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Sources with large power differences are very common, especially in complex electromagnetic environments. Classical DOA
estimation methods suffer from performance degradation in terms of resolution when dealing with sources that have large power
differences. In this paper, we propose an improved DOA algorithm to increase the resolution performance in resolving such
sources.*e proposedmethod takes advantage of diagonal loading and demonstrates that the invariant property of noise subspace
still holds after diagonal loading is performed. We also find that the Cramer–Rao bound of the weak source can be affected by the
power of the strong source, and this has not been noted before. *e Cramer–Rao bound of the weak source deteriorates as the
power of the strong source increases. Numerical results indicate that the improved algorithm increases the probability of
resolution while maintaining the estimation accuracy and computational complexity.

1. Introduction

Direction-of-arrival (DOA) estimation has been extensively
investigated due to its wide applications in radar, sonar,
wireless communication, and navigation [1–4]; e.g., DOA
estimation is of significance for source location inMIMO radar
[5], and the issue of DOA estimation for noncircular sources is
valuable in practical communications [6]. Subspace-based
methods are preferred among numerous DOA estimation
methods due to their high superresolution and ease of
implementation [7–9]. For passive radar, the echo from the
target may be several dB lower than the direct signal or in-
tentional interference.*e estimation performance deteriorates
dramatically if the weak target is masked by the strong target
[10]. However, the classical MUSIC, Root-MUSIC, and Capon
algorithms suffer from severe performance degradation when
resolving closely spaced sources with large power differences
[11, 12], especially in the threshold region [13].

*ere are two main types of methods for DOA esti-
mation with sources that have power differences. One type
involves estimating the weak sources after mitigating the

strong interference. Generally, this type of method requires
prior knowledge of the strong interference. With prior DOA
knowledge of the strong interference, the interference
jamming method (IJM) is proposed in [14], where strong
interferences are eliminated by transforming the M×N-
dimensional array manifold matrix into M× (N− j) di-
mensions, in whichM is the number of array elements, N is
the number of incident sources, and j is the number of strong
interferences. However, the IJMmethod suffers from the loss
of array aperture because the steering vector belonging to the
strong interferences is removed from the array manifold
matrix. Another DOA estimation algorithm based on the
elimination of interference is proposed in [15], and it shows
better performance than the jamming jam method (JJM). Its
performance is limited when the power difference between
two sources is not large. Provided with accurate prior DOA
knowledge, the constrained MUSIC approach [16], the
weighted prior-MUSIC approach [17], and the improved L1-
SVDmethod [18] achieve accurate DOA estimation for weak
sources, whereas the performance degrades if the prior DOA
knowledge of strong interference is inaccurate. Given the
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number of strong interference, the DOA estimation of weak
sources in the presence of strong jamming has been studied
based on the extended noise subspace [19]. Prior knowledge
of strong interference is needed; otherwise, the extended
noise subspace is unavailable. Additionally, a modified
spectrum using eigenvector projections has proven valid in
dealing with sources exhibiting large power differences
based on the number of known sources [20]. However, prior
knowledge regarding the input sources is difficult to acquire,
especially in noncooperative situations, and limits the ap-
plications of methods that need prior knowledge.

*e other type of DOA estimationmethod for sources with
power differences does not need prior knowledge. However,
this type mostly employs numerous iterations at the cost of
increased computational complexity. An oblique projection
filter can be used to constrain sources from undesired direc-
tions without any prior knowledge of strong interference [21].
Multiple singular value decomposition is needed in this
method, and this increases the complexity of the algorithm. A
hybrid method without any prior knowledge utilizes com-
pressive sensing (CS) to estimate the DOAs of strong sources
and then removes the effects of strong sources via orthogonal
complements [22]. However, it suffers from resolution loss if
the DOAs of strong sources are not accurately estimated. *e
number of sources and the DOAs of weak sources can be
jointly obtained from the Eigenbeam mCapon method [23].
Repeated iterations are employed at the cost of considerable
computation complexity, and this is also true for the RELAX
algorithm [24]. Recently, sparse theory and sparse arrays have
attracted much attention and have provided a new method for
DOA estimation [6]. In [25], the authors analyze the loss of
weak targets in the sparse asymptotic minimum variance
(SAMV) method and propose the robust sparse asymptotic
minimum variance (RSAMV) algorithm. A robust orthogonal
projection method based on an optimized sparse array is
proposed without prior knowledge in which the DOAs of
strong and weak targets are precisely estimated [26], but many
iterations are still needed.

Both iterations and prior knowledge are not required for
the DOA estimation algorithm, which utilizes the invariant
property of noise subspace (IPNS) [27, 28]. In this paper, we
propose an improved DOA estimation algorithm to increase
the resolution performance based on the IPNS. *e improved
algorithm takes advantage of diagonal loading, and we dem-
onstrate that the IPNS still holds after diagonal loading. *e
Cramer-Rao bound (CRB) of the weak source is studied in the
presence of a strong source to examine the influence caused by
the power of the strong source. *e numerical results indicate
that our approach is highly effective in solving two closely
spaced sources with large power differences. *e rest of this
paper is organized as follows. In Section 2, the signal model is
introduced. In Section 3, an improved algorithm for DOA
estimation for sources with large power differences is proposed.
We demonstrate that the IPNS is still valid after diagonal
loading and analyze the complexity of the improved algorithm.
In Section 4, the CRBs of weak sources under different powers
of strong sources are studied. Numerical simulations and
discussions are presented in Section 5. Finally, we conclude our
work in Section 6.

2. Signal Model

Consider P independent narrowband sources impinging on
a uniform linear antenna array from the far-field, as shown
in Figure 1. *e distance between any two antenna elements
is d� λ0/2, where λ0 is the carrier wavelength.*e number of
receiver antenna elements isM (M>P). Suppose that the ith
source impinges on the uniform linear antenna array from
direction θi. *e DOAs of all sources are defined as
θ � [θ1, θ2, . . . , θP].

*e output of the uniform linear antenna array at time t
can be expressed as follows:

x(t) � As(t) + n(t), (1)

where x(t) � [x0(t), x1(t), . . . , xM(t)]T is the received
signal vector and (·)T denotes the matrix transpose oper-
ation. s(t) � [s1(t), s2(t), . . . , sP(t)]T is the vector of inci-
dent signals. n(t) � [n1(t), n2(t), . . . , nM(t)]T is the additive
and independent Gaussian noise vector whose covariance
and mean are σ2nI (I denotes the identity matrix) and zeros,
respectively. A � [a(θ1), a(θ2), . . . , a(θP)] is the array
steering matrix with a(θi) � [1, e− jwi , e− j2wi , . . . ,

e− j(M− 1)wi ]T and wi � k0d sin θi, where k0 � 2π/λ0. *e
covariance matrix of x(t) is given by the following:

R � E x(t) x(t)
H􏽨 􏽩 � ARsA

H
+ σ2nI, (2)

where E[·] and (·)H denote the expectation and the
conjugate transpose operators, respectively. Rs � E s(t)􏼂

s(t)
H

] is the covariance matrix of the input signal. Ac-
tually, the covariance matrix R is unavailable in real
applications and is typically replaced by a finite sample
covariance matrix:

􏽢R �
1
N

􏽘

N

t�1
x(t)xH(t), (3)

where N is the number of snapshots.

3. Improved Algorithm for DOA Estimation for
Sources with Large Power Differences

3.1. Improved Algorithm Based on the Invariant Property of
Noise Subspace. After introducing a virtual source, the noise
subspace remains the same as before only when the DOA of
the virtual source overlaps with the actual sources. *is
property, called the invariant property of noise subspace, is
demonstrated in [27] and can be used to estimate the DOAs
of actual sources. Diagonal loading is a widespread approach
to improve robustness against mismatch errors [29, 30]. We
find that diagonal loading is also effective in improving the
resolution of the IPNS method. *us, we propose an im-
proved algorithm based on the IPNS. Diagonal loading
effectively reduces the power differences between the strong
and weak sources, thereby increasing the resolution of the
improved algorithm. Next, we certify that the IPNS still
holds after diagonal loading so we can use it for DOA
estimation.
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*e eigenvalue decomposition (EVD) of the covariance
matrix R is given by the following:

R � UΣUH
� US UN􏼂 􏼃

ΣS

ΣN
􏼢 􏼣 US UN􏼂 􏼃

H
, (4)

where U � US UN􏼂 􏼃 and Σ � diag(ΣS,ΣN); diag(·) denotes
the diagonal matrix; and US, UN, ΣS, and ΣN are the ei-
genvectors and eigenvalues of the signal subspace and noise
subspace, respectively. *e space spanned by the impinging
sources and the noise are orthogonal; that is,
span(US)⊥span(UN), where span(·) denotes the spanned
space. ΣS is a diagonal matrix ΣS � diag(λ1, λ2, . . . , λP),
where

λ1 ≥ λ2 ≥ · · · ≥ λP, (5)

are the eigenvalues of the signal subspace. ΣN is also a di-
agonal matrix ΣN � diag(λP+1, λP+2, . . . , λM), where

λP+1 � λP+2 � · · · � λM � σ2n, (6)

are the eigenvalues of the noise subspace. Suppose that a
virtual source impinges on the receiving antenna array from
the direction θ′. *e virtual source does not physically exist
but is mathematically needed. *en, the new covariance
matrix including the virtual source can be defined as follows:

R′ ≜R + ka θ′( 􏼁a θ′( 􏼁
H

, (7)

where k> 0 is the power of the virtual source.*e EVD of the
new covariance matrix R′ can be given by the following:

R′ � U′Σ′U′H � US′ UN′􏼂 􏼃
ΣS′

ΣN′
⎡⎣ ⎤⎦ US′ UN′􏼂 􏼃

H
, (8)

whereU′ � US′ UN′􏼂 􏼃 and Σ′ � diag(ΣS′,ΣN′),US′ andUN′ are
the eigenvectors of the signal subspace and the noise sub-
space, respectively, and ΣS′ � diag(λ1′, λ2′, . . . , λP

′) and ΣN′ �

diag(λP+1′ , , λP+2′ , . . . , λM
′ ) are the signal and noise eigen-

values corresponding to the new covariance matrix R′, re-
spectively. Suppose that the direction of the virtual source θ′
overlaps with the ith actual source, that is,
θ′ � θi, i ∈ [1, 2, 3, . . . , P]. Define a selective unit vector ei as
follows:

ei ≜ [0, 0, . . . , 1, . . . , 0]
T
, (9)

where ei is a unit vector consisting of P elements and all the
elements are 0 except the ith element, which is 1. *en, the
new covariance matrix R′ can be written as follows:

R′ � ARsA
H

+ ka θ′( 􏼁a θ′( 􏼁
H

+ σ2nI

� ARsA
H

+ kAeie
T
i A

H
+ σ2nI

� ARS′A
H

+ σ2nI,

(10)

where RS′(m, n) � Rs(m, n) + k when m � n � i; otherwise,
RS′(m, n) � Rs(m, n). It is evident in equation (10) that the
virtual source does not affect the noise power but only
increases the power of the ith source when the direction θ′
overlaps with that of the ith actual source. *us, we can
obtain that the noise subspace eigenvalues ΣN′ remain
consistent with ΣN when θ′ overlaps with the ith actual
source, that is,

λP+1 � λP+2 � · · · � λM � λP+1′ � λP+2′ � · · · � λM
′ � σ2n.

(11)

When the direction of the virtual source is different from
those of any of the actual sources, that is,
θ′ ∉ [θ1, θ2, θ3, . . . , θP], then R′ is as follows:

R′ � ARsA
H

+ ka θ′( 􏼁a θ′( 􏼁
H

+ σ2nI

� A a θ′( 􏼁􏽨 􏽩
Rs 0

0 k
􏼢 􏼣 AH a θ′( 􏼁

H
􏽨 􏽩 + σ2nI.

(12)

In this case, the noise subspace eigenvalues ΣN′ are
different from ΣN. *e eigenvalues of R′ in descending order
are as follows:

λ1′ ≥ λ2′ ≥ · · · ≥ λP
′ ≥ λP+1′ ≥ λP+2′ � · · · � λM

′ � σ2n. (13)

*e eigenvalues of the noise subspace in equation (13)
are ΣN′ � diag(λP+2′ , λP+3′ , . . . , λM

′ ), which are different from
ΣN � diag(λP+1, λP+2, . . . , λM).

Diagonal loading has been demonstrated to be an ef-
fective approach for improving robustness in beamforming.
We employ diagonal loading to improve the resolution of
the IPNS method. After employing diagonal loading, the
covariance matrix can be expressed as follows:

R � R + σ2I, (14)

where σ2 is the coefficient of the diagonal loading. After the
EVD of R, we can obtain the following:

R � UΣUH
� US UN􏼂 􏼃

ΣS

ΣN

⎡⎣ ⎤⎦ US UN􏼂 􏼃
H

� UΣUH
+ σ2I � U Σ + σ2I􏼐 􏼑UH

,

(15)

where Σ � diag(ΣS,ΣN). It is apparent in equation (15) that
the diagonal matrix ΣN of the noise subspace can be written
as follows:

ΣN � ΣN + σ2I � diag λP+1 + σ2, . . . , λM + σ2􏼐 􏼑. (16)

After introducing the virtual source, we define the co-
variance matrix R′ based on R as follows:

…

0 1 2 M – 2 M – 1
x

y

o

d

θi

ith

Figure 1: Uniform linear antenna array for signal reception.
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R′ ≜R + ka θ′( 􏼁a θ′( 􏼁
H

� R + σ2I + ka(θ))a θ′( 􏼁
H

.
(17)

Similarly, it can also be certified that the virtual source
does not affect the noise subspace of R′ compared to that of
R if the direction θ′ overlaps with the actual sources. Assume
that the virtual source impinges on the receiving antenna
array from the direction θ′. *en, R′ can be rewritten as
follows:

R′ � R + σ2I + ka θ′( 􏼁a θ′( 􏼁
H

� ARsA
H

+ kAeie
T
i A

H
+ σ2nI + σ2I

� ARs
′AH

+ σ2n + σ2􏼐 􏼑I

� R′ + σ2I,

(18)

where R′ � ARS′AH + σ2nI. *e EVD of R′ is given by the
following:

R′ � U′Σ′U′
H

� US′ UN′􏼂 􏼃
ΣS′

ΣN′
⎡⎣ ⎤⎦ US′ UN′􏼂 􏼃

H

� US′ UN′􏼂 􏼃
ΣS′ + σ2I

ΣN′ + σ2I
⎡⎣ ⎤⎦ US′ UN′􏼂 􏼃

H
,

(19)

where

ΣN′ � diag λP+1′ , λP+2′ , . . . , λM
′􏼐 􏼑

� diag λP+1′ + σ2, λP+2′ + σ2, . . . , λM
′ + σ2􏼐 􏼑.

(20)

When the direction θ′ overlaps with the actual sources,
that is, θ′ � θi, i ∈ [1, 2, 3, . . . , P], we can obtain from
equation (16) that

ΣN′ � diag λP+1 + σ2, λP+2 + σ2, . . . , λM + σ2􏼐 􏼑 � ΣN. (21)

In contrast,

ΣN′ � diag λP+2′ , λP+3′ , . . . , λM
′􏼐 􏼑≠ΣN, (22)

as the direction of the virtual source is different from those of
any of the actual sources θ′ ∉ [θ1, θ2, θ3, . . . , θP].

Now, we have demonstrated that the invariant property
of the noise subspace still holds after employing diagonal
loading. *e noise subspace eigenvalues of R′ remain
consistent with those of R when θ′ � θi, i ∈ [1, 2, 3, . . . , P].
Hence, we can still use the IPNS for DOA estimation after
diagonal loading.

According to the above discussion, we can use the IPNS
after diagonal loading to estimate the DOAs of the incident
sources. *e spatial zero spectrum f(θ′) can be expressed as
follows:

f θ′( 􏼁 � 􏽘
M

j�P+1
λj
′ − λj􏼐 􏼑. (23)

*eDOAs of the impinging sources are those 􏽢θ for which
1/f(θ′) reaches their maxima, which can be expressed as
follows:

􏽢θ � argmax
θs≤θ′≤θe

1
f θ′( 􏼁

, (24)

where θs and θe denote the start angle and end angle of the
spectral search, respectively.

To implement the improved algorithm, the detailed steps
are listed in Algorithm 1. Generally, the covariance matrix R
is not available in practical applications, and the finite
sample covariance matrix 􏽢R is used instead of R.

3.2. Complexity Analysis of the Improved Algorithm. *e
computational complexity of the algorithm has a direct
relationship with its time consumption. Let J denote the
number of spectral points. We must compute ‖aH(θ)UN‖2

for each spectral point in the MUSIC method, where ‖·‖2 is
the Frobenius norm.*e dimensionality of UN isM-P; then,
the computational complexity of the MUSIC method in the
spectral search step is J(M − P)(M + 1) flops [31, 32]. To
obtain the noise subspace eigenvector UN, the EVD of the
covariance matrix R is needed. If the FSD method in [33] is
employed for the EVD of R, the complexity is given by
M2(P + 2) flops. *us, the total computational complexity
of the classical MUSIC method is given by the following:

CMUSIC � J(M − P)(M + 1) + M
2
(P + 2) flops. (25)

However, the EVD of R′ is required in each spectral
point for the IPNS method. *us, the computational
complexity of the IPNS method in the spectral search step is
JM2(P + 2) flops. Before the spectral search step, JM2 flops
are needed for computing ka(θ′)a(θ′)H to obtain R′. *e
total computational complexity of the IPNS method is as
follows:

CIPNS � JM
2
(P + 3) + M

2
(P + 2) flops. (26)

For the proposed algorithm, diagonal loading requires
another M flop. *e total computational complexity of the
improved algorithm is as follows:

CIMPROVED � JM
2
(P + 3) + M

2
(P + 2) + M flops. (27)

4. CRB of a Weak Source in the Presence of a
Strong Source

*e CRB provides the lower bound for the unbiased esti-
mators and provides fundamental lower limits for the
variance of the parameter estimator [34–36]. *us, studies
on the CRB of weak sources in the presence of strong sources
with different powers can be used as references for unbiased
estimators. For multiparameter estimation, the CRB in-
equality has the following form [37]:

var 􏽢θi􏼐 􏼑≥ J−1
􏽨 􏽩

ii
, (28)

where 􏽢θi is the DOA estimation of the ith source, J is the
Fisher information matrix, and (·)−1 denotes the matrix
inverse operation.*e ijth element of the Fisher information
matrix J is given by the following [34]:
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Jij � N · tr R−1
·
zR
zθi

R−1
·

zR
zθj

􏼢 􏼣. (29)

For independent incident sources, the input signal co-
variance matrix is diagonal, that is, Rs � diag(ρ1, ρ2, . . . , ρP),
where ρi represents the power of the ith source. Hence, the
covariance matrix R can be simplified as follows:

R � 􏽘
P

i�1
ρia θi( 􏼁a θi( 􏼁

H
+ σ2nI. (30)

*e partial derivative of the array covariance matrix R
with respect to θi is as follows:

zR
zθi

� ρi

za θi( 􏼁

zθi

a θi( 􏼁
H

+ a θi( 􏼁
za θi( 􏼁

H

zθi

􏼠 􏼡, (31)

where the partial derivative of the steering vector a(θi) with
respect to θi is

za θi( 􏼁

zθi

�
z

zθi

1 q θi( 􏼁 · · · q θi( 􏼁
M−1􏽨 􏽩

T
, (32)

and q(θi) � e−jk0dsin θi . dq(θi)
m− 1/dθi is given by the

following:

dq θi( 􏼁
m−1

dθ
� (m − 1) · q θi( 􏼁

m−2
· q θi( 􏼁 · −jk0d cos θi( 􏼁

� −j(m − 1)k0d cos θi · q θi( 􏼁
m−1

,

m � 1, 2, . . . , M.

(33)
When the distance between the receiving antenna ele-

ments is λ0/2, we can obtain that dq(θi)
m−1/dθi � −j(m −

1)π cos θi e−j(m− 1)π sin θi , m � 1, 2, . . . , M. Substituting equa-
tion (33) into equation (32) and then into equation (31), we
obtain zR/zθi. *en, we can obtain the ijth element of the
Fisher matrix Jij from equation (29). *e CRB of
θ � [θ1, θ2, . . . , θP] can be obtained, that is,

θCRB � J− 1
􏽨 􏽩

ii
. (34)

5. Numerical Simulation

Computer simulations regarding the CRB of the weak
source, the spatial spectrum of the proposed method, the
resolution probability, the root-mean-square error (RMSE),
and the computational complexity are conducted to dem-
onstrate the performance of our improved algorithm. We
run 1000 independent Monte Carlo simulations for each
experiment to study the probability of resolution and the
RMSE of the proposed method, while the other two algo-
rithms, the MUSIC algorithm and IPNS method, are also
discussed as comparative simulations. *e input signal-to-
noise ratio (SNR) is defined as SNR � 10 log10(ρ2s /σ

2
n), where

ρ2s is the power of the source. In the following simulations,
we set source 1 with SNR1 as the weak source and source 2
with SNR2 as the strong source. *e interference-to-signal
ratio (ISR) is defined as SNR2- SNR1.*e ISR variation is the
result of increasing SNR2, while SNR1 does not change.

5.1. CRB Analysis. As shown in Figure 1, suppose two in-
dependent sources impinge on the receiving antenna array
with M� 9 element numbers, and the power of the noise is
σ2n � 1. *e study of the CRB of the weak source calculated
by

����
θCRB

􏽰
is conducted in the following simulations. *e

CRB increase percentage is defined as
(

����
θCRB

􏽰
−

�����
θCRB0

􏽰
)/

�����
θCRB0

􏽰
× 100%, where

�����
θCRB0

􏽰
is the

CRB of the source with ISR� 0 dB, which means that the
incident two sources have the same power.

In the first simulation, we are interested in the change in
the CRB of the weak source when the ISR increases, but
SNR1 remains the same. *e numerical simulation results of
the CRB as a function of the ISR under different SNR1
conditions are shown in Figure 2. Figure 2 shows that the
CRB of the weak source rises as the ISR increases and
eventually reaches a fixed value, and this indicates that the
CRB of the weak source deteriorates as the power of the
strong interference increases. We can also see that CRB
deteriorations exist for each SNR1, meaning that increasing
the power of the strong source has a negative effect on the
weak source, especially when the SNR1 of the weak source is
low.

*e increase percentages of the CRB of the weak source
against the ISR under different SNR1 are shown in Figure 3.
From Figure 3, we can see that the CRB increases percentage

(i) Step 1.Obtain the output of the uniform linear antenna array x(t) from equation (1) and compute the sample covariance matrix 􏽢R
as in equation (3).

(ii) Step 2. Perform the EVD of 􏽢R to obtain the noise subspace eigenvalue matrix 􏽢ΣΝ � diag(􏽢λP+1,
􏽢λP+2, . . . , 􏽢λM).

(iii) Step 3. Apply diagonal loading on 􏽢R to obtain 􏽢R � 􏽢R + σ2I through equation (14). σ2 is equal to 􏽢λ1, which is the largest eigenvalue
of the signal subspace. *e noise subspace eigenvalues of 􏽢R are 􏽢ΣΝ � diag(

􏽢λP+1,
􏽢λP+2, . . . ,

􏽢λM).
(iv) Step 4. Suppose that the virtual source impinges on the antenna array from direction θ′; then, obtain the matrix 􏽢R′ � 􏽢R +

ka(θ′)a(θ′)H as in equation (18), where k � tr(􏽢R)/M, tr(·) denotes the trace of 􏽢R and M is the number of array elements.
(v) Step 5. Perform the EVD of 􏽢R′ to obtain the eigenvalues in descending order as 􏽢λ1′ ≥ · · · ≥ 􏽢λP

′ ≥ 􏽢λP+1′ ≥ · · · ≥ 􏽢λM
′ .

(vi) Step 6. For each θ′, compute the spatial zero spectrum f(θ′) � 􏽐
M
j�P+1(

􏽢λj
′ − 􏽢λj) through equation (23). *e DOAs of the sources

are P sets of θ′ that enable 1/f(θ′) to reach P maximum values, as in equation (24).

ALGORITHM 1: Pseudocode of the proposed algorithm.
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for the weak source increases sharply from 0 to 11% when
SNR1 � 0 dB, but it only increases from 0 to 5.5% when
SNR1 � 8 dB. *is demonstrates that the CRB of the weak
source is more susceptible to the power of the strong source
when its SNR is low. Furthermore, it can be seen from
Figure 3 that the CRB increase percentage increases from
11% to 12% as the ISR increases from 10 dB to 20 dB when
SNR1 � 0 dB. *is means that the influence of the power of
the strong source is limited when its power exceeds that of
the weak source by too much.

In the second simulation, we further study the influence
caused by the power increase of the strong source on the
CRB of the weak source. *e CRBs of the weak source as a

function of the SNR1 under different ISRs are shown in
Figure 4. It can be seen in Figure 4 that the CRB of the weak
source increases as the strong source power increases at each
SNR1, and this once again demonstrates that the power of
the strong source leads to CRB degradation for the weak
source. Moreover, this reveals that the estimation perfor-
mances of weak sources are affected by the power of strong
sources.

*e CRB increase percentage for the weak source
against SNR1 under different ISRs is shown in Figure 5. It
is clearly seen in Figure 5 that the CRB increase percentage
changes from 18.5% to 4.4% as SNR1 increases from
-10 dB to 10 dB when ISR � 20 dB. *e CRB degradation is
most apparent when SNR1 is low, and this can also be
found when ISR � 2 dB, ISR � 5 dB, and ISR � 10 dB;
therefore, the weak source is more susceptible when its
SNR is lower and the power of the strong interference is
higher.

In the third simulation, the CRB of the weak source
against the angular separation between the two sources is
studied. We suppose that two independent sources impinge
on the antenna array from ±θ; then, the angular separation
between the two sources is 2θ. When θ varies from 1° to 7.5°,
the CRB of the weak source versus the angular separation is
shown in Figure 6. Figure 6 indicates that the CRB of source
1 (the weak source) is lowest when the two sources have the
same power. *e CRB of the weak source rises when the
strong interference power increases under each angular
separation.

From the above discussion, we can see that the CRB of
the weak source is susceptible and tends to be influenced by
the power of the strong source, especially when its SNR is
low; this has not been studied before. However, sources with
large power differences are very common in complex
electromagnetic environments. *e DOA estimation for
sources with different powers should receive special
attention.

5.2. Spatial Spectra. In this simulation, we compare the
spatial spectra of different algorithms when resolving two
and three sources. Suppose that two independent sources
impinge on the receiving antenna array (M � 9) from 2°
and −2°, respectively. Source 1 is the weak source with
SNR1 � 2 dB, and source 2 is the strong source with
SNR2 �12 dB. *e spatial spectra are shown in
Figure 7(a).

Suppose that three independent sources impinge on the
receiving antenna array (M � 9) from −2°, 2° and 6° with
SNR1 � 17 dB, SNR2 � 7 dB, and SNR3 �12 dB, respectively.
*e spatial spectra of the different algorithms are shown in
Figure 7(b). From Figure 7, we can see that only the strong
source is readily estimated by the MUSIC algorithm when
two sources exist. *ree sources cannot even be resolved
using the MUSIC algorithm. *e spectra of the improved
algorithm and IPNS method are similar. As shown in
Figure 7(b), three peaks are more distinct for the improved
algorithm than those of the IPNS method.
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5.3. Probability ofResolution. In this section, we focus on the
performance of the improved algorithm in terms of re-
solving two impinging sources. For the first simulation, we
suppose that two independent sources (source 1 and source
2) impinge on the receiving antenna array (M � 9) from 1.5°
and −1.5°, respectively.

*e probability of resolution as a function of SNR1 is
shown in Figure 8. It can be seen in Figure 8 that the
improved algorithm has a higher probability of resolution
than those of the other two methods. When SNR1 � 1 dB
and ISR � 10 dB, the probability of resolution for the
improved algorithm exceeds those of the IPNS method
and the MUSIC algorithm by 17.8% and 62.0%,

respectively. Furthermore, it is 22.4% and 55.1% higher
than those of the IPNS method and the MUSIC algorithm
when ISR � 0 dB and SNR1 � 5 dB.

For the second simulation, we suppose that two inde-
pendent sources impinge on the receiving antenna array
(M � 9) with SNR1 � 10 dB. *e probability of resolution as
a function of the angular separation between the input
sources under different ISRs is shown in Figure 9, which
indicates that the improved algorithm has better resolution
performance than the other methods. When the angular
separation is 1.4° and ISR� 10 dB, the probability of reso-
lution for the improved algorithm exceeds those of the IPNS
method of the MUSIC algorithm by 18.4% and 42.3%, re-
spectively. Moreover, it is 25.4% and 56.7% higher than
those of the IPNS method and the MUSIC algorithm when
the angular separation is 2.15° and ISR� 0 dB, respectively.

*e probability of resolution for each method is low
when SNR1 is low or the angular separation is small, and the
proposed method is no exception. *en, the increase in the
probability of resolution yielded by the proposed method is
not so apparent when compared with the other two
methods. Similarly, the increase in the probability of reso-
lution for the proposed method is not so significant when
SNR1 is high or the angular separation is large. *e prob-
ability of resolution for each method is high under such
conditions.

From the abovementioned discussion, we can see that
the improved algorithm has better resolution performance
for sources with larger power differences; even for sources
with the same power, the proposed algorithm still outper-
forms the other two methods. From the abovementioned
discussion, we can see that diagonal loading is effective in
improving the probability of resolution of the DOA esti-
mation method based on the IPNS. Diagonal loading re-
duces the ratio of 􏽢λP+1/􏽢λM, thus increasing the probability of
resolution. However, the increase in the probability of
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resolution generated by diagonal loading is limited. Diag-
onal loading also decreases the signal-to-noise ratio (SNR).

5.4. Root-Mean-Square Error. In this section, we study the
RMSE of the proposed method. Suppose that two inde-
pendent sources impinge on the receiving antenna array
(M � 9) from 1.5° and −1.5°, respectively. *e RMSE of the
weak source as a function of SNR1 is shown in Figure 10. As

a comparison, the CRB is also provided in Figure 10. We can
find in Figures 10(a)–10(c) that the improved algorithm
achieves better RMSE performance for the weak source than
those of the other methods under each ISR. More specifi-
cally, the RMSE of the improved algorithm is similar but
slightly better than that of the IPNSmethod when ISR� 5 dB
and ISR� 10 dB, and this is clearest when ISR� 0 dB.

*e RMSE of the strong source and the CRB as a
function of SNR1 are shown in Figure 11. We can see in
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Figure 11 that the RMSE of the improved algorithm is
nearly the same as those of the other two methods when
ISR � 5 dB. *e RMSE of the improved algorithm is not as
good as those of the other two methods when ISR � 10 dB,
which means that the MUSIC algorithm has better esti-
mation accuracy for strong sources. However, when the
power of the strong source decreases to ISR � 0 dB, the
RMSE of the improved algorithm is the lowest. However,
the challenge in DOA estimation with respect to sources
that have large power differences is the estimation per-
formance of the weak source. Hence, it is objective to
conclude that the RMSE of the proposed algorithm is
similar to that of the IPNS method, which is even better
than that of the MUSIC algorithm.

5.5. Computational Complexity. In this section, we study the
computational complexity of the proposed method. If a
rough grid of 3° and a fine grid of 1° are employed, the
spectral points 60(J1 � 180°/3°) and 180(J2 � 180°/1°)
should be computed in the spectral search, respectively. We
compare the computational complexities of different algo-
rithms and display the results in Table 1. It is evident in
Table 1 that the IPNS method has more computational
complexity than the MUSIC algorithm; moreover, the
computational complexity of the IPNS method grows faster
than that of the MUSIC algorithm as M and P increase.
However, the improved algorithm that exploits diagonal
loading has nearly the same computational complexity as
that of the IPNS method.

6. Conclusions

In this paper, we propose an improved algorithm to in-
crease the resolution performance with regard to re-
solving sources with large power differences and further
study the Cramer-Rao bound of the weak source in the
presence of the strong source. We demonstrate that the
IPNS still holds after diagonal loading. Simulation results
show that the proposed algorithm has a better probability
of resolution than the IPNS and MUSIC algorithms.
Moreover, the proposed method does not result in in-
creased computational complexity and maintains the
estimation accuracy. We also find that the Cramer-Rao
bound of the weak source suffers from degradation as the
power of the strong source increases, especially when the
SNR of the weak source is low. Our work provides a new
way to estimate sources with different powers, and this is
valuable in noncooperative situations, such as passive
radar applications.
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