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This paper presents a sliding window data compression method for spatial-time direction-of-arrival (DOA) estimation using
coprime array. The signal model is firstly formulated by jointly using the temporal and spatial information of the impinging
sources. Then, a sliding window data compression processing is performed on the array output matrix to realize fast calculation of
time average function, and the computational burden has been reduced accordingly. Based on the concept of sum and difference
co-array (SDCA), the vectorized conjugate augmented MUSIC is adopted, with which more sources than twice of the physical
sensors can be resolved. Additionally, the sparse array robustness to sensor failure has been evaluated by introducing the concept
of essential sensors. The theoretical analysis and numerical simulations are provided to confirm the effectiveness performance of

the proposed method.

1. Introduction

Direction-of-arrival (DOA) estimation has been a crucial
topic in various practical applications, such as radar, nav-
igation, and wireless communication [1-4], where the an-
tenna arrays are utilized for collecting the spatial sampling of
impinging electromagnetic waves. In comparison to the
typical uniform linear array (ULA) [5, 6], the emerging
sparse arrays [7-9] have remarkable advantages in terms of
sensor layout, degrees of freedom (DOF), and virtual array
aperture, with which more sources than the number of the
physical sensors can be resolved.

Nested array (NA) [10] and coprime array (CPA) [11]
are the two most typical sparse array configurations, which
have closed form expressions for array geometry and
achievable DOF as compared with the minimum redun-
dancy array (MRA) and the minimum hole array (MHA).
NA is composed of two concatenated subarrays with in-
creasing element spacing, which is capable of providing
O(L?) DOF with O (L) physical sensors, but the existing
small interelement spacing in the subarray of NA would
cause severe mutual coupling. As for the CPA, the mutual

coupling can be alleviated for the configuration is con-
structed by a pair of coprime ULAs, which can offer O (M N)
DOF with 0 (M + N) sensors, but has holes in the virtual co-
array. Recently, lots of modified versions have been further
developed, such as super NA [12], enhanced NA [13],
augmented NA [14], generalized CPA [15], and thinned
CPA [16], to increase the consecutive DOF and reduce the
mutual coupling. The sparse arrays mentioned above con-
struct virtual co-array from the view of difference co-array
(DCA) and realize the multitarget DOA estimation by
exploiting vector MUSIC method or compressed sensing
(CS) approach; nevertheless, the number of resolvable
sources cannot exceed twice of the physical aperture.
Motivated by the sum co-array (SCA) originating from
active sensing [17-19], the concept of sum and difference co-
array (SDCA) has provided a new perspective for DOA
estimation [20], where the vectorized conjugate augmented
MUSIC (VCAM) is presented by jointly using the temporal
and spatial information of the impinging sources. The CPA
configuration based on SDCA is firstly proposed for spatial-
time DOA estimation [21]. Following this, a modified NA
configuration named as sum-diff NA (SANA) is proposed in
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[22] for the purpose of resolving more sources. In [23],
combining with the VCAM method, the unfold CPA con-
figuration on the basis of SDCA is developed to provide
more DOF and larger array aperture, and the DOA esti-
mation accuracy is improved accordingly. However, the
above spatial-time DOA estimation methods based on
SDCA involve high-dimensional data processing of multiple
pseudo snapshots, which has high computational load.
Additionally, another limitation of the above methods is that
the case of sensor failure [24-26] always occurring in the
actual direction-finding system has been ignored. The failure
of some sensors or receiving channels may destroy the
virtual array structure of sparse array and reduce the number
of consecutive DOF and the effective array aperture, which
results in the performance degradation.

To tackle these problems, a sliding window data com-
pression method for spatial-time DOA estimation is pro-
posed in this paper. The coprime array is adopted from the
perspective of SDCA, which can provide more DOF and
larger effective array aperture. Then, a sliding window data
compression processing is performed on array output ma-
trix to realize fast calculation of time average function.
Afterwards, the vectorized conjugate augmented MUSIC is
adopted by jointly using the temporal and spatial infor-
mation of the impinging sources. Moreover, the sparse array
robustness to sensor failure has been evaluated by intro-
ducing the concept of essential sensors.

Notations: vectors and matrices are denoted by lower-
case and uppercase bold-face letters, respectively. (-)7, (-)7,
and (-)* and |-| denote transpose, conjugate transpose,
conjugate, and the norm of the embraced matrix, respec-
tively. 0,,,, represents an m x n null matrix and I, repre-
sents an m x m identity matrix. The symbol ® denotes the
Kronecker product and © denotes the Khatri-Rao product.

2. Problem Formulation

2.1. Sparse Array Configuration. Referring to [11], a pro-
totype CPA is composed of two uniform linear subarrays:
one is a N-element ULA with interspacing being Md (d
denotes the unit interspacing) and the other is an M-element

R

i

where 7 # 0 is the time lag ranging from 1 to T, with T, being
the number of pseudo snapshots, I; —I; denotes the gen-
erated virtual sensor with [;,/; € 1, R (T) = |E;, >/ can
be seen as an equivalent source w1th amphtude |E¢|* and
frequency offset wy, which has the similar form as
s, (t) = G,e/. Since n(t) is assumed to be the Gaussian
white noise, Rn;nj(r) = 0 holds. As compared with the
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ULA with interspacing being Nd, where N and M are
coprime integers satisfying M < N. Intuitively, an example
of 8-element CPA with M =4 and N =5 is illustrated in
Figure 1, where white circles and black circles, respectively,
denote the sensor locations of subarray 1 and subarray 2 and
shaded circles denote the overlapping sensor between
subarray 1 and subarray 2. For the reason that the two
uniform linear subarrays share the same antenna sensor
placing at zero position, the CPA have M + N — 1 physical
sensors, whose locations are given by

Pepa ={Mndin € Z(N - 1)}U{Nmd|m € Z(M - 1)},
(1)

where Z (m) denotes a set of positive integers ranging from 1
to m and the unit interspacing d is generally set to be half of
the wavelength.

2.2. Signal Model. Assume that K far-field narrowband
sources from directions {6,,6,, ..., 0} impinge on an L-
element CPA configuration with 6, € (-n/2, /2], where
L = M + N - 1. Then, the antenna array output at time ¢ can
be expressed as

K

x(t) = As(t) +n(t) = Yy a(6)s; () +n(1),  (2)

k=1

where a(6,) = /™% is the steering vector with respect to
the direction 6, with the sensor location vector being
1=1[l,L,....1;]". a(6,) for
k=1,2,...,K, the array manifold matrix A = {a(Gk)}kK:1
can be obtained. s; (t) = G e/ denotes the kth impinging
source with G, and wj being the deterministic complex
amplitude and the small frequency offset, respectively.

By stacking all the

Accordingly, s(t) = {sk(l‘)}f:1 is the source vector. n(t) is
the Gaussian white noise vector with zero mean and variance
being o2.

Define the ith and the jth (1 <4, j < L) row of x(¢) as x; (t)
and x; (¢), respectively; then, the time average function for
T'p samples can be calculated by

(D Zx (O (t+7) = Ze’" LR, (1) + Ry, (7, (3)
TP k=1

covariance matrix widely used in spatial DOA estimation
methods, R,., (1) is constructed by jointly using both
temporal and spat1a1 information of the impinging sources,
which has potential to expand the effective array aperture
and improve the DOA estimation accuracy and angle res-
olution. Nevertheless, it is worth pointing that (3) involves
the sampling of array output matrix with a dimension of
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FiGUure 1: Example of 8-element CPA with M =4 and N =5.

L x T, Tp, which is computationally expensive. Toward this
end, a data compression processing method based on sliding
window principle is proposed in Section 3.

3. DOA Estimation Based on Sliding Window
Data Compression

For the purpose of realizing the fast calculation of time
average function and the corresponding pseudo data matrix,
the sliding window data compression processing is per-
formed on x; (t) and x; () (1<i, j<L) with a period of T'p,
which is given by

%o (1) = x; () # [Op r,3 17,30 s, |5
X, (1) = x;(F) |:0(T5+T)><TP;ITP;O(TS—T)XTP]’ (4)
x,_(t) = Xj (t) = [0 (T-7)xTp> ITP; 0 (TS+T)XTP]'

With the sliding window data compression processing in
(4), the sampling of the array output matrix with a di-
mension of L x T T, can be transformed into the sampling
of an equivalent one with a dimension of L x (T + 2T );
thus, the computational burden can be reduced accordingly.
Moreover, notice that the data information is not lost during
the process of sliding window data compression, which
ensures the DOA estimation accuracy and angle resolution.
For the convenience of analysis, we choose the first sensor to
be the reference, i.e., i = 1. Then, (3) can be written as

) T
R;; (1) = T_p ;xo (t)x,, (1),
1 (5)

* 1 & *
| R;;(-1) = T, t:zlxo (O)x,_ ().

More intuitively, an example of a short data sequence
with T, =3 and T, =4 is depicted in Figure 2 for the
convenience of description, where the data in blue sliding
window stands for the reference, the sliding windows on its
right side stand for the cases of 7> 0, and the sliding win-
dows on its left side stand for the cases of 7 <0. It should be
noted that the proposed sliding window data compression
method involves a long data sequence, which has the same
processing principle as the given example of short data
sequence.

{x; (t)}?il

‘@@@@@m

xj(ll)

T,T
(1t ol
{x; (tJ)}t;LT:1

F1GURre 2: Example of sliding window data compression processing.

Since j varies from 1 to L, the conjugate augmented
vector can be obtained as

g(0) =[g (-1.8 (1] =[A", AT] g, (1), (6)

where the time average vector g(7) and its mirrored version
g, (—7) are given as

8. (1) = Ag, (1) =R}, (0, R}, (1), R} (D],
8. (-7) = Ag,(-7) = [R}, (-1, R, (1), ., R{ (7)),
(7)
with g (7) = [Ree; (1), Ry, (1), ., Ry (D7 and
g (-1) = [Rys (-7), Ry (-1),.. ., Ry (D).
Then, for the T, pseudo snapshots, the pseudo data
matrix can be constructed as

G ={g(nP)}l, =[A".A"]'EQ, (8)

where P, is the pseudo sampling period satisfying Nyguist
sampling principle, E is a diagonal matrix with main di-
agonal elements being |E;|* and zeros elsewhere, and Q is a
K x T, matrix with the (k,n)th element being /s, By
calculating the covariance matrix of G and then vectorizing
it, we have

vg = <KHOKT>qS, 9)

where A = [A™, A"] is the generated array manifold matrix
and q, can be seen as an equivalent impinging source vector
K x 1 with the kth element being |E;|*. Additionally, the kth
column of (XH OXT) can be denoted as

a(6;)®a” (6;)
a(6;)®a(6by)

a’(6)®a" (6,) |
a’ (6;) ®a(6;)

where the term a(6,) in (10) behaves like a longer virtual
steering vector that can provide more DOF for DOA esti-
mation. More specifically, the union of a(6,) ®a* (6,) and
a* (6,)®a(6,), respectively, are corresponding to the DCA

(10)

a() =



TaBLE 1: Main steps of the proposed method.

(1) Calculate the time average function R,., (7) using (3)

(2) Perform sliding window data compressforjl processing on x;(t)
and x;(t) via (4) and rewrite (3) using (5)

(3) Construct the conjugate augmented vector g(z)using (6)

(4) Construct the pseudodata matrix G using (8) and calculate its
covariance matrix

(5) Vectorize the covariance matrix of G using (9)

(6) Perform spatial smoothing MUSIC method or sparse
construction techniques on g

and its mirror version and the union of a(6;)®a(6,) and
a* (0,) ®a* (0,), respectively, are corresponding to the SCA
and its mirror version. Then, the spatial smoothing MUSIC
method or sparse construction techniques can be performed
for DOA estimation. To conclude, the main steps of the
proposed method are given in Table 1.

4. Array Robustness Analysis

The array robustness to sensor failure directly affects the
DOA estimation performance in the practical direction-
finding system and the relevant analysis is discussed in detail
in this section. For a sparse array with known array con-
figuration, if the distribution of SDCA changes when one or
more sensors are deleted from the physical array (PA), then
these sensors are termed as essential sensors. Mathemati-
cally, for the sparse array &/ and the corresponding SDCA &,
when the Ith sensor is deleted from &/, the remaining array
becomes &/_; = o/\{l} and the corresponding SDCA be-
comes &_;. If  # §_; holds, then the Ith sensor is essential
for the sparse array </, but not vice versa.

An example of detecting essential sensor with
o, ={0,1,2,3,4,6} is given in Figure 3, where the red circles
and black circles, respectively, denote the locations of PA
and SDCA. As can be seen from Figure 3, after removing the
sensor 1, the PA becomes , ={0,2,3,4,6}; then, the
corresponding SDCA has holes at +1, which implies that
sensor 1 is essential. On the contrary, after removing the
sensor 2, the PA becomes /5 ={0,1,3,4,6}; then, the
corresponding SDCA is the same as the original one; hence,
the sensor 2 of PA is inessential.

Then, the evaluation function of sparse array robustness
is calculated as

Fr = [E/IAL (11)

where |E.| is the number of essential sensors for sparse array
A and |A] is the number of the whole sparse array A.
According to (10), the values of % ranges from 0 to 1. More
specifically, if &, — 0, then the sparse array has strong
robustness, but the number of essential sensors is small; if
F . — 1, almost all the sensors in sparse array are essential,
which is economic, but the array robustness is low.
Therefore, several strategies, such as reducing the failure
probability of essential sensors and introducing a certain
number of inessential sensors, can be adopted to improve
the robustness of sparse array and meanwhile ensure the
economic benefits.
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5. Numerical Simulations

In this section, numerical simulations are performed to
evaluate the performance of the proposed method.
Consider K=20 narrowband sources uniformly distrib-
uted between —60° and 60° and impinge on an 8-sensor
CPA with SNR being 0dB and pseudo snapshot number
T, =400, where the sensor locations of CPA is
Pcpa =10,4,5,8,10,12,15,16}. To demonstrate the com-
putational efficiency of the proposed method, the aver-
aged CPU times of the proposed sliding window data
compression (SWDC) and VCAM [21] versus snapshot
number T over 200 independent Monte Carlo trials are
compared in Table 2, where the software used for
implementation is MATLAB R2014a (version 8.3) and
executed in PC Intel(R) Core(TM) i7-8550U processor
with 8.0 GB RAM. It can be observed from Table 2 that the
operation time of the proposed SWDC method is sig-
nificantly reduced in comparison to VCAM, which is
mainly attributed to reason that sliding window data
compression can transform the antenna received matrix
with a dimension of LxTT, into an Lx (Tp+2T)
equivalent one, and the computational load is reduced
accordingly.

Then, array robustness to sensor failure is discussed in
this simulation. For the 8-element CPA with
Pepa =1{0,4,5,8,10, 12,15, 16}, we model the sensor failure
by deleting the sensors of CPA one by one; then, the
remaining array location, holes of SDCA, and the consec-
utive DOF are listed in Table 3. As can be seen from Table 3
that if sensor failure occurs to sensor 0, the distribution of
SDCA remains unchanged, which implies that sensor “0” is
an inessential sensor for the 8-element CPA. Apart from
sensor “0,” if sensor failure occurs to other sensors, the
corresponding SDCA has more holes and less consecutive
DOF. Thus, all the sensors in the 8-element CPA are es-
sential, except for sensor “0.” Moreover, the importance of
each essential sensor is different, e.g., the failure of sensor
“57, “107, “12,” or “15” would cause more “holes” than the
other essential sensors.

The third simulation investigates the DOA estimation
performance via MUSIC spectrum. All the conditions are
the same as the first simulation except that the snapshot
number T'p, is set to be 300. In addition, the searching step of
MUSIC spectrum is set to be 0.5°. Figure 4 depicts the
MUSIC spectrum of the proposed method, where the blue
solid line represents the angle estimates and the red dotted
line represents incident sources. As can be seen from Fig-
ure 4, the proposed method can resolve 20 impinging
sources with only 8 sensors and the MUSIC spectrum has
sharp and high power peaks in the vicinity of the true
impinging sources.

In the last simulation, the DOA estimation performance
of the proposed SWDC, VCAM [21], and CPA-MUSIC [11]
versus SNR and the number of snapshots are compared via
200 independent Monte Carlo trials, where the root mean
square error (RMSE) is chosen for evaluating the DOA
estimation performance:
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Array #1 00000 <O
0123456

SDCA: 0X000000000000000000000 <0
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FiGure 3: Example of detecting essential sensors.
TaBLE 2: Averaged CPU times.
Time(sec) T, =200 T, =300 T, =400 T, =500 T, =600
SWDC 0.0544 0.0666 0.0761 0.0852 0.0962
VCAM 0.0995 0.1368 0.1747 0.1950 0.1990
TaBLE 3: The array robustness to sensor failure.
Sensor failure Remaining array Holes in SDCA Consecutive DOF
Null {0, 4, 5, 8, 10, 12, 15, 16} {=29, 29} 57
“0” {4, 5, 8, 10, 12, 15, 16} {=29, 29} 57
“4” {0, 5, 8, 10, 12, 15, 16} {=29, -19, -14, 14, 19, 29} 27
“5” {0, 4, 8, 10, 12, 15, 16} {29, -21, =17, -13, -9, 9, 13, 17, 21, 29} 17
“8” {0, 4, 5, 10, 12, 15, 16} {-29, -23, -18, —13, 13, 18, 23, 29} 25
“10” {0, 4, 5, 8, 12, 15, 16} {-29, -26, -25, -22, -18, 14, -6, -2, 2, 6, 14, 18, 22, 25, 26, 29} 9
“127 {0, 4, 5, 8, 10, 15, 16} {-29, -28, 27, =22, -17, 17, 22, 27, 28, 29} 33
“15” {0, 4, 5, 8, 10, 12, 16} {-29, -27, -25, =23, -19, 19, 23, 25, 27, 29} 37
“16” {0, 4, 5, 8, 10, 12, 15} {-29, -28, -26, -21, 21, 26, 28, 29} 41

50 | R

40 |+ g

20 | B

Spectrum (dB)
=

-10 | 4

30 b ]
I i 1 1 I i ——

-80 -60 -40 -20 0 20 40 60 80
DOA (degree)

FIGURE 4: MUSIC spectrum with SNR=0dB, T, = 300, and T, = 400.
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i=1 k=1

where @k)i is the estimate of 6, for the ith Monte Carlo trial. The
source distribution in this simulation is the same as that in the
third simulation. The results from Figures 5 and 6 show that the
DOA estimation accuracy of the proposed SWDC method is
similar to that of VCAM, which is superior to the CPA-
MUSIC. The reason is that the data information is not lost for
the sliding window data compression processing, which im-
plies that the proposed SWDC method and the VCAM method

exploit the same data for DOA estimation, and the estimation
accuracy is almost the same accordingly. By contrast, the CPA-
MUSIC is performed based on DCA, where the available DOF
and virtual array aperture are reduced.

6. Conclusions

In this paper, we have proposed a sliding window data
compression method to reduce the computational burden of
high-dimensional data processing for the spatial-time DOA
estimation. By jointly using the temporal and spatial in-
formation of the impinging sources, the signal model is
firstly formulated based on CPA from the perspective of
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SDCA. Then, a sliding window data compression processing
is applied to the array output vector. Afterwards, we resort to
the VCAM approach for DOA estimation. In addition, the
sparse array robustness to sensor failure has been evaluated
by introducing the concept of essential sensors. Simulation
results have confirmed that the proposed method can resolve
more sources than twice of physical sensors and has notable
performance advantages in terms of computational load and
DOA estimation accuracy.
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