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An excellent oxide ion conductivity with high oxygen transportation of lanthanum silicate apatite at the solid oxide fuel cell
(SOFC) can be achieved through the solid-state reaction method..e doped La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) materials
sintered at 1600°C accomplished crystallinity and crystal structure of apatite-type. .e structural and electrochemical charac-
terizations of La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) were executed using X-ray diffraction (XRD), scanning electron mi-
croscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and electrochemical impedance spectroscopy (EIS) measurements.
.e total oxide ion conductivities of La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) were measured from low to intermediate
operating temperature range (450 to 800°C) using electrochemical impedance spectroscopy. Room temperature XRD patterns of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) exhibited La10Si6O27 apatite phase with space group P63/m as the main phase with the
minor appearance of La2SiO5 as an impurity phase. .e highest total oxide ion conductivity of 3.24×10−3 Scm−1 and corre-
sponding activation energy of 0.30 eV at 800°C were obtained for La10Si5.6Al0.2Zn0.2O26.7 which contains a low concentration of
Al3+ dopant.

1. Introduction

Solid oxide fuel cells (SOFCs) are now especially popular
with everyone for producing renewable or clean energy
gadgets for electricity generation [1, 2]. SOFC provides

promising features, such as high performance, environ-
mentally clean power generation, and versatile fuel flexibility
(hydrogen, hydrocarbons such as methane, or natural gas
[3–8]), as a renewable energy system [9]. One of the most
extensively used fuels of SOFC is syngas, produced from the
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thermochemical conversion of biomass [10–13]. .is elec-
trochemical device is made of dense solid oxide electrolyte
located between two perforated electrodes [14–18]. Many
researchers have developed new electrolytes that provide
stability and high oxide ion or proton conductivity at low to
moderate operating temperatures (400 to 700°C) [19–23].
SOFC displays beneficial characteristics at these tempera-
tures, such as a wide variety of materials, longer life and
reliability, and low cost. Proton-conducting electrolytes are
being tried to substitute yttria-stabilized zirconia (YSZ)
[24–27]. One of the recent electrolytes with solid oxide ion
conductivity relative to other kinds of materials is lantha-
num silicate apatite (La10Si6O27) [27–31]. .e conductivity
of La10Si6O27 offers oxygen transference numbers near unity
over a wide oxygen partial pressure range and stable elec-
trochemical performance under various gas feedstocks
[32–36]. .e key challenges affecting the stability and
electrochemical efficiency of lanthanum silicate materials
have low sinterability and the formation of secondary
La2SiO5 phase [37–39].

Studies on various dopants that can improve the oxide
ion conductivity and the interstitial oxide ion concentrations
of La10Si6O27 have been carried out [40–42]. .e study
shows that doping cations on the Si-site have increased the
overall oxide ion conductivity of La10Si6O27 than doping on
the La-site [34]. Previous researches have also demonstrated
that cation vacancies or excess oxygen have increased the
oxide ion conductivity of the lanthanum silicate materials
[35, 40, 41, 43–46]. .us, a wide range of cations doping on
both La- and Si-sites can enhance the oxide ion conductivity
of La10Si6O27 [47].

Recently, the single-chamber solid oxide fuel cell (SC-
SOFC) over the conventional SOFC has attracted re-
searchers due to its numerous advantages. SC-SOFC can be
operated using a mixture of fuel (where hydrocarbon fuel
can be used directly) without sealing [48]. Electrolyte with a
porous microstructure can be used in single-chamber SOFC
where the snugness of gas is not essential. In SC-SOFC, the
catalytic activity occurs only between the electrodes, the
partial oxidation of fuel occurs at the anode, and the oxygen
reduction occurs at the cathode. .erefore, due to the
uniform gas composition, the electromotive force is gen-
erated only between the two electrodes and enhances the cell
performance due to the use of a mixture of air and hy-
drocarbon fuel. In Figure 1, methane and oxygen are sep-
arated by a porous membrane. .e electrochemical reaction
occurs with oxygen ions by producing carbon monoxide
(CO) and hydrogen (H2) due to the partial oxidation
[48, 49].

.e gas transportation through the porous electrolyte
can be derived mathematically by viscous flow (Πv) and
Knudsen diffusion (Πk) [50]:

Π � Πv + Πk �
εr2

8ητRTL
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2ετ
3τθkL

������
8

πRMT

􏽲

, (1)

where ε is the porosity, r is the radius of the pore, η is the gas
viscosity, τ is the tortuosity factor, R is the gas constant per
mole, T is the temperature, L is the thickness of the porous

medium, Pm is the mean pressure, M is the molar mass of
the gas, and θk is the parameter coefficient of “hardness” of
the walls.

In recent research, transition metal dopant such as Zn2+
has been found in La10Si6O27 and improved the oxide ion
conductivity of La10Si6O27 as reported by Setsoafia et al. [40].
Other research has found that Al3+ dopant can also enhance
the oxide ion conductivity of La10Si6O27 as investigated by
Yoshioka [41] and even by Cao and Jiang [36]. Hence, in this
work, a series of new and novel doped La10Si6O27 materials
were prepared by codoping of Al3+ and Zn2+ on the Si- site
through solid-state reaction which observed the correlation
between sintering temperature and electrical properties.
Prepared lanthanum apatite can be used in single-chamber
SOFC effectively as a porous electrolyte. Noteworthy, low-
cost and low-temperature cell fabrication is possible with
these porous electrolytes. .us, the lanthanum apatite
structures could be a novel approach to use in a porous SC-
SOFC system that consisted of a porous electrolyte, anode,
and cathode as lanthanum apatite has high oxide ion
conduction over a wide range of partial pressure of oxygen
from 1 to 10−21 atm which may accelerate oxide ion con-
duction with low activation energy. .e purpose of this
study is to inspect the effects of codoping, varying con-
centrations of Al3+ with a constant concentration of Zn2+ on
the structure to reduce the energy consumption and the
oxide ion conductivity of the lanthanum silicate materials in
SOFC (450 to 800°C).

2. Experimental

2.1. Sample Preparation. Lanthanum silicate of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) samples were
synthesized as apatite structure through the solid-state
synthesis method [18, 51–56]. Initially, a total of 10 g of
appropriate amount of La2O3, SiO, Al2O3, and ZnO powders
were ball milled with 200 g of zirconia balls and 150ml of
ethanol at a rational speed of 250 rpm for 24 hours. After ball
milling, the mixtures were then dried completely in an oven
at 80°C. .e powders were ground and then calcined at
1300°C for 10 hours at 5°C/min heating and cooling rates to
get rid of the organics. After calcination, 2.5 g of the powders
were pressed uniaxially in a mold at a constant pressure of
50MPa and a hold-up time of 60 seconds. .e produced
pellets were sintered at 1600°C for 8 hours at 5°C/min
heating and cooling rates.

2.2. Characterization. Structural characterizations of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) were studied
using XRD and SEM, weight %, and atomic % of the ele-
ments in the La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4)
compounds which were measured using EDX. Finally, the
electrochemical performances of the electrolytes were in-
vestigated using EIS.

Room temperature XRD patterns of the electrolytes were
obtained using Cu-K∝ 1 radiation (wavelength,
λ� 1.5406 Å) with a speed of scan of 2 degrees per minute.
Microstructures of the electrolytes were obtained on JEOL
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JSM-7610F scanning electron microscopy [57]. EDX is
connected to the SEM device to get the weight % and atomic
% of the elements in the La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2
and 0.4) compounds.

Oxide ion conductivity measurements were performed
using a furnace with platinum wires as current collectors.
Symmetrical cells with platinum paste coating on the top and
bottom surfaces of the pellet were made. A.C. impedance
measurements were collected in 50°C steps in the air between
450 and 800°C using a Solartron impedance analyzer system
combined with electrochemical interface controlled by Zplot
electrochemical impedance software. Total resistance (sum
of the bulk and grain boundary resistances) at a certain
temperature was obtained from fitting the impedance plot at
that temperature. .e total oxide ion conductivity σtotal was
evaluated using the following equation:

σtotal �
t

SR
, (2)

where t is the thickness of the pellet, S is the surface area of
the conducting paste on the pellet, and R is the total re-
sistance. Activation energy was obtained from Arrhenius
plot using the following Arrhenius equation:

σT � σo exp −
Ea

kT
􏼒 􏼓, (3)

where σ, σo, Ea, k, T are the conductivity (Scm−1), pre-
exponential factor, activation energy (eV), Boltzmann
constant (8.62×10−5 eV/K), and temperature (K), respec-
tively. Equation (3) can be arranged as

log(σT) � −
Ea

k
·
1
T

+ log σo( 􏼁. (4)

3. Results and Discussions

To analyze the apatite structure which was sintered at 1600°C
for 8 hours in the air, the X-ray diffraction (XRD) technique

was used and represented in Figure 2..e room temperature
XRD patterns of the powder samples confirmed that
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) belongs to an
apatite phase of composition La10Si6O27 with space group
P63/m. A small percentage of an impurity phase of La2SiO5
was detected from XRD data from the appearance of some
additional peaks along with the parent apatite phase. .e
impurity is difficult to remove once formed even if its ap-
pearance in the phase assembly was not thermodynamically
favoured [39] and this is the kind of adversity that occurs
when a material is made in a solid-state method [58]. .e
La2SiO5 impurity occurred when a secondary phase La2O3
formed by decarburization reaction during the calcination
reacted with silicate apatite in La10Si6−x−0.2AlxZn0.2O27−δ
(x� 0.2 and 0.4) during the sintering process [29]. La2SiO5
crystallizes in the monoclinic symmetry in the P21/c space
group [59]. .e impurity phase is less than 5% which has no
significant effect on ionic conduction. .e lattice parameters
of La10Si5.6Al0.2Zn0.2O26.7 were found to be a� b� 9.71 Å
and c� 7.21 Å and the lattice parameters of
La10Si5.4Al0.4Zn0.2O26.6 were found to be a� b� 9.73 Å and
c� 7.21 Å. .e materials have almost similar lattice pa-
rameters due to their similar chemical composition and
symmetry.

SEM is a powerful technique to understand the density,
grain boundaries, and phase purity [60]. Figure 3 shows the
morphological structure of the lanthanum silicate apatite of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) porous electro-
lytes. It shows that the particles of La10Si6−x−0.2AlxZn0.2O27−δ
are well connected and form open channels in the elec-
trolyte, which allow gas infiltration through the electrolyte.
.e cross-section SEM analysis of apatite crystals for the
abovementioned compositions showed significant dense
solid materials and visible grain size with obvious grain
boundaries, which accelerates the exchange of ions indi-
cating electrolytes (Figure 3) [61, 62]. Grain sizes for the
samples were approximately 1 μm. Nonuniform grains of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) indicated that
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Figure 1: Schematic illustration of the all porous single-chamber SOFC. Methane (CH4) is nourished at the anode side, while air (O2) is
introduced at the cathode and conveyed by the permeable electrolyte to the catalytic anode.
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the milling process had reduced most of the grains into
particles of closely related size to each other..is in turn aids
in the formation of the apatite structure. Zn and Al codoping
at the Si-site increases the density as well as the grain size
which increases the ionic conductivity.

At the same time, while running SEM, the energy dis-
persive X-ray (EDX) analysis was performed with an utterly
vacuum atmosphere. .e EDX spectra (Figure 4) clearly
describes that in addition to a small amount of Al and Zn
components, the material contains La, Si, Al, Zn, and O..e
particle sizes of La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4)
were about 1μm. Weight % and atomic % of the sintered
powders obtained from EDX spectroscopy are listed in
Table 1. Greater weight % of aluminium in
La10Si5.4Al0.4Zn0.2O26.6 is when the theoretical aluminium
content of the La10Si5.4Al0.4Zn0.2O26.6 compound is greater
than La10Si5.6Al0.2Zn0.2O26.7, whereas the weight % of silicon
and oxygen are greater in La10Si5.6Al0.2Zn0.2O26.7 when the
theoretical silicon and oxygen contents of the
La10Si5.6Al0.2Zn0.2O26.7 compound are greater than the

La10Si5.4Al0.4Zn0.2O26.6 compound. .e weight % of lantha-
num and zinc in La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) are
closely related values to each other as the theoretical compo-
sitions of lanthanum and zinc in La10Si6−x−0.2AlxZn0.2O27−δ
(x� 0.2 and 0.4) compounds are the same. .e results show an
approximate match between the weight % of elements in a
compound and the theoretical composition of the elements in
the compound [63].

Figure 5 compares the EIS plots of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) pellets at 800°Cwith
corresponding equivalent circuit used for fitting the Nyquist
plots. .e two semicircles of the Nyquist plots represent the
grain conductivity and the grain boundary conductivity. .e
high frequency regime belongs to the grain contribution to the
conductivity and the medium range frequency belongs to the
grain boundary contribution to the conductivity of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) [38,64]. .e total
oxide ion conductivity of La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2
and 0.4) at a certain operating temperature was calculated using
equation (2) where the total resistance was obtained by fitting
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Figure 2: Room temperature XRD patterns of La10Si5.6Al0.2Zn0.2O26.7 and La10Si5.4Al0.4Zn0.2O26.6 sintered at 1600°C for 8 hours in air
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Figure 3: SEM images (cross-sectional) of La10Si5.6Al0.2Zn0.2O26.7 (left) and La10Si5.4Al0.4Zn0.2O26.6 (right) powders sintered at 1600°C for 8
hours in air.
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the impedance plot with equivalent circuit model shown as an
inset in Figure 5. Total conductivity of different compositions
reported in this work and in the literature from 500 to 800°C are
listed in Table 2. Overall, it can be stated that the total oxide ion
conductivity of La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4)
pellets gradually increases with increasing temperature as
shown in Table 2, which demonstrates that the ionic diffusion
process is thermally activated [41]. La10Si5.6Al0.2Zn0.2O26.7 ob-
tains the highest total oxide ion conductivity of 3.24×10−3

Scm−1 at 800°C than La10Si5.4Al0.4Zn0.2O26.6 of 2.08 x
10−3 Scm−1. .e addition of small weight % of aluminium and
sintering temperature of 1600°C for 8 hours in air resulted in a
good conductivity achieved at the intermediate operating
temperature of 800°C. Unfortunately, total oxide ion

conductivity measurements of fully sintered
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) pellets could not be
obtained because the pellets are not fully sintered even after
heating at the maximum temperature (1600°C) of the furnace,
whilst the samples have porous electrolyte nature, but the grain
growth is obviously aging at elevated temperature which can be
correlated with the conductivity results [66]. Normally, Zn
doping in oxides increases the sintering behavior and density of
the materials [67]. A wet chemical method using azeotropic
distillation was used to densify lanthanum silicate. .e particle
size was about 10mm which helps to densify the material [68].
Figure 6 presents the Arrhenius plots of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) pellets. Straight lines
can be drawn from the Arrhenius plots that are well fitted to the

La10SiO5.6Al0.2Zn0.2O26.7

(a)

La10SiO5.4Al0.4Zn0.2O26.6

(b)

Figure 4: EDX spectra of La10Si5.6Al0.2Zn0.2O26.7 (top) and La10Si5.4Al0.4Zn0.2O26.6 (bottom) powders sintered at 1600°C for 8 hours in air.

Table 1: Elemental distribution of La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) through EDX.

Element symbol Composition
x� 0.2 x� 0.4

F % EDX % F % EDX %
La 10 77.88 30.73 81.99 36.62
Si 5.6 2.96 5.78 2.16 4.77
Al 0.2 0.98 2 1.17 2.7
Zn 0.2 0.31 0.26 0.35 0.33
O 26.7 17.87 61.24 14.33 55.58
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Table 2: Total conductivity of different compositions reported in this work and in the literature.

Sample compositions 500°C (Scm−1) 600°C (Scm−1) 700°C (Scm−1) 800°C (Scm−1) Ref.
La10Si5.4Al0.4Zn0.2O26.6 1.35×10−4 5.67×10−4 1.38×10−3 2.08×10−3 .is work
La10Si5.6Al0.2Zn0.2O26.7 1.61× 10−4 7.23×10−4 1.76×10−3 3.24×10−3 .is work
La9.67Si6O26.5 0.40×10−3 — — 7.10×10−3 [41]
La9.533(Si5.4Al0.6)O26 0.60×10−3 — — 7.80×10−3 [41]
La9.8Si5.7Mg0.3O26.4 — — — 7.40×10−2 [45]
La10Si5.8Mg0.2O26.8 — — — 8.8×10−2 [45]
La9BaSi6O26.5 — — — 11.4×10−3 [43]
La9SrSi6O26.5 — — — 8.7×10−3 [43]
La9.67Si5AlO26 — — — 7.9×10−3 [65]
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Arrhenius equation. .e fitted lines indicate that the diffusion
process of oxide ions is thermally activated [45].

.e activation energy described by Arrhenius in 1889 is
the minimum amount of energy required to conduct a
chemical reaction [69], i.e., as less energy is used, the lower
the cost. According to the Meyer–Neldel rule, activation
energy is related to the preexponential factor, i.e., with the
decrease in activation energy, the preexponential factor will
increase and the ionic conductivity is affected by temper-
ature significantly compared to the activation energy. From
the slope and the intercept of the linear fit in the Arrhenius
plots, the activation energy Ea and preexponential factor k of
the materials can be obtained using equation (3). .e values
of activation energy Ea and preexponential factor k of
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) pellets are
compared with another apatite structure in Table 3.
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) apatite materials
resulted in a significant improvement on the total oxide ion
conductivity at the operating temperature of 800°C. It is
noteworthy in this work that we got a large value of pre-
exponential factor which may be explicated a higher coor-
dination number between lanthanum (La) and oxygen (O)
[71]. Hence, La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4)
apatite materials maybe useful as electrolyte materials of
SOFCs [65]. Recently, lanthanum silicate-based materials
were used to measure power density at intermediate tem-
perature [72, 73].

4. Conclusion

In summary, the apatite-type hexagonal
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) crystals were
examined as promising electrolytes for SOFCs. Nonetheless,
the operational challenges associated with its high sintering
temperature. XRD patterns of the sintered
La10Si6−x−0.2AlxZn0.2O27−δ (x� 0.2 and 0.4) materials
revealed the apatite phase with P63/m space group with a
small amount of impurity. .e milling process has reduced
most of the large grains into microsize grains closely related
to each other, which aids in the formation of the hexagonal
apatite structure. La10Si5.6Al0.2Zn0.2O26.7 gives the highest
total oxide ion conductivity of 3.24×10−3 Scm−1 at the in-
termediate operating temperature of 800°C. .e activation
energy was decreasing with increasing the preexponential
factor and the lowest activation energy was 0.30 eV for
La10Si5.6Al0.2Zn0.2O26.7 which was one of the lowest acti-
vation energies among the lanthanum silicate-ion conduc-
tors..us, the apatite-type La10Si6−x−0.2AlxZn0.2O27−δ can be
used in SC-SOFCs due to its porous microstructure.
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