3 1.0249×103 7.6280×10− 4 653.9996 0.4037 1.2557×10− 30 1.0708×10− 6 3.7612 × 10− 57

F4 27.4603 0.0026 13.8358 0.6668 2.6329×10− 19 7.1505×10− 5 5.0888 × 10− 21

F5 − 26.4461 − 3.6354×103 − 2.9342×103 − 3.8330×103 − 2.3731× 103 − 2.0143×103 − 4.1898 × 103

F6 80.9664 16.8237 12.1527 30.8437 0.0000 9.5213×10− 13 0.0000
F7 19.9361 2.3264×10− 6 10.8616 1.4952×10− 7 7.9936×10− 15 6.6704×10− 8 8.8818 × 10− 16

F8 2.2488 0.5056 3.0373 0.1648 0.0610 2.1087×10− 10 0.0000
F9 4.9505 0.9980 8.8408 2.9821 2.9821 0.9995 0.9980
F10 0.0012 0.0003 0.0216 0.0008 3.7189×10− 4 7.1787×10− 4 3.1038 × 10− 4

P

d

P
D

Figure 4: ,e model of tension/compression spring design problem.
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4.4. Reconstruction of the Uniform Permittivity Distribution.
As an example, consider a problem of microwave imaging
for the scatterer with uniform permittivity. ,e shape of
scatterer is a square. ,e permittivity is 3. ,e center co-
ordinate of the conductor is located at (0, 0). ,e scatterer is
separate into pieces of 4× 4 (Dim� 16).

,e transmit antenna with a frequency of 3GHz is
adopted in the field model. ,e distance between the in-
centive source and the center of the scatterer is 0.5m. Sixty
receiving antennas are evenly applied, with a radius of 0.5m,
just as shown in Figure 6.

,e fitness function is defined as

f �
􏽐

L
l�1 􏽐

M
m�1 E

l
s rm

�→
( 􏼁 − E

l
m rm

�→
( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
L
l�1 􏽐

M
m�1 E

l
m rm

�→
( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (10)

where El
m is the given scattered field data, which is calculated

by method of moments (MoM), and El
s is calculated by the

algorithm.

In addition, the mean squared error (MSE) is also ap-
plied to judge the performance of the HA. It is defined as

MSE �
1
n

􏽘

n

i�1
εi − εr􏼂 􏼃

2
, (11)

where εi is the optimal solution, which is obtained by the
proposed algorithm, and εr equals 3, which represents the
known permittivity.

,e results are listed in Table 6. ,ese parameters are to
judge the constancy of the results.

,e convergence curve is shown in Figure 7.
Based on the results, the convergence rate of PSO is very

fast. However, it is obvious that it is caught in the algorithm
precocity. And, the stability of the DE solution is not better
than the proposed HA. To sum up, considering the stability
of the solution, the error of solution and the MSE, the
proposed algorithm represents better than the other three
optimization algorithms listed.

4.5. Reconstruction of Layered Permittivity Distribution.
As an example, consider a microwave imaging problem for
the scatterer with the layered permittivity distribution. ,e
shape of the scatterer is the same as above, which has a
layered relative permittivity distribution, as illustrated in
Figure 8. ,e permittivity is 2, 8, and 4 from the top to
bottom in turn.

Four incentive sources with a frequency of 2GHz are
adopted, 0.1m from the center of the scatterer. Sixty re-
ceiving antennas are evenly applied, with a radius of 1.5m.

Table 4: ,e experimental results of HA and other algorithms for tension/compression spring design problem.

Algorithm
Optimal values for variables

Optimal cost
d D P

WOA (Mirjalili and Lewis, 2016) 0.051207 0.345215 12.54854 0.0126763
MVO (Mirjalili et al., 2016) 0.05251 0.37602 10.33513 0.012790
CPSO (He and Wang, 2007) 0.051728 0.357644 11.244543 0.0126747
GSA (Rashedi et al., 2009) 0.0500 0.317312 14.22867 0.0128739
GA (Coello and Mezura-montes, 2002) 0.051989 0.363965 10.890522 0.012681
ES (Mezura-montes and Coello, 2008) 0.051643 0.3556 11.397926 0.012698
HS (Mahdavi et al, 2007) 0.051154 0.349871 12.076432 0.0126706
CGDA (Baykasoğlu, 2012) 0.0516925 0.3568108 11.2835059 0.012665
BA (Gandomi et al., 2013) 0.05169 0.35673 11.2885 0.0126652
MFO (Mirjalili, 2015) 0.051994457 0.36410932 10.868421862 0.0126669
HPSODE (Liu et al., 2010) 0.0516888101 0.3567117001 11.289319935 0.0126652329
CDE (Hang et al., 2007) 0.051609 0.354714 11.410831 0.0126702
UABC (Brajevic and Tuba, 2013) 0.051691 0.356769 11.285988 0.012665
AFA (Baykasoğlu and Ozsoydan, 2015) 0.051667 0.356198 11.319561 0.0126653
CSA (Askarzadeh, 2016) 0.051689 0.356717 11.289012 0.0126652
TEO (Kaveh and Dadras, 2017) 0.051775 0.358792 11.168390 0.012665
GWO (Mirjalili et al., 2014) 0.05169 0.356737 11.28885 0.012665
EEGWO (Long et al., 2018) 0.051673 0.35634 11.3113 0.012665
SCA (Mirjalili, 2016) 0.05078 0.334779 12.72269 0.0127097
ISCA (Wen Long et al, 2018) 0.0520217 0.364768 10.8323 0.012667
ROL-GWO (Wen Long et al, 2019) 0.0517234 0.357538 11.2416 0.012666
HA (this work) 0.0513 0.3184 10.1900 0.010214
https://e-tarjome.com/storage/panel/fileuploads/2019-08-22/1566462251_E11587-e-tarjome.pdf.

TsTh L

R R

Figure 5: ,e model of pressure vessel design problem.
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According to the free-space wavelength, the imaging domain
is divided into N� 10×10 subdomains.

To test the property of the proposed method, three other
common algorithms (PSO, DE, and SCA) are used for
comparison purposes. ,e number of iterations is 200, and
the population number is 50. ,e results of the recon-
struction are shown in Figure 9.

,e convergence curve is shown in Figure 10.

Table 5: ,e experimental results of HA and other algorithms for pressure vessel design problem.

Algorithm
Optimal values for variables

Optimal cost
Ts , R L

WOA (Mirjalili and Lewis, 2016) 0.8125 0.4375 42.0982699 176.638998 6059.7410
MVO (Mirjalili et al., 2016) 0.8125 0.4375 42.090738 176.73869 6060.8066
CPSO (He and Wang, 2007) 0.8125 0.4375 42.091266 176.7465 6061.0777
GSA (Rashedi et al., 2009) 1.125 0.625 55.9886598 84.4542025 8538.8359
GA (Coello and Mezura-montes, 2002) 0.8125 0.4375 42.097398 176.65405 6059.9463
ES (Mezura-montes and Coello, 2008) 0.8125 0.4375 42.098087 176.640518 6059.7456
ACO (Kaveh and Talatahari, 2010) 0.8125 0.4375 42.098353 176.637751 6059.7258
CGDA (Baykasoğlu, 2012) 0.8125 0.4375 42.0975 176.6484 6059.8391
CSA (Gandomi et al., 2013) 0.8125 0.4375 42.0984 176.6366 6059.7140
BA (Gandomi et al., 2013) 0.8125 0.4375 42.0984 176.6366 6059.7143
MFO (Mirjalili, 2015) 0.8125 0.4375 42.098445 176.636596 6059.7143
HPSODE (Liu et al., 2010) 0.8125 0.4375 42.098446 176.636596 6059.714335
CDE (Hang et al., 2007) 0.8125 0.4375 42.0984 176.6376 6059.7340
UABC (Brajevic and Tuba, 2013) 0.8125 0.4375 42.098446 176.636596 6059.714335
AFA (Baykasoğlu and Ozsoydan, 2015) 0.8125 0.4375 42.0984 176.6366 6059.7143
CSA (Askarzadeh, 2016) 0.8125 0.4375 42.0984 176.6366 6059.7144
TEO (Kaveh and Dadras, 2017) 0.8125 0.4375 42.0984 176.6366 6059.71
GWO (Mirjalili et al., 2014) 0.8125 0.4375 42.0989181 176.758731 6051.5639
EEGWO (Long et al., 2018) 13.09291 6.792196 42.09758 176.6495 6059.8704
SCA (Mirjalili, 2016) 0.817577 0.417932 41.74939 183.5727 6137.3724
ISCA (Wen Long et al, 2018) 12.96419 7.150134 42.09829 176.6392 6059.7489
ROL-GWO (Wen Long et al, 2019) 12.73387 6.781898 42.09825 176.6397 6059.7528
HA (this work) 0.8125 0.4375 42.0984 174.6670 6003.6540

y

x

Scatterer

Measuring point

Incentive 
source

Figure 6: ,e model of a scattered field.

Table 6: ,e results of the algorithm performance comparison.

Algorithm Max Min fmin MSE

DE 4.3225 2.3503 4.6410×10− 7 0.2310
PSO 3.7381 1.4923 0.0072 0.3084
SCA 4.4657 1.0000 0.0511 0.8155
Proposed
algorithm 3.0007 2.9995 9.5047 × 10− 6 1.1017 × 10− 7

,e number of iterations 1000
,e number of populations 50
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Figure 7: Convergence curve.
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8

7

6

5

4

3

2

(a)

8

7

6

5

4

3

2

(b)

8

7

6

5

4

3

2

(c)

8

7

6

5

4

3

2

(d)

Figure 9: Reconstruction result of different algorithms. (a) Proposed algorithm. (b) PSO. (c) DE. (d) SCA.
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Based on the results of convergence curve, the four
methods all have reconstruction errors. ,is is due to the
serious morbidity of the inverse scattering problem. Obvi-
ously, the four algorithms have fallen into different degrees
of precocity. However, the convergence value of the pro-
posed algorithm is the smallest.

From the imaging results, the three other optimization
algorithms cannot reconstruct the number of layers and
distribution of the permittivity of the scatterer well. ,e
nature of the scatterer cannot be effectively observed from
the results.,e proposed algorithm possesses the ability to
reconstruct the stratification of the permittivity
distribution.

Correlation coefficient is a statistical indicator, which is
used to reflect the close degree of correlation between
variables. According to the reconstruction results, the cor-
relation coefficient between the scattered field data obtained
by optimization and original field data is shown in Table 7.

It can be seen from the correlation coefficient that the
correlation coefficient obtained by the proposed algorithm is
the largest among the listed algorithm, that is, the recon-
structed scattered field data are closest to the original field data.

4.6.ReconstructionofMaterialswithBubbles. As an example,
consider a problem of reconstructing a scatterer with
bubbles in it. ,e shape of the scatterer is the same as the
above part. ,e permittivity equals 5. ,ree bubbles are
randomly distributed in the scatterer, as shown in Figure 11.

Four incentive sources with a frequency of 2GHz are
adopted, which is 0.1m from the center of the scatterer. Sixty

receiving points are evenly applied on a circle. ,e radius of
circle is 1.5m. According to the free-space wavelength, the
imaging domain is partitioned into N� 10×10 subdomains.

To test the properties of the proposed method, three
other common algorithms (PSO, DE, and SCA) are used for
comparison purposes. ,e number of iterations is 200, and
the population number is 50. ,e reconstruction results are
illustrated in Figure 12.

,e convergence curve is shown in Figure 13.
From the results, the four methods all have recon-

struction errors, but the convergence value of the proposed
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Figure 10: Convergence curve.

Table 7: ,e correlation coefficient between the obtained scattered field data and the original field data.

Algorithm PSO DE SCA Proposed HA
Original field data 0.9307 0.6387 0.7241 0.9700
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Figure 11: Relative permittivity distribution of materials with
bubbles.
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Figure 12: Reconstruction result of the different algorithms. (a) Proposed algorithm. (b) PSO. (c) DE. (d) SCA.
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Figure 13: Convergence curve.
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algorithm is the smallest. It can be observed that the three
other optimization algorithms cannot reconstruct the
bubble positions and the permittivity of the scatterer. ,e
reconstruction result cannot reflect the material properties
of the scatterer and bubble positions well. ,e proposed
algorithm possesses the ability of reconstruction for mate-
rials with bubbles.

,e correlation coefficient between the obtained scat-
tered field data and the original field data is shown in Table 8:

It is shown that the correlation coefficient obtained by
the proposed algorithm HA is the largest among the listed
algorithm. It means that the reconstructed scattered field
data obtained by the proposed algorithm are closest to the
original field data.

It can be seen from quantitative analysis results that
the proposed hybrid algorithm, when solving recon-
struction of the uniform permittivity distribution, can
obtain the smaller resulting error and more stable solution
than the traditional stochastic optimization algorithm
listed. And, it can be seen from qualitative analysis results
that when solving the reconstruction of layered permit-
tivity distribution and of materials with bubbles, the
proposed algorithm is proved to be able to solve these
problems.

5. Conclusion

In this paper, a hybrid algorithm (HA) based on a modified
SCA and least square is proposed to solve the microwave
imaging problems.

Firstly, the proposed algorithm improves the search
ability of traditional SCA. ,e search path of traditional
algorithms has been modified. ,e improved algorithm
can obtain the optimal solution closer to the theoretical
value.

,en, to be more suitable for diverse and complicated
microwave imaging problems, the least square method is
introduced to form a joint and parallel algorithm. Numerical
results show that the hybrid algorithm is better applicable for
solving the problem of complex scatterer imaging.

In addition, two classical engineering design problems
are applied to prove the properties of the proposed algo-
rithm.,e experiment results demonstrated the validity and
efficiency of the HA, which can get the minimum cost
compared with the results from the references.

However, at the same time, the inverse scattering
problem used in the paper has relatively small dimensions
and does not involve lossy materials, that is, the permittivity
of the scatterer has a large imaginary part. ,erefore, in the
future research, the research direction of the physical-in-
spired algorithm for lossy materials and high-dimensional
inverse scattering should be explored.
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