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A tin-containing metallic complex derived from Curcuma longa, bis[1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-
dionato-κO,κO′]bis(butyl), has been obtained and used as a green corrosion inhibitor for carbon steel in 0.5M sulfuric acid by
using weight loss, electrochemical techniques, and the Density Functional Theory. It was found that the obtained metallic
complex greatly decreases the steel corrosion rate by adsorption according to a Frumkin model in a weak, physical type of
adsorption. Inhibitor efficiency increased with its concentration, and it acted as a mixed type of inhibitor. Results were
supported by quantum-chemical research in order to examine the relationship between structural and electronic properties and
the inhibitor efficiency.

1. Introduction

The use of organic inhibitors, those which contain oxygen,
nitrogen, sulfur, or carbon, is one of the most commonly
used methods to combat the corrosion of metals, which
causes huge economic loses and severe accidents in the
industry [1–6]. This is because compounds with π-bonds
generally exhibit good inhibitive properties due to their inter-
action with the metal surface [7–9]. The way they decrease
the corrosion rate is by the formation of a compact barrier
onto the metal surface by adsorbing on the metal surface
and blocking the active sites by displacing water molecules.
However, organic inhibitors are toxic, highly expensive, and
environmentally unfriendly. Thus, many efforts have been

made in the last few years towards the use of compounds
found in plants including seeds, roots, flowers, etc. since they
contain phytochemical compounds which incorporate effec-
tive corrosion inhibitors [10–17].

Curcumin is one of the main phenolic compounds pres-
ent in the Curcuma longa rhizome which has been used in
Asia since ancient times. The powder obtained from the rhi-
zome of Curcuma longa has many uses including as a spice,
food colouring, and preservative, among others. In addition
to India, it is also cultivated in China, Japan, and Burma.
The obtained powder from Curcuma longa has a peppery bit-
ter flavour and is the main ingredient to make the spice
known worldwide as curry [18–21]. Due to the potent antiox-
idants contained in Curcuma longa, it is used in folk Indian
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medicine to help combat illness such as digestive problems
and fever and reduce cholesterol, and recently, some anti-
Alzheimer, antimutagenic, anticarcinogenic, antimicrobial,
and antiviral qualities have been found.

Curcuma longa extract has been used as a corrosion
inhibitor for steel in different environments due to the pres-
ence of antioxidants [22–25]. Alternatively, since curcumin is
the most abundant compound found in Curcuma longa,
some of its derivatives have also been evaluated as green
and ecofriendly corrosion inhibitors for metals because of
the existence of inhibition aromatic rings which block the
active surface sites to reduce the corrosion of steel in corro-
sive solutions [26–29]. For instance, Fouda and Elattar [26]
evaluated three curcumin derivatives, namely, 1,7-bis-(4-
hydroxy-3-methoxy-phenyl)-hepta-1,6-diene-4-arylazo-3,5-
dione (I-V), as green corrosion inhibitors for brass in 2.0M
nitric acid by using weight loss and electrochemical measure-
ments. They found that these curcumin derivatives had a cor-
rosion efficiency which increased with their concentration
but decreased with an increase in the testing temperature.
In another research work [27], Rajendran et al. evaluated
the corrosion inhibition efficiency for pure aluminium in
artificial sea water solution by using weight loss tests and
potentiodynamic polarization curves. Their results showed
that the curcumin corrosion efficiency was as high as 98%
and the corrosion current density value, Icorr, was decreased
by one order of magnitude. Finally, Kandias et al. evaluated
different curcuminoids extracted from Curcuma longa as
green corrosion inhibitors for carbon steel in 1.0M sodium
chloride solution by using gravimetric and electrochemical
tests [28]. They found that the curcuminoid corrosion effi-
ciency increased with their concentration, bringing a reduc-
tion in the Icorr value from 180 to 34μA/cm2. Thus, the
goal of this work is to evaluate the use of a new curcumin
derivative as a green corrosion inhibitor for 1018 carbon
steel in 0.5M sulfuric acid solution. The reason for this is
the high corrosion rates found in the metallic components,
made mainly from carbon steel, in the pickling and decal-
ing industry, where acids such as nitric, hydrochloric, and
sulfuric are widely used and the use of corrosion inhibitors
is compulsory.

2. Materials and Methods

2.1. Inhibitor Synthesis. The inhibitor used was bis[1,7-bis(4-
hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dionato-
κO,κO′]bis(butyl), a Sn-containing metallic complex derived
from curcumin. The synthesis procedure started with the
curcumin obtained from Curcuma longa bulbs described
elsewhere [29]. Briefly, Curcuma longa, which was purchased
from a local market, was dissolved in ethanol (1 L). The sol-
vent was removed by using an evaporator, then the solid
was recrystallized in ethanol (80mL); in the end, it was fil-
tered to obtain an orange-red solid which was dried
completely. Once the curcumin was obtained (Figure 1),
0.6 g (1.62mmol) of curcumin was dissolved in 25mL of
methanol and stirred into a ball flask, and after this, 0.2 g
(0.80mmol) of dibutyltin oxide was added. Following this,
and after the complete material dissolution (approximately

15 minutes), the reaction was carried out under reflux during
7 hours. After this, the mixture was allowed to cool down,
and a red solid, metallic complex was obtained by complete
evaporation of the solvent. The metallic complex characteri-
zation was made through three spectroscopic techniques
including Infrared, 1H Nuclear Magnetic Resonance, and
Mass Spectrometry as detailed in [29]. According to Priya-
darsini, this metallic complex is soluble in organic com-
pounds, but insoluble in water or in sulfuric acid [30].

2.2. Testing Material. The testing material included AISI
1018 carbon steel containing, in wt. %, Fe-0.14, C-0.90,
Mn-0.30, and S-0.30 P, which were purchased as 6.00mm
diameter rods.

2.3. Testing Solution. As testing solution, 0.5M sulfuric acid
(H2SO4) was prepared by using analytical grade reagents.
For the weight loss tests, specimens were exposed to this elec-
trolyte containing different concentrations of inhibitor dur-
ing an exposure time of 72 hours by triplicate at room
temperature, i.e., 25°C. After this, specimens were cleaned
to remove the corrosion products and to obtain the weight
loss per unit area, ΔW. For this, the following expression
was used:

ΔW = m1 −m2
A

, ð1Þ

were m1 is the weight of the specimen corroded in the
absence of the inhibitor, m2 is the weight of the specimen
corroded in the presence of the inhibitor, and A the exposed
area of the specimen. Inhibitor efficiency, I.E., was obtained
as follows:

I:E: %ð Þ = ΔW1 − ΔW2
ΔW1

× 100, ð2Þ

where ΔW1 is the weight loss of the specimen without inhib-
itor and ΔW2 is the weight loss with inhibitor. Selected cor-
roded specimens were observed in a low vacuum scanning
electronic microscope (SEM).

2.4. Electrochemical Techniques. Specimens measuring
6.00mm in length were cut and encapsulated in commercial
polymeric resin, abraded with 600-grade emery paper,
washed, and degreased with acetone. Employed electrochem-
ical techniques included potentiodynamic polarization
curves and electrochemical impedance spectroscopy (EIS).
For this, a three-electrode electrochemical glass cell was used
with a saturated calomel electrode (SCE) and a graphite rod
as the reference and auxiliary electrodes, respectively. Before
starting the experiments, specimens were immersed into the
solution during an exposure time of 20 minutes to allow the
free corrosion potential value, Ecorr, to reach a steady state.
For polarization curves, scanning started in a potential value
of 800 which is more cathodic than the Ecorr value, and it was
scanned in the anodic direction at a scan rate of 1mV/s up to
a potential value of 400mV which is more anodic than Ecorr.
An ACM potentiostat was used for this purpose. Corrosion
current density values, Icorr, were calculated by using the
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Tafel extrapolation method. EIS measurements were carried
out at the Ecorr value by applying a perturbation signal with
an amplitude of 15mV peak to peak in a frequency interval
of 0.01-20,000Hz. In this case, a PC4 300 Gamry potentiostat
was used.

2.5. Theoretical Calculations. Quantum calculations have
been performed to try to correlate inhibitor efficiency with
its electronic properties as described elsewhere [31]. All cal-
culations were performed by using the Gaussian 09 software
[31] and the Density Functional Theory (DFT) [32–40].
Parameters of interest included global hardness (η) [41], elec-
tronegativity (χ) [42], electrophilicity (ω) [43], dipolar
moment (μ) [44], and the Highest Occupied Molecular
Orbital (HOMO) and Lower Unoccupied Molecular Orbital
(LUMO) [34–44]. In addition to these parameters, Fukui
functions were calculated [45] by using the following equa-
tions [45]:

f k− = qk Nð Þ − qk N − 1ð Þ½ � for an electrophilic attack, ð3Þ

f k+ = qk N + 1ð Þ − qk Nð Þ½ � for a nucleophilic attack: ð4Þ

3. Results and Discussion

3.1. Inhibitor Characterization. Figure 2 shows the infrared
spectra for the metal complex and the materials used for
its synthesis (dibutyltin oxide and curcumin). The different
absorption peaks for the carbonyl groups are observed.
Hence, the absorption peaks for the carbonyl groups pres-

ent in the curcumin are shown at 1601 and 1625 cm-1,
while these groups were shifted towards lower wave num-
bers (1588 and 1617 cm-1) for the metallic complex. Thus,
it was noticed that the bonding of the tin metal centre to
the curcumin carbonyl groups made the carbon-oxygen
double bond weaker due to the formation of the metallic
complex. The 1H NMR spectrum for the obtained metallic
complex is shown in Figure 3. The signal for H1 was shifted
to δ = 5:7 ppm as a double as a consequence of the tin coor-
dination; this signal was observed as a singlet for free cur-
cumin. The H3 signal is observed at δ = 6:32 ppm as a
double because of the coupling with H4. The aromatic part
shows signals at the lower field; for instance, the signal for
H6 is shifted to δ = 6:90 ppm as a singlet, H10 is shifted to
δ = 6:96 ppm as a doublet, and H9 is shifted to δ = 6:78
ppm. These values are similar to those observed for curcu-
min because the interaction of the tin atom is carried out in
the carbonyl groups. The remaining signals of the hydro-
gens correspond to the observed hydrogens to the butyl
groups. A summary of the shift and constant coupling of
the hydrogen atoms for the metallic complex is shown in
Table 1. Finally, the mass spectrum of the metallic complex
is shown in Figure 4, where it can be seen that the molec-
ular weight corresponding to this complex m/z = 969 g/
mol was not observed. However, some fragments were
detected due to the presence of tin. For instance, a peak
in m/z = 763 was assigned to the breaking of a curcumin
molecule, and the most abundant peak was observed at
307 which is the curcumin molecule with the loss of the
methoxy groups.
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Figure 1: Scheme showing the used procedure for the synthesis of the metallic complex used as corrosion inhibitor.
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3.2. Weight Loss Tests. The effect of the Sn-metallic complex
on the weight loss, inhibitor efficiency, and steel surface area
covered by the inhibitor θ (which is the inhibitor efficiency
divided by 100) for 1018 carbon steel immersed in 0.5M
H2SO4 solution is given in Table 2. In all cases, it is evident
that the inhibitor efficiency increases with its concentration,
which is due to the adsorption of the metallic complex on
the steel surface. The fact that the metal surface area covered
by the inhibitor θ increases with its concentration supports
the idea that the decrease in the corrosion rate is due to the
inhibitor adsorption on the steel surface to form a protective
corrosion product film due to the existence of heterocyclic
compounds in the inhibitor such as shown in Figure 1 [18–
21]. A visual examination of the specimen corroded without
an inhibitor showed a severely corroded steel, whereas the
corrosion in the presence of an inhibitor corrosion rate of
100 ppmwas visibly reduced because of the formation of pro-
tective corrosion products on top of the steel surface.

The Sn-metallic complex reduces the steel corrosion rate
due to its adsorption onto the steel surface. The interaction
between the inhibitor molecules and the steel surface is pro-
vided by the adsorption isotherms. As indicated above, it is

assumed that θ is related to the inhibitor efficiency, which
was obtained from the weight loss experiments. Different
adsorption models exist, including the Langmuir, Temkin,
Frumkin and Flory-Huggins. As can be seen from Figure 5,
the adsorption Frumkin isotherm had the best data fit, with
an R2 = 0:89, which is given by

θ

1 − θð Þe−2f θ = KadsCinh, ð5Þ

where Cinh is the inhibitor adsorption, Kads is the adsorption
isotherm, and f is the interaction coefficient, which is posi-
tive for attraction and negative for repulsion. The adsorption
constant, Kads, and the standard free energy of adsorption
(ΔGads) are related according to the following equation:

ΔGads = −RT ln 106Kadsð Þ, ð6Þ

where R is the universal gas constant and T is the absolute
temperature. From Figure 5, Frumkin constants were f =
1719:7, Kads = 33860 L/mol, and ΔGads = −25:85 kJ/mol. The
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Figure 2: FTIR spectra of curcumin, dibutyltin oxide, and the obtained Sn-metallic complex.
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Table 1: 1H NMR in DMSO d6 for the Sn-metallic complex.
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positive value for f indicates that there is an attraction between
the steel surface and the inhibitor, whereas the relatively low
value for Kads indicates a weak interaction between the inhib-
itor molecules and the steel surface; on the other hand, the
negative value for ΔGads indicates a spontaneous process.
The ΔGads value of -25.85 indicates that the type of adsorption
between inhibitor molecules and the steel surface is weak and
physical in nature, which involves electrostatic interaction
between the inhibitor and the charged metal surface [46–48].

3.3. Polarization Curves. Figure 6 displays the polarization
curves for 1018 carbon steel immersed in 0.5M H2SO4 solu-
tion containing different concentrations of the Sn-containing
metallic complex as a corrosion inhibitor. Various parame-
ters such as Ecorr, Icorr, anodic, and cathodic Tafel slopes (βa
and βc) are reported in Table 3. It is clear that in all cases,
regardless the inhibitor concentration, the addition of the
Sn-metallic complex results in a marked decrease in both
cathodic and anodic current density values, but in a more
marked way for the cathodic one. Alternatively, polarization
curves displayed an active behaviour, without evidence of the
formation of a passive layer. In the cathodic region, there is
no clear differentiation between the two cathodic oxygen
reduction and hydrogen evolution reactions. However, both
cathodic reactions can be clearly differentiated with the addi-
tion of the inhibitor. The Ecorr value was only marginally
affected, since it fluctuated between -460 and -480mV as
shown in Table 3. Both anodic and cathodic Tafel slopes were
affected by the addition of the inhibitor, thus confirming that
the Sn-containing metallic complex is acting as a mixed type
of corrosion inhibitor, affecting, therefore, both oxygen
reduction and hydrogen evolution reactions. Thus, we can
say that the cathodic reactions are retarded by blocking the
active sites of the steel where oxygen and hydrogen can be
adsorbed, whereas the anodic reaction is retarded by the for-
mation of iron complexes due to the presence of a long pair
of electrons in the organic compound structure [49–51].

On the other side, the Icorr value was dramatically
decreased with the addition of 1000 ppm of inhibitor for
almost two orders of magnitude. Inhibitor efficiency was cal-
culated by using:

I:E: = Icorr − Icorr/inh
Icorr

× 100, ð7Þ

where Icorr and Icorr/inh are the corrosion current density
values obtained in the absence and presence of the inhibitor,
respectively. From the data given in Table 3, we can see that
inhibitor efficiency increases with an increase in the inhibitor
concentration; its highest value was reached with the addi-
tion of 1000 ppm of inhibitor, which indicates that more
inhibitor molecules are adsorbed onto the steel surface with
an increase in the metal surface area covered by the inhibitor.

3.4. EIS Results. The corrosion behaviour of carbon steel in
sulfuric acid with and without the presence of the Sn-
containing metallic complex was studied with the aid of EIS
studies, and the obtained results are shown in Figure 7. It
can be seen that Nyquist diagrams display a single, depressed,
and capacitive semicircle at high and intermediate frequency
values, followed by an inductive loop at lower frequency
values for inhibitor concentrations lower than 800 ppm.
The presence of an inductive loop indicates that the corro-
sion process is controlled by the adsorption/desorption of
some intermediate species on the steel surface. On the other
hand, for an inhibitor concentration of 1000 ppm, Nyquist
data display a capacitive loop at high and intermediate fre-
quency values, followed by an increase in the real impedance
value while the imaginary values remain constant at lower
frequency values, which is due to the accumulation of all
kinds of species at the metal/solution interface and increases
the total impedance value [52, 53]. The presence of the capac-
itive loop at high frequency values indicates that the corro-
sion of carbon steel in sulfuric acid is mainly controlled by
the charge transfer and the formation of a protective film
on the steel surface. The imperfect semicircle is generally
attributed to the frequency dispersion as a result of roughness
of the metal surface, grain boundaries, impurities, and distri-
bution of surface active sites. The shape of the loops was
not altered by the addition of the metallic complex, which
indicates that this inhibitor reduces the steel corrosion rate
without affecting the corrosion mechanism. On the other
hand, Bode diagrams, Figure 7(b), showed a single peak
and, thus, one time constant only, for the uninhibited

Table 2: Effect of the Sn-metallic complex on the weight loss,
inhibitor efficiency, and steel surface area covered by the inhibitor,
θ, for carbon steel immersed in 0.5M H2SO4.

Cinh (ppm) ΔW (mg/cm2) I.E. θ

0 102.7 — —

100 16.1 80.5 0.805

200 13.1 82.1 0.821

400 10.8 84.2 0.842

600 2.1 85.3 0.853

800 1.6 87.2 0.872

1000 1.1 89.1 0.891
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8
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Figure 5: Frumkin type of adsorption isotherm for 1018 carbon
steel immersed in 0.5M H2SO4 in the presence of a Sn-metallic
complex as corrosion inhibitor.
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solution and inhibitor concentrations lower than 800 ppm,
whereas at an inhibitor concentration, this peak is broad-
ened to a wider frequency interval, indicating the presence
of two time constants, due to the presence of a protective
corrosion product film.

All EIS spectra were analysed by fitting the experimental
data to an appropriate equivalent electric circuit to find the
parameters, which are described as being consistent with
the experimental data. Figure 8 depicts the proposed electric
circuits used to simulate the EIS data. In this figure, Rs is the
solution resistance, Rct is the charge transfer resistance, CPEdl
is a constant phase element related to the double electro-
chemical impedance, Rf is the resistance of the film formed
by the corrosion products, CPEf is the constant phase ele-
ment related to its capacitance, L is the inductive element,
and RL is its resistance. CPEdl and CPEf are placed instead
of an ideal double layer capacitor, Cdl, and film capacitance,
Cf , to take into account the dispersion effects due to surface

roughness and other surface heterogeneities as mentioned
above. The impedance of the CPE, ZCPE, is given by [54]

ZCPE ==
1

Y0 iωð Þn , ð8Þ

where Y0 is the admittance, i = −11/2, ω the angular fre-
quency, and n a physical parameter which gives interphase
properties of the working electrode such as roughness and
inhibitor adsorption. Resulting parameters from the use of
circuits given in Figure 8 are shown in Table 4. Data given
in this table show that the charge resistance value, Rct,
increases whereas the CPEdl value decreases with an increase
in the inhibitor concentration. Results given in Table 4 are in
complete agreement with the weight loss and polarization
data, Tables 2 and 3, respectively. An increase in Rct is nor-
mally associated with a decrease of the dissolution of the steel
because the Sn-metallic complex is adsorbed on its surface by
a gradual displacing of the water molecules and the forma-
tion of a protective film. This film will isolate the steel surface
from the electrolyte and decrease its dissolution rate. Alter-
natively, the decrease in the CPEdl value is attributed to a
lowering in the dielectric constant value, ε, which is caused
by the adsorption of the inhibitor molecules which have a
lower local dielectric constant value or to the increase in the
double electric layer thickness [55] according to the expres-
sion of the Helmholtz model for the calculation of the double
electric layer capacitance, Cdl:

Cdl =
εε0A
δ

, ð9Þ

where ε0 is the vacuum electrical permittivity, δ the electric
layer thickness, and A the surface area.
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Figure 6: Effect of the Sn-metallic complex concentration on the polarization curves for 1018 carbon steel immersed in 0.5M H2SO4.

Table 3: Electrochemical parameters obtained from polarization
curves for carbon steel immersed in 0.5M H2SO4 at different
concentrations of Sn-metallic complex.

Cinh
(ppm)

Ecorr
(mV)

Icorr
(μA/cm2)

βa
(mV/dec)

−βc
(mV/dec)

I.E.
(%)

0 -470 1.04 290 -362 —

100 -460 1:81 × 10−1 158 -340 82

200 -460 1:12 × 10−1 111 -288 89

400 -480 1:11 × 10−1 76 -266 89

600 -480 5:49 × 10−2 65 -235 94

800 -460 2:51 × 10−2 48 -207 97

1000 -470 9:54 × 10−3 16 -180 99
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3.5. Surface Characterization. After corrosion tests, surfaces
were analysed with a scanning electronic microscope, SEM,
and micrographs of corroded specimens in the absence and
presence of inhibitor are shown in Figure 9. It can be seen that
the corrosion product film formed in the absence of an inhibi-
tor, Figure 9(a), shows porous microcracks and some other
defects which do not prevent the contact between the electro-
lyte and the steel. Unlike this, the formed film in the presence

of the inhibitor, Figure 9(b), is much more compact, with a
much lower amount of porous and microcracks, avoiding the
contact between the corrosive solution and the steel surface.

3.6. Quantum Chemical Calculations

3.6.1. Neutral Molecule. The optimized structure of the mol-
ecule in its neutral state is shown in Figure 10. As it is
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H2SO4.
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assumed that the inhibitor is most likely to be an electron
donor with respect to the metallic surface, the electron den-
sity distribution of the HOMO is of particular significance
[56]. The HOMO and LUMO orbital distributions of the
Sn-metallic complex, which we will call the SnX molecule
from now on, are shown in Figure 10. Table 5 indicates

that the negative value of HOMO for the Sn-containing
metallic complex indicates a greater efficiency of inhibition
of the compound. The hardness obtained value for the
SnX is an important property to measure molecular stabil-
ity, and inhibition of a molecule was 1.33 eV. Furthermore,
the value for the dipolar moment is an important indicator
which had a value of 13.02 for SnX also. Electrophilicity, ω,
on the other hand, denotes the electron-accepting capability
of the molecule where a value of 6.97 eV was obtained.
Table 5 gives data for parameters such as IP, EA, χ, and
η [57, 58]. Further analysis of Fukui functions of the SnX
molecule are shows in Figure 11 indicating that there is a
nucleophilic attack in the C41 atom whereas the electro-
philic attack occurs in the O10 atom. It has been found
that the sites with electrophilic attack are places with
enhanced HOMO energies; conversely, LUMO sites are
most susceptible to suffer nucleophilic attack [57].

Rs

Rct RL

L

CPEdl

(a)

Rs

Rf

Rct

CPEdl

CPEf

(b)

Figure 8: Electric circuits to simulate EIS data for 1018 carbon steel immersed in 0.5M H2SO4 in the presence of the Sn-metallic complex in
concentrations of (a) lower than 800 ppm and (b) 1000 ppm.

Table 4: Electrochemical parameters used to simulate EIS data for carbon steel immersed in 0.5M H2SO4 at different concentrations of Sn-
metallic complex.

Cinh (ppm) CPEdl (μSs
n/cm2) n Rct (ohm cm2) CPEf (μSs

n/cm2) nf Rf (ohm cm2) RL (ohm cm2)

0 2:2 × 10−4 0.7 96 — — — 16.24

100 1:19 × 10−4 0.8 102 — — — 17.56

200 9:5 × 10−5 0.8 387 — — — 159.1

400 7:3 × 10−5 0.8 542 — — — 104.9

600 4:9 × 10−5 0.8 555 — — — 119.3

800 1:2 × 10−5 0.8 900 — — — 214.9

1000 8:5 × 10−6 0.9 1962 8:5 × 10−3 0.9 780 —

10 μm

(a)

10 μm

(b)

Figure 9: SEM micrographs of corroded 1018 carbon steel in 0.5M H2SO4 in the presence of (a) 0 and (b) 1000 ppm of the Sn-metallic
complex.

HOMO LUMOCompound

Figure 10: Optimized molecular structure and HOMO and LUMO
orbitals of the Sn-metallic complex, SnX molecule. Atomic colours
represent gray (C), white (H), red (O), blue (N), and dark-blue-
square (Sn).

9International Journal of Corrosion



3.6.2. Protonated Molecule. The optimized structure of the
SnX molecule in its neutral state contains more than one
active centre for protonation according to the electronic den-
sity observed in HOMO that corresponds of the electrophilic
attack (Figure 11). Thus, the protonation site of the molecule
was determined through the Fukui functions. According to
the Fukui function, the most susceptible site for an electro-
philic attack in the SnX molecule is located on the O10 atom.
Once the molecules are protonated, the electronic parameters

of the protonated inhibitor molecule such as HOMO,
LUMO, ΔE, dipole moment, and reactivity parameters are
shown in Table 6. Additionally, the optimized structure,
HOMO, and LUMO are shown in Figure 12. The HOMO
value of the protonated SnXmolecule is -5.80 eV. The dipolar
moment value, μ, in the protonated inhibitor had a value of
38.03 Debye. The electronegativity value, χ, measures the

Table 5: The calculated quantum chemical descriptors for the metallic complex, SnX molecule, obtained using DFT at the B3LYP/LANL2DZ
basis set in aqueous phase.

Neutral molecule HOMO (eV) LUMO (eV) ΔE (eV) μ (Debye) IP (eV) EA (eV) χ (eV) η (eV) ω (eV)

-5.77 -2.79 2.79 13.02 5.64 2.98 4.31 1.33 6.97

Electrophilic
attack 

Nucleophilic
attack 

Figure 11: Fukui function distribution for electrophilic attack and nucleophilic attack for the Sn-metallic complex, SnX molecule.

Table 6: The calculated quantum chemical descriptors for protonated SnXmolecule obtained using DFT at the B3LYP/LANL2DZ basis set in
aqueous phase.

Protonated molecule HOMO (eV) LUMO (eV) ΔE (eV) μ (Debye) IP (eV) EA (eV) χ (eV) η (eV) ω (eV)

-5.80 -2.96 3.43 38.03 5.68 3.12 4.40 1.28 7.58

HOMO LUMOCompound

Figure 12: Optimized molecular structure of protonated SnX
molecule and HOMO and LUMO orbitals of the Sn-metallic
complex, SnX molecule. Atomic colours represent gray (C), white
(H), red (O), blue (N), and dark-blue-square (Sn).

Negative Positive

(a) (b)

Figure 13: The calculated molecular electrostatic potential (MEP)
map: the colour range (blue more positive, red more negative)
oscillates for (a) neutral SnX, -1.041e-1 from 1.041e-1, and (b)
protonated SnX, -9.952 from 9.952. Atomic colours represent gray
(C), white (H), red (O), blue (N), and dark-blue-square (Sn).
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capacity of an atom to attract electrons [58] which is com-
monly considered in corrosion studies. Therefore, high
values of χ indicate better attraction properties, and that
value for the protonated SnX molecule was 4.40 eV;
according to Kaya et al. [59], electronegativity is one of
the parameters that provide important clues about corro-
sion inhibition efficiency of any chemical species. On the
other hand, Figure 13 shows the molecular electrostatic
potential (MEP) of the neutral and protonated molecules,
where it can be seen that all molecules have a green
region, namely, both molecules are in the intermediate
zone of the electrostatic potential.

4. Conclusions

A Sn-containing metallic complex derived from Curcuma
longa, bis[1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hepta-
diene-3,5-dionato-κO,κO′]bis(butyl), was evaluated as a
green corrosion inhibitor for 1018 carbon steel in sulfuric
acid. Adsorption of the metallic complex corrosion inhibitor
produced a decrease in the corrosion rate of steel, and it was
found to follow the Frumkin adsorption isotherm. The
metallic complex affects the kinetics of the corrosion pro-
cesses, and its inhibition efficiencies increased with an
increase in the inhibitor concentration. Thermodynamic
parameters revealed that the inhibitor is spontaneously
adsorbed. Negative values for ΔGads indicate a spontaneous
adsorption process of this metallic complex on to the steel
surface. SEM analysis showed that the inhibition of corrosion
by the Sn-metallic complex is due to the formation of a phys-
ically adsorbed film constituted by inhibitor molecules and
corrosion products on the metal surface. Theoretical calcula-
tions demonstrated the relationship between inhibitor effi-
ciency and its electronic properties.
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