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An iterative convex optimization (ICO) algorithm is proposed to solve pattern synthesis problem under the framework of dual-
polarized conformal arrays in this paper. 'e subproblems of shaping main lobe, optimizing side lobe, and suppressing cross-
polarization component are summarized as a joint optimization problem. To solve this problem, the nonconvex constraint about
main lobe is rewritten as a convex constraint, which will bring error. And an auxiliary phase function is introduced to correct this
error alternatively. Due to the deviation between auxiliary phase and real phase of pattern function, a methodminimizing the peak
of the synthesis error over observation angles is effectively applied to further improve the performance of the method. Numerical
examples show good pattern synthesis ability and convergence performance of the ICO method.

1. Introduction

Benefiting from their incomparable flexibility, conformal
arrays have been widely applied to communication systems
and aircrafts design, etc [1]. Compared with traditional
planar arrays, the inconsistency of the elements’ pattern and
polarization feature brings enormous challenges to the
pattern synthesis problem for conformal arrays.

'e main purpose of conformal array pattern synthesis
problem is to obtain desired pattern through optimizing the
array weight vector and polarization information. Intelligence
optimization algorithms such as genetic algorithm (GA) [2]
and simulated annealing [3] are commonly used to solve this
problem. However, these articles ignore optimization for
cross-polarization component. In [4], the particle swarm
optimization (PSO) method is applied to synthesize the el-
liptical and linear polarization patterns for dual-polarized
array with shaped main lobe and low side lobe and cross-
polarization level. In [5], an improved differential evolution
algorithm is proposed to achieve lower side lobe levels and
suppress the cross-polarization. Nevertheless, these stochastic
optimization methods are computationally intensive because
of their randomness in global optimization.

Other convenient and flexible methods are also utilized
to synthesize polarization patterns. In [6, 7], the iterative
least-squares method is used to achieve desired main lobe
with polarization optimization. In [8], based on the adaptive
theory, a numerical pattern synthesis method is proposed,
which abandons the traditional method of applying virtual
interference but controls the co-polarization and cross-
polarization components by two weighting functions. In [9],
an enhanced alternate projection algorithm is proposed to
synthesize practical conformal array with mutual coupling
corrected. In [10], a fast 3D synthesis method is proposed to
synthesize copolarized and cross-polarized patterns with the
consideration of dynamic range ratio of excitations. Al-
though the above algorithms have a fast synthesis speed, the
solution is easy to fall into the local optimal value.

'e convex optimization algorithm can simultaneously
optimize multiple problems expressed as a series of linear
and convex quadratic constraints and can obtain the global
optimal solution. 'us, it is also applied to the pattern
synthesis problem. In [11], convex optimization starts to be
really used for pattern synthesis with interior-point
methods. In [12], the authors linearize the nonconvex
constraints and divide the power pattern optimization
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problem into some subproblems, which can be solved by
iterative second-order cone programming (SOCP). In
[13, 14], it is studied as a convex programming problem to
jointly synthesize the polarization and spatial power pattern.
In [15], the constraints about constant modulus and main
lobe are relaxed as convex constraints to solve. In [16], the
authors use semidefinite relaxation to solve the nonconvex
constraint to shape beam and control side lobe and cross-
polarization. Compressive sensing (CS) theory and convex
relaxation are used together to solve sparse conformal array
synthesis problem, as described in [17]. It should be noted that
the dual-polarized conformal arrays have advantages for the
polarization information processing due to the two individual
feed points of each dual-polarized antenna. In [18], a dual-
polarized patterns optimization problem is formulated as a
convex form, and related parameters determinationmethod is
presented. However, it lacks effective verification of the ability
about main lobe shaping. It is worth studying pattern syn-
thesis problem for dual-polarized conformal arrays.

'is paper presents an iterative convex optimization (ICO)
algorithm to synthesize pattern for dual-polarized conformal
arrays. Main lobe shaping, side lobe optimization, and cross-
polarization component suppression are formulated as a joint
optimization problem. In the process of finding solution, the
nonconvex constraint about main lobe is rewritten as a convex
form, which leads to error. In order to reduce the error, an
alternating optimization process is designed by introducing
auxiliary phase. Since the auxiliary phase can only be ap-
proximately equal to the real phase, this approximation would
bring error. To further improve the synthesis performance, we
find the peak error point over main lobe and increase its weight
in the iteration. Finally, numerical examples show the good
performance of the proposed method in pattern synthesis.

2. Problem Formulation

Consider a dual-polarized conformal array composed of N
elements located on an arbitrary carrier surface, as shown in
Figure 1. O(x, y, z) and O′(x′, y′, z′) represent the global
Cartesian coordinate system and the local Cartesian coor-
dinate system, respectively. Without loss of generality, it is
assumed that the θ-polarized and ϕ-polarized components
are generated by two individual feed points of each dual-
polarized antenna.

'e two orthogonal components of the array radiation
pattern can be written as ϕ-polarization pattern Eϕ(θ, ϕ) and
θ-polarization pattern Eθ(θ, ϕ):

Eθ(θ, ϕ) � 􏽘
N

i�1
Eiθ(θ, ϕ)exp jkvT

i e(θ, ϕ)􏽮 􏽯,

� aT
(θ, ϕ)Eθ(θ, ϕ),

Eϕ(θ, ϕ) � 􏽘
N

i�1
Eiϕ(θ, ϕ)exp jkvT

i e(θ, ϕ)􏽮 􏽯,

� aT
(θ, ϕ)Eϕ(θ, ϕ),

(1)

where Eiθ(θ, ϕ) and Eiϕ(θ, ϕ) are the contribution of the i th
element to the θ-polarized and ϕ-polarized components, re-
spectively. k � (2π/λ) is the wavenumber, vi � [xi, yi, zi]

T is
the position vector of the i th element, e(θ, ϕ) � [sin θ cos ϕ,

sin θ sin ϕ, cos θ]T is the unit direction vector, •{ }T denotes
the transposition, and a(θ, ϕ) � [ejkvT

1 e(θ,ϕ), . . . , ejkvT
N
e(θ,ϕ)]T is

the ideal steering vector of the array.
Note that the θ-polarized and ϕ-polarized components

of each antenna are inconsistent because of the curved
structure of conformal array. 'erefore, they cannot be
superimposed directly. 'e electromagnetic field excited by
each element is decomposed and projected to the unified
global coordinate system. And Eiθ(θ, ϕ) and Eiϕ(θ, ϕ) can
be obtained though some mathematical transformation,
which are described in [19] in detail. 'e global to local
Euler rotation matrix of the ith element is defined as Rgli,
and Rlgi denotes the local to global Euler rotation matrix of
the i th element.'en, Eiθ(θ, ϕ) and Eiϕ(θ, ϕ) can be written
as

Eiθ(θ, ϕ)

Eiϕ(θ, ϕ)
⎡⎣ ⎤⎦

� Tcs(θ, ϕ)RlgiΤsci θi
′, ϕi
′( 􏼁

w
∗
iθ′giθ′ θi

′, ϕi
′( 􏼁

w
∗
iϕ′giϕ′ θi

′,ϕi
′( 􏼁

⎡⎢⎣ ⎤⎥⎦,

(2)

where Tcs(θ, ϕ) is the transform matrix from Cartesian
coordinate to spherical coordinate in global coordinate
system and Tsci(θi

′, ϕi
′) is the spherical coordinate to Car-

tesian coordinate transform matrix in local coordinate
system. (θi

′,ϕi
′) is the corresponding angle of (θ, ϕ) in the ith

local coordinate and can been obtained though Euler ro-
tation. wiθ′ and wiϕ′ are excitation weights of two feed
points, which control θ-polarized and ϕ-polarized patterns
of the i th element, respectively. •{ }∗ denotes conjugation.
giθ′(θi
′,ϕi
′) and giϕ′(θi

′, ϕi
′) are θ-polarized and ϕ-polarized

patterns of the i th element. 'en, for all of the array el-
ements, we have
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Figure 1: Coordinate systems.
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E1θ(θ, ϕ)

E1ϕ(θ, ϕ)

⋮

ENθ(θ, ϕ)

ENϕ(θ, ϕ)
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�

T1(θ, ϕ)

⋱

TN(θ, ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦G(θ, ϕ)w∗

� T(θ, ϕ)G(θ, ϕ)w∗,

(3)

where Ti(θ, ϕ) � Tcs(θ, ϕ)RlgiΤsci(θi
′, ϕi
′) and w � [w1θ′,

w1ϕ′
, . . . , wNθ′ , wNϕ′]

T. G(θ, ϕ) � diag[g1θ′(θ1′, ϕ1′), g1ϕ′ (θ1′,
ϕ1′), . . . , gNθ′(θN

′, ϕN
′), gNϕ′(θN

′, ϕN
′)]T. It should be noted

that the size of Ti(θ, ϕ) is 2 × 2, which means that Eiθ or Eiϕ

depends on both giθ′(θi
′,ϕi
′) and giϕ′(θi

′, ϕi
′). 'rough the

above transformation, array pattern can be obtained by

Eθ(θ, ϕ)

Eϕ(θ, ϕ)
⎡⎣ ⎤⎦

T

�
aT(θ, ϕ)Eθ(θ, ϕ)

aT(θ, ϕ)Eϕ(θ, ϕ)
⎡⎣ ⎤⎦

T

�

E1θ(θ, ϕ)

E1ϕ(θ, ϕ)

⋮

ENθ(θ, ϕ)

ENϕ(θ, ϕ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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T

aT
(θ, ϕ)⊗ I2􏼐 􏼑

T
,

� wHG(θ, ϕ)TT
(θ, ϕ) a(θ, ϕ)⊗ I2( 􏼁

� wH
􏽥a(θ, ϕ),

(4)

where “⊗” denotes the Kronecker product, I2 is an identity
matrix with the size of 2 × 2, and

􏽥a(θ, ϕ) � G(θ, ϕ)TT
(θ, ϕ) a(θ, ϕ)⊗ I2( 􏼁. (5)

It should be noted that 􏽥a(θ, ϕ) is a matrix of size 2N × 2,
which contains two steering vectors of both orthogonal
polarization components. Although the above derivation is
based on the linear polarization model, it can be easily
extended to any generic elliptic polarization condition. For
example, in the condition of circular polarization, the
corresponding steering vector can be expressed as

􏽥acp(θ, ϕ) � G(θ, ϕ)TT
(θ, ϕ) a(θ, ϕ)⊗P− T

􏼐 􏼑, (6)

where

P �

�
2

√

2
−

�
2

√

2
j

�
2

√

2

�
2

√

2
j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

As long as we know the parameters of any polarization
state, the steering vector of this polarization can be obtained.

'e dual-polarized conformal array pattern synthesis
problem aims at finding a weight vector w with the size of
2N × 1 to achieve desired pattern shape. Specifically, the
ϕ-polarized component is assumed to be the copolarization

component, and the requirements can be described as
follows:

(i) 'e main lobe of beam Eϕ(θ, ϕ) is close to the
desired shape d(θ, ϕ) in the main lobe region Ωm.

(ii) 'e side lobe level of beam Eϕ(θ, ϕ) is under a
upper bound ρ(θ, ϕ) in the side lobe region Ωs.

(iii) 'e cross-polarization Eθ(θ, ϕ) level cannot exceed
the bound q(θ,ϕ).

'erefore, this problem can be formulated as the fol-
lowing optimization problem:

min
w

ε, (8a)

s.t. Eϕ(θ, ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − d(θ, ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (θ, ϕ) ∈ Ωm, (8b)

Eϕ(θ, ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤p(θ, ϕ), (θ, ϕ) ∈ Ωs, (8c)

Eθ(θ, ϕ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ q(θ, ϕ), (θ, ϕ) ∈ Ωm ∪Ωs( 􏼁, (8d)

where ε denotes the maximum error between Eϕ(θ, ϕ) and
d(θ, ϕ) overΩm. And through minimizing this error, we can
obtain an array pattern approaching the desired one.

3. Pattern Synthesis Method

3.1. )e Convex Optimization with Additional Auxiliary
Phase. It is known that constraint (8b) is NP-hard because
of the quadratic constraint. However, it should be noted that

Eϕ(θ, ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − d(θ, ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ Eϕ(θ, ϕ) − e
jφ(θ,ϕ)d(θ, ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (9)

and if only φ(θ, ϕ) � ∠Eϕ(θ, ϕ), the “�” in formula (9) holds.
'erefore, the constraint (8b) can be rewritten as

Eϕ(θ, ϕ) − e
jφ(θ,ϕ)d(θ, ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, (θ, ϕ) ∈ Ωm, (10)

where d(θ, ϕ) is often deemed to be real-valued and
φ(θ, ϕ) ∈ [−π, π] is defined as an auxiliary phase function.

In actual processing, there are many sampling angles
over main lobe and side lobe. 'us each constraint in
problem (8) contains a series of constraints. To ease the
convex optimization programming, norm programming
can be introduced. 'e constraint (8b) can be expressed
as

Eϕm − e
jΨ ⊙d

�����

�����2
≤ ε, (11)

where Eϕm � [Eϕ(θm1
, ϕn1

), . . . , Eϕ(θm2
, ϕn2

)] denotes the
discrete sampling of copolarization pattern in the sampling
angles of main lobe region, Ψ � [φ(θm1

,ϕn1
), . . . ,φ(θm2

,

ϕn2
)], d � [d(θm1

,ϕn1
), . . . , d(θm2

, ϕn2
)], “⊙ ” denotes the

Hadamard product, and ‖•‖2 denotes L2 norm.
Similarly, other constraints in problem (8) can also be

written as sampling vector form. 'e constraint (8c) can be
expressed as

Eϕs

�����

�����∞
≤ ρ, (12)
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where Eϕs � [Eϕ(θ1, ϕ1), . . . , Eϕ(θm1−1, ϕn1−1), Eϕ(θm2+1,

ϕn2+1), . . . , Eϕ(θk1
, ϕk2

)] denotes the discrete sampling of
copolarization pattern in the sampling angles of side lobe
region.

'e constraint (8d) can be expressed as

Eθ
����

����∞≤ q, (13)

where Eθ � [Eθ(θ1, ϕ1), . . . , Eθ(θk1
, ϕk2

)] denotes the dis-
crete sampling of cross-polarization pattern and ‖•‖∞ de-
notes L∞ norm. q and ρ are both small real values.

'en problem (8) can be rewritten as

min
w

ε, (14a)

s.t. Eϕm − e
jΨ ⊙d

�����

�����2
≤ ε, (14b)

Eϕs

�����

�����∞
≤p, (14c)

Eθ
����

����∞≤ q. (14d)

Observe that when φ(θ, ϕ) is fixed, problem (14) is a
jointly convex problem with respect to w, ε{ }. And if w is
given, the phase φ(θ, ϕ) can be obtained. However, before we
obtain the optimal weight vector, we can only know an
approximate phase. 'erefore, an iterative process is in-
troduced tomake the approximate phase gradually approach
the real one. Specifically, whenw is given, the auxiliary phase
φ(θ, ϕ) can be updated as follows:

φ(i+1)
(θ, ϕ) � α∠E(i+1)

ϕ (θ, ϕ) +(1 − α)φ(i)
(θ, ϕ), (15)

φ(i+1)(θ, ϕ) of next iteration is not only simply assigned by
∠E(i+1)

ϕ (θ, ϕ), but also φ(i)(θ, ϕ) of last iteration. 'e pa-
rameter α determines the ratio of φ(i)(θ, ϕ) and ∠E(i+1)

ϕ (θ, ϕ)

in the process of obtaining φ(i+1)(θ, ϕ), and it is generally
ranging from 0 to 1. 'erefore, an alternating optimization
process can be applied.

3.2. )e ICO Algorithm via Minimax Error. Although the
algorithm described above can reduce error through addi-
tional auxiliary phase, it should be noted that the algorithm
still has inevitable error because φ(θ, ϕ) is not exactly equal
to ∠Eϕ(θ, ϕ). 'us it is necessary to find another way to
further reduce the error and get smaller ripple of main lobe
based on the above method.

For the constraint (14b), the “worst point” can be defined
as

(θ, ϕ)
(i)
worst � arg max

(θ,ϕ)∈Ωm

Eϕ(θ, ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − d(θ, ϕ)􏼒 􏼓. (16)

Compared with [20], the modulus of Eϕ(θ, ϕ) is used
because d(θ, ϕ) is real-valued. In the obtained pattern Eϕ, the
point which exceeds the bound d most in the main lobe
region would be defined as the “worst point.”

'en the point (θ, ϕ)worst would be added to the ob-
servation points of next iteration.'e constraint (14b) can be
expressed as

E(i+1)
ϕm − e

jΨ(i+1)

⊙d(i+1)
�����

�����2
≤ ε,

E(i+1)
ϕm � E(i)

ϕm, Eϕ(θ, ϕ)
(i)
worst􏽨 􏽩,

(17)

where Ψ(i+1) and d(i+1) are similarly defined. After each
iteration, the weight at the angle (θ, ϕ)worst would increase by
“1” automatically. 'erefore, the error between the obtained
pattern and desired pattern can be reduced by accumulating
the weights of some observation angles.

'rough several iterations, the “worst point” may be at
the same angle many times. Note that when the “worst
point” are too concentrated, the weights of these points
could be too large, which may cause the errors of other
points to become larger and thenmay lead to worse result. In
many cases, these worst points are most likely to be con-
centrated around the transitional region between the main
lobe and the side lobe. 'erefore, measures need to be
carried out to avoid the above condition. Suppose that in the
previous i iterations, L(i) denotes the sum of errors in main
lobe. Compare L(i+1) with L(i), and determine whetherw will
be updated. It can be specifically described as the following
calculation procedure:

(1) Search for the “worst point” (θ, ϕ)worst, and we can
obtain Ω(i+1)

m , Ω(i+1)
m � [Ω(i)

m , (θ, ϕ)(i)
worst].

(2) Calculate

L
(i)

� Eϕm − d
�����

�����2
. (18)

(3) If L(i+1) < L(i), update w. Otherwise, w remains
unchanged.

After each iteration, when the sum of errors in main lobe
is reduced, w would be updated. Accordingly, when w re-
mains unchanged, L(i+1) should be substituted by L(i).
'rough the above process, the convergence of the ICO
algorithm can be guaranteed.

'e initial value L(0) should be set reasonably because it
has an impact on the convergence of the algorithm. In the
preparation stage, we solve problem (14) without auxiliary
phase function by convex optimization toolbox. ∠E(0)

ϕ (θ, ϕ)

can be obtained.'en the sum of errors over main lobe is set
as L(0). And ∠E(0)

ϕ (θ, ϕ) can be used as φ(0)(θ, ϕ). 'e flow
chart of the proposed algorithm is shown in Figure 2, and the
problem (14) can be solved by convex optimization solver in
the toolbox, such as the CVX [21].

4. Synthesis Examples

'e numerical examples of pattern synthesis are presented
here to verify the effectiveness of the proposed method.
Patch antenna is one of the most frequently used antennas in
conformal array. In the following simulation, the lowest
order circular patch antenna model [22] is adopted, and its
pattern can be written as follows:
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gθ θ′,ϕ′( 􏼁 � J2
π d

λ
sin θ′􏼠 􏼡 − J0

π d

λ
sin θ′􏼠 􏼡􏼢 􏼣 · cos ϕ′ − j sin ϕ′􏼂 􏼃, θ′ ∈ 0,

π
2

􏼔 􏼕,

gϕ θ′, ϕ′( 􏼁 � J2
π d

λ
sin θ′
λ

􏼠 􏼡 + J0
π d

λ
sin θ′􏼠 􏼡􏼢 􏼣 · cos θ′ sin ϕ′ − j cos ϕ′􏼂 􏼃, θ′ ∈ 0,

π
2

􏼔 􏼕,

gθ θ′,ϕ′( 􏼁 � gϕ θ′, ϕ′( 􏼁 � 0, Otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where J2 and J0 are the first kind of second-order and zero-
order Bessel functions, respectively. A convex optimization
method via linear programming (LP) [23] is applied for
comparison, where the upper bound and lower bound are
set. And the upper bound is defined as the desired pattern in
the proposed method. Two typical conformal arrays with
half-wavelength-spaced elements are used to verify the ef-
fectiveness of the algorithm in the following.

4.1. Semicircular Arc Array. In this subsection, pattern
synthesis is carried out based on a semicircular arc array as
shown in Figure 3. 'e goal of the first example is to achieve
a flat-top beam of ϕ-polarization components. With the
fixed elevation angle θ � 90∘, the main lobe region of desired
pattern is ϕ ∈ [−30∘, 30∘], and the side lobe region is
ϕ ∈ [−90∘, −30∘)∪ (30∘, 90∘]. 'e cross-polarization level is

optimized in the whole observation region. And the value of
α is 0.5 in this experiment. Figure 4 shows the synthesis
result of copolarization component and cross-polarization
component. 'e initial pattern is obtained by solving convex
problem without auxiliary phase, as described in setting the
initial values. In the case of achieving similar side lobe level
−40 dB and cross-polarization level −50 dB, the proposed
ICO algorithm and LP method perform better than the
initial pattern onmain lobe shaping. By the ICOmethod, the
ripple of gain level in main lobe is less than that of the LP
method.'e result shows that the optimization performance
of the ICO algorithm is improved. And the corresponding
elements weights are shown in Figures 5 and 6.

After 100 iterations, the count of the “worst points” in
Ω(i+1)

m is plotted in Figure 7. Note that the sum of errors in
main lobe stops reducing through 28 iterations. 'erefore,
there are only 28 “worst points” in Ω(i+1)

m . It can be seen that

L(i+1) < L(i)

Initialization: i = 0, φ(0) (θ, ϕ) ∈ [–π, π], α, L(0)

Calculate L(i)

Solve Problem (14) by toolbox, and obtain 
w(i+1) and ε(i+1)

Find (θ, ϕ)worst, and obtain Ωm
(i+1)

Start

Calculate φ(i+1)(θ, ϕ) by (15)

Update w

Yes

i = i + 1. Max iterations?

Yes

End

No

No

(i)

Figure 2: Algorithm flow chart.
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Figure 4: Flat-top-shaped beam synthesis of a 30-element array. (a) Copolarization component Eϕ at θ � 90∘. (b) Cross-polarization
component Eθ at θ � 90∘.
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Figure 10: Cosecant-square-shaped beam synthesis. (a) Copolarization component Eϕ at θ � 90∘. (b) Cross-polarization component Eθ at θ � 90∘.
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Figure 12: Flat-top-shaped beam synthesis of a 2 × 40-element array. (a) Copolarization component Eϕ at θ � 90∘. (b) Cross-polarization
component Eθ at θ � 90∘.
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the “worst points” are centered around ±20∘. 'e error
caused by the transition region is relatively large. 'us the
result is reasonable.

'e sum of errors in main lobe L(i) is defined as an index
related to convergence. Since L(i) is not involved in the LP
algorithm, it is uniformly calculated by (18). According to
the first experiment, the main lobe region is ϕ ∈ [−30∘, 30∘],
and so is the calculation range of (18). And it should be noted
that due to different desired patterns, the sum of LP algo-
rithm (d� (dup+ dlow)/2) error appears smaller than that of
the proposed ICO method (d=dup), where dup denotes the
upper bound and dlow denotes the lower bound. 'e con-
vergence curve can be seen in Figure 8. After 28 iterations,
the ICO algorithm converges, but LP method does not.
'erefore, the proposed ICO method performs better on
convergence.

Further experiments are carried out to analyse the
performance of the proposed method with different α, as
shown in Figure 9. 'e results show that α has an effect on
the ripple of main lobe. If we want to get the optimal so-
lution, it is necessary to select that by trial and error
according to actual requirements.

'e second example is to shape a cosecant-square beam
over main lobe region defined as [0∘, 40∘] with the array
shown in Figure 3. Simultaneously, the side lobe level and
cross-polarization level should be optimized. Figure 10
shows the optimized patterns with α � 0.2. When using
the proposed ICO method, the main lobe is similar to the
initial pattern. But side lobe level and cross-polarization level
are about 2 dB lower than those of initial pattern. Although
the LP method can achieve the similar side lobe level and
cross-polarization level with the proposed algorithm, its
ripple of main lobe is larger. To sum up, the proposed al-
gorithm has a better overall performance on cosecant-square
beam shaping, side lobe level, and cross-polarization level
suppression.

4.2. Semicylindrical Array. In this subsection, the synthesis of
flat-top beam centered at 20∘ with a semicylindrical array of
2 × 40 elements is considered, as shown in Figure 11. With the
fixed elevation angle θ � 90∘, the main lobe and side lobe
regions of desired pattern are ϕ ∈ [−10∘, 50∘] and ϕ ∈ [−90∘,
−10∘)∪ (50∘, 90∘], respectively. 'e cross-polarization com-
ponent is suppressed in the whole observation region. And the
value of α is 0.7. Figure 12 shows that the ICO and LPmethods
can achieve similar side lobe level −40dB and cross-polari-
zation level −50dB with the initial pattern. 'e proposed ICO
and LPmethods performbetter than the initial pattern onmain
lobe shaping. In addition, the ICOmethod can achieve pattern
with less ripple of main lobe than LP method. In the case of
using different arrays and setting main lobe centered at dif-
ferent directions, the above result shows the good adaptability
of the proposed ICO method.

Considering all the experiment results, the comparative
algorithm can also have a good performance, but the pro-
posed method performs better on ripple of main lobe and
cross-polarization level. 'us the algorithm improvement
achieves a good effect.

5. Conclusion

'is paper proposes an ICO algorithm to synthesize pattern
for dual-polarized conformal arrays. A series of constraints
are formulated as a joint optimization problem. In the
process of solving this nonconvex problem, the convex form
for the constraint of main lobe leads to error. 'en an
auxiliary phase function is introduced to reduce this error
through an alternating optimization process. But the aux-
iliary phase cannot be completely equal to the real phase, and
the error occurs in the main lobe. To get better performance,
we find the “worst point” with the peak error in main lobe
region, and then the performance of main lobe shaping is
improved by increasing the weight at “worst point” itera-
tively. Finally, numerical experiments are carried out, and
results show the well convergence and excellent capability of
beam shaping of the proposed ICO method.

Data Availability

'e image data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] T. E. Morton and K. M. Pasala, “Pattern synthesis of con-
formal arrays for airborne vehicles,” in Proceedings of the IEEE
Aerospace Conference, pp. 1030–1039, Big Sky, MT, USA,
March 2004.

[2] J. O. Yang, Q. R. Yuan, F. Yang, H. J. Zhou, Z. P. Nie, and
Z. Q. Zhao, “Synthesis of conformal phased array with im-
proved NSGA-II algorithm,” IEEE Transactions on Antennas
and Propagation, vol. 57, no. 12, pp. 4006–4009, 2009.

[3] J. A. Ferreira and F. Ares, “Pattern synthesis of conformal
arrays by the simulated annealing technique,” Electronics
Letters, vol. 33, no. 14, pp. 1187–1189, 1997.

[4] M. Li, X. Wang, Y. Li, and H. Dai, “Polarization beam pattern
synthesis based on particle swarm optimization,” IEICE
Electronics Express, vol. 9, no. 21, pp. 1648–1653, 2012.

[5] R. Li, L. Xu, Y. Yin et al., “Low-cross-polarisation synthesis of
conformal antenna arrays using a balanced dynamic differ-
ential evolution algorithm,” IET Microwaves Antennas and
Propagation, vol. 11, no. 13, pp. 1855–1862, 2017.

[6] L. I. Vaskelainen, “Iterative least-squares synthesis methods
for conformal array antennas with optimized polarization and
frequency properties,” IEEE Transactions on Antennas and
Propagation, vol. 45, no. 7, pp. 1179–1185, 1997.

[7] L. I. Vaskelainen, “Constrained least-squares optimization in
conformal array antenna synthesis,” IEEE Transactions on
Antennas and Propagation, vol. 55, no. 3, pp. 859–867, 2007.

[8] S.-L. Chen, P.-Y. Qin, Y. J. Guo, Y. Liu, and P. You, “Gen-
eralized 2-D numerical pattern synthesis algorithm for low
cross polarization and low sidelobe synthesis,” IEEE Antennas
andWireless Propagation Letters, vol. 16, pp. 2578–2581, 2017.

[9] F. Zhao, S. Chai, H. Qi et al., “Hybrid alternate projection
algorithm and its application for practical conformal array

International Journal of Antennas and Propagation 9



pattern synthesis,” Journal of Systems Engineering and Elec-
tronics, vol. 23, no. 5, pp. 625–632, 2012.

[10] M. Comisso and R. Vescovo, “Fast co-polar and cross-polar
3D pattern synthesis with dynamic range ratio reduction for
conformal antenna arrays,” IEEE Transactions on Antennas
and Propagation, vol. 61, no. 2, pp. 614–626, 2013.

[11] H. Lebret and S. Boyd, “Antenna array pattern synthesis via
convex optimization,” IEEE Transactions on Signal Processing,
vol. 45, no. 3, pp. 526–532, 1997.

[12] K. M. Tsui and S. C. Chan, “Pattern synthesis of narrowband
conformal arrays using iterative second-order cone pro-
gramming,” IEEE Transactions on Antennas and Propagation,
vol. 58, no. 6, pp. 1959–1970, 2010.

[13] M. Li, Y. Chang, Y. Li, J. Dong, and X. Wang, “Optimal
polarised pattern synthesis of wideband arrays via convex
optimisation,” IET Microwaves, Antennas & Propagation,
vol. 7, no. 15, pp. 1228–1237, 2013.

[14] B. Fuchs and J. J. Fuchs, “Optimal polarization synthesis of
arbitrary arrays with focused power pattern,” IEEE Trans-
actions on Antennas and Propagation, vol. 59, no. 12,
pp. 4512–4519, 2011.

[15] Y. Liu, J. Bai, K. D. Xu et al., “Linearly polarized shaped power
pattern synthesis with sidelobe and cross-polarization control
by using semidefinite relaxation,” IEEE Transactions on An-
tennas and Propagation, vol. 66, no. 6, pp. 3207–3212, 2018.

[16] A. Massa, P. Rocca, and G. Oliveri, “Compressive sensing in
electromagnetics - a review,” IEEE Antennas and Propagation
Magazine, vol. 57, no. 1, pp. 224–238, 2015.

[17] P. Cao, J. S. 'ompson, H. Haas et al., “Constant modulus
shaped beam synthesis via convex relaxation,” IEEE Antennas
and Wireless Propagation Letters, vol. 16, pp. 617–620, 2017.

[18] W. Hu, X. Wang, Y. Li, and S. Xiao, “Synthesis of conformal
arrays with matched dual-polarized patterns,” IEEE Antennas
and Wireless Propagation Letters, vol. 15, pp. 1341–1344, 2016.

[19] C. Liu, Z. Ding, and X. Liu, “Pattern synthesis for conformal
arrays with dual polarized antenna elements,” in Proceedings
of the International Congress on Image and Signal Processing,
pp. 968–973, Dalian, China, October 2014.

[20] F. Wang, R. Yang, and C. Frank, “A new algorithm for array
pattern synthesis using the recursive least squares method,”
IEEE Signal Processing Letters, vol. 10, no. 8, pp. 235–238,
2003.

[21] CVX Research, Inc., “CVX: MATLAB software for disciplined
convex programming, Version 2.1,” Dec. 2018 [Online].
Available: http://cvxr.com/cvx.

[22] J. R. James, P. S. Hall, and C. Wood, Microstrip Antenna
)eory and Design, Peter Peregrinus, New York, NY, USA,
1981.

[23] B. Fuchs, “Shaped beam synthesis of arbitrary arrays via linear
programming,” IEEE Antennas and Wireless Propagation
Letters, vol. 9, pp. 481–484, 2010.

10 International Journal of Antennas and Propagation

http://cvxr.com/cvx

