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Achieving the efficient rendering of a large animated crowd with realistic visual appearance is a challenging task when players
interact with a complex game scene. We present a real-time crowd rendering system that efficiently manages multiple types of
character data on the GPU and integrates seamlessly with level-of-detail and visibility culling techniques. The character data,
including vertices, triangles, vertex normals, texture coordinates, skeletons, and skinning weights, are stored as either buffer objects
or textures in accordance with their access requirements at the rendering stage. Our system preserves the view-dependent visual
appearance of individual character instances in the crowd and is executed with a fine-grained parallelization scheme.We compare
our approach with the existing crowd rendering techniques. The experimental results show that our approach achieves better
rendering performance and visual quality. Our approach is able to render a large crowd composed of tens of thousands of animated
instances in real time by managing each type of character data in a single buffer object.

1. Introduction

Crowd rendering is an important form of visual effects. In
video games, thousands of computer-articulated polygonal
characters with a variety of appearances can be generated
to inhabit in a virtual scene like a village, a city, or a forest.
Movements of the crowd are usually programmed through a
crowd simulator [1–4] with given goals. To achieve a realistic
visual approximation of the crowd, each character is usually
tessellated with tessellation algorithms [5], which increases
the character’s mesh complexity to a sufficient level, so that
fine geometric details and smooth mesh deformations can
be preserved in the virtual scene. As a result, the virtual
scene may end up with a composition of millions of, or even
hundreds of millions of, vertices and triangles. Rasterizing
such massive amount of vertices and triangles into pixels
is a high computational cost. Also, when storing them in
memory, the required amount of memory may be beyond
the storage capability of a graphic hardware. Thus, in the
production of video games [6–9], advanced crowd rendering
technologies are needed in order to increase the rendering

speed and reducememory consumption while preserving the
crowd’s visual fidelity.

To improve the diversity of character appearances in a
crowd, a common method is duplicating a character’s mesh
many times and then assigning each duplication with a
different texture and a varied animation. Some advanced
methods allow developers to modify the shape proportion
of duplications and then retarget rigs and animations to
the modified meshes [10, 11] or synthesize new motions
[12, 13]. With the support of hardware-accelerated geometry-
instancing and pseudo-instancing techniques [9, 14–16],
multiple data of a character, including vertices, triangles,
textures, skeletons, skinning weights, and animations, can
be cached in the memory of a graphics processing unit
(GPU). At each time when the virtual scene needs to be
rendered, the renderer will alter and assemble those data
dynamically without the need of fetching them from CPU
main memory. However, storing the duplications on the
GPU consumes a large amount of memory and limits the
number of instances that can be rendered. Furthermore,
even though the instancing technique reduces the CPU-GPU
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communication overhead, it may suffer the lack of dynamic
mesh adaption (e.g., continuous level-of-detail).

In this work, we present a rendering system, which
achieves a real-time rendering rate for a crowd composed
of tens of thousands of animated characters. The system
ensures a fully utilization ofGPUmemory and computational
power through the integration with continuous level-of-
detail (LOD) and View-Frustum Culling techniques. The
size of memory allocated for each character is adjusted
dynamically in response to the change of levels of detail, as
the camera’s viewing parameters change. The scene of the
crowd may end up with more than one hundred million
triangles. Different from existing instancing techniques, our
approach is capable of rendering all different characters
through a single buffer object for each type of data. The
system encapsulates multiple data of each unique source
characters into buffer objects and textures, which can then
be accessed quickly by shader programs on the GPU as
well as maintained efficiently by a general-purpose GPU
programming framework.

The rest of the paper is organized as follows. Section 2
reviews the previous works about crowd simulation and
crowd rendering. Section 3 gives an overview of our system’s
rendering pipeline. In Section 4, we describe fundamentals
of continues LOD and animation techniques and discuss
their parallelization on the GPU. Section 5 describes how to
process and store the source character’s multiple data and
how to manage instances on the GPU. Section 6 presents our
experimental results and compares our approach with the
existing crowd rendering techniques. We conclude our work
in Section 7.

2. Related Work

Simulation and rendering are two primary computing com-
ponents in a crowd application. They are often tightly
integrated as an entity to enable a special form of in situ
visualization, which in general means data is rendered and
displayed by a renderer in real time while a simulation is
running and generating new data [17–19]. One example is
the work presented by Hernandez et al. [20] that simulated a
wandering crowd behavior and visualized it using animated
3D virtual characters on GPU clusters. Another example is
thework presented byPerez et al. [21] that simulated and visu-
alized crowds in a virtual city. In this section, we first briefly
review somepreviouswork contributing to crowd simulation.
Then, more related to our work, we focus on acceleration
techniques contributing to crowd rendering, including level-
of-detail (LOD), visibility culling, and instancing techniques.

A crowd simulator uses macroscopic algorithms (e.g.,
continuum crowds [22], aggregate dynamics [23], vector
fields [24], and navigation fields [25]) or microscopic algo-
rithms (e.g., morphable crowds [26] and socially plausible
behaviors [27]) to create crowd motions and interactions.
Outcomes of the simulator are usually a successive sequence
of time frames, and each frame contains arrays of positions
and orientations in the 3D virtual environment. Each pair
of position and orientation information defines the global

status of a character at a given time frame. McKenzie et al.
[28] developed a crowd simulator to generate noncombatant
civilian behaviors which is interoperable with a simulation
of modern military operations. Zhou et al. [29] classified the
existing crowd modeling and simulation technologies based
on the size and time scale of simulated crowds and evaluated
them based on their flexibility, extensibility, execution effi-
ciency, and scalability. Zhang et al. [30] presented a unified
interaction framework on GPU to simulate the behavior of
a crowd at interactive frame rates in a fine-grained parallel
fashion.Malinowski et al. [31] were able to perform large scale
simulations that resulted in tens of thousands of simulated
agents.

Visualizing a large number of simulated agents using
animated characters is a challenging computing task and
worth an in-depth study. Beacco et al. [9] surveyed previous
approaches for real-time crowd rendering. They reviewed
and examined existing acceleration techniques and pointed
out that LOD techniques have been used widely in order
to achieve high rendering performance, where a far-away
character can be representedwith a coarse version of the char-
acter as the alternative for rendering. Awell-known approach
is using discrete LOD representations, which are a set of
offline simplified versions of a mesh. At the rendering stage,
the renderer selects a desired version and renders it without
any additional processing cost at runtime. However, Discrete
LODs require too much memory for storing all simplified
versions of the mesh. Also, as mentioned by Cleju and Saupe
[32], discrete LODs could cause “popping” visual artifacts
because of the unsmooth shape transition between simplified
versions. Dobbyn et al. [33] introduced a hybrid rendering
approach that combines image-based and geometry-based
rendering techniques. They evaluated the rendering quality
and performance in an urban crowd simulation. In their
approach, the characters in the distance were rendered with
image-based LOD representations, and they were switched
to geometric representations when they were within a closer
distance. Although the visual quality seemed better than
using discrete LOD representations, popping artifacts also
occurred when the renderer switches content between image
representations and geometric representations. Ulicny et al.
[34] presented an authoring tool to create crowd scenes of
thousands of characters. To provide users immediate visual
feedback, they used low-poly meshes for source characters.
The meshes were kept in OpenGL’s display lists on GPU for
fast rendering.

Characters in a crowd are polygonal meshes. The mesh
is rigged by a skeleton. Rotations of the skeleton’s joints
transform surrounding vertices, and subsequently the mesh
can be deformed to create animations.While LOD techniques
for simplifying general polygonal meshes have been studied
maturely (e.g., progressive meshes [35], quadric error metrics
[36]), not many existing works studied how to simplify
animated characters. Landreneau and Schaefer [37] presented
mesh simplification criteria to preserve deforming features
of animations on simplified versions of the mesh. Their
approach was developed based on quadric error metrics, and
they added simplification criteria with the consideration of
vertices’ skinning weights from the joints of the skeleton and
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the shape deviation between the character’s rest pose and
a deformed shape in animations. Their approach produced
more accurate animations for dynamically simplified charac-
ters than many other LOD-based approaches, but it caused
a higher computational cost, so it may be challenging to
integrate their approach into a real-time application. Will-
mott [38] presented a rapid algorithm to simplify animated
characters. The algorithm was developed based on the idea
of vertex clustering. The author mentioned the possibility
of implementing the algorithm on the GPU. However, in
comparison to the algorithm with progressive meshes, it
did not produce well-simplified characters to preserve fine
features of character appearance. Feng et al. [39] employed
triangular-char geometry images to preserve the features of
both static and animated characters.Their approach achieved
high rendering performance by implement geometry images
with multiresolutions on the GPU. In their experiment,
they demonstrated a real-time rendering rate for a crowd
composed of 15.3 million triangles. However, there could be
a potential LOD adaptation issue if the geometry images
become excessively large. Peng et al. [8] proposed a GPU-
based LOD-enabled system to render crowds along with a
novel texture-preserving algorithm on simplified versions of
the character. They employed a continuous LOD technique
to refine or reduce mesh details progressively during the
runtime. However, their approach was based on the simu-
lation of single virtual humans. Instantiating and rendering
multiple types of characters were not possible in their system.
Savoy et al. [40] presented a web-based crowd rendering
system that employed the discrete LOD and instancing
techniques.

Visibility culling technique is another type of acceleration
techniques for crowd rendering. With visibility culling, a
renderer is able to reject a character from the rendering
pipeline if it is outside the view frustum or blocked by other
characters or objects. Visibility culling techniques do not
cause any loss of visual fidelity on visible characters. Tecchia
et al. [41] performed efficient occlusion culling for a highly
populated scene. They subdivided the virtual environmental
map into a 2D grid and used it to build a KD-tree of the
virtual environment.The large and static objects in the virtual
environment, such as buildings, were used as occluders.Then,
an occlusion tree was built at each frame and merged with
the KD-tree. Barczak et al. [42] integrated GPU-accelerated
View-Frustum Culling and occlusion culling techniques into
a crowd rendering system. The system used a vertex shader
to test whether or not the bounding sphere of a character
intersects with the view frustum. A hierarchical Z buffer
image was built dynamically in a vertex shader in order to
perform occlusion culling. Hernandez and Isaac Rudomin
[43] combined View-Frustum Culling and LOD Selection.
Desired detail levels were assigned only to the characters
inside the view frustum.

Instancing techniques have been commonly used for
crowd rendering. Their execution is accelerated by GPUs
with graphics API such as DirectX and OpenGL. Zelsnack
[44] presented coding details of the pseudo-instancing tech-
nique using OpenGL shader language (GLSL). The pseudo-
instancing technique requires per-instance calls sent to and

executed on the GPU. Carucci [45] introduced the geometry-
instancing technique which renders all vertices and triangles
of a crowd scene through a geometry shader using one call.
Millan and Rudomin [14] used the pseudo-instancing tech-
nique for rendering full-detail characters which were closer
to the camera. The far-away characters with low details were
rendered using impostors (an image-based approach). Ashraf
and Zhou [46] used a hardware-accelerated method through
programmable shaders to animated crowds. Klein et al. [47]
presented an approach to render configurable instances of
3D characters for the web. They improved XML3D to store
3D content in a more efficient way in order to support
an instancing-based rendering mechanism. However, their
approach lacked support for multiple character assets.

3. System Overview

Our crowd rendering system first preprocesses source char-
acters and then performs runtime tasks on the GPU. Figure 1
illustrates an overview of our system. Our system integrates
View-Frustum Culling and continuous LOD techniques.

At the preprocessing stage, a fine-to-coarse progressive
mesh simplification algorithm is applied to every source
character. In accordance with the edge-collapsing criteria
[8, 35], the simplification algorithm selects edges and then
collapses them by merging adjacent vertices iteratively and
then removes the triangles containing the collapsed edges.
The edge-collapsing operations are stored as data arrays on
the GPU. Vertices and triangles can be recovered by splitting
the collapsed edges and are restored with respect to the order
of applying coarse-to-fine splitting operations. Vertex normal
vectors are used in our system to determine a proper shading
effect for the crowd. A bounding sphere is computed for each
source character. It tightly encloses all vertices in all frames
of the character’s animation. The bounding sphere will be
used during the runtime to test an instance against the view
frustum.Note that bounding spheresmay be in different sizes
because the sizes of source characters may be different. Other
data including textures, UVs, skeletons, skinning weights,
and animations are packed into textures.They can be accessed
quickly by shader programs and the general-purpose GPU
programming framework during the runtime.

The runtime pipeline of our system is executed on the
GPU through five parallel processing components. We use
an instance ID in shader programs to track the index of
each instance, which corresponds to the occurrence of a
source character at a global location and orientation in the
virtual scene. A unique source character ID is assigned to
each source character, which is used by an instance to index
back to the source character that is instantiated from. We
assume that the desired number of instances is provided
by users as a parameter in the system configuration. The
global positions and orientations of instances simulated from
a crowd simulator are passed into our system as input. They
determine where the instances should occur in the virtual
scene. The component of View-Frustum Culling determines
the visibility of instances. An instance will be considered to be
visible if its bounding sphere is inside or intersects with the
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Figure 1: The overview of our system.

view frustum. The component of LOD Selection determines
the desired detail level of the instances. It is executed with
an instance-level parallelization. A detail level is represented
as the numbers of vertices and triangles selected which are
assembled from the vertex and triangle repositories. The
component of LODMesh Generation produces LODmeshes
using the selected vertices and triangles. The size of GPU
memory may not be enough to store all the instances at
their finest levels. Thus, a configuration parameter called the
primitive budget is passed into the runtime pipeline as a
global constraint to ensure the generated LOD meshes fit
into the GPUmemory.The component of Animating Meshes
attaches skeletons and animations to the simplified versions
(LODmeshes) of the instances. At the end of the pipeline, the
rendering component rasterizes the LOD meshes along with
appropriate textures and UVs and displays the result on the
screen.

4. Fundamentals of LOD Selection and
Character Animation

During the step of preprocessing, the mesh of each source
character is simplified by collapsing edges. Same as existing
work, the collapsing criteria in our approach preserves
features at high curvature regions [39] and avoids collapsing
the edges onor crossing texture seams [8]. Edges are collapsed
one-by-one. We utilized the same method presented in [48],
which saved collapsing operations into an array structure
suitable for the GPU architecture. The index of each array
element represents the source vertex and the value of the
element represents the target vertex it merges to. By using
the array of edge collapsing, the repositories of vertices and
triangles are rearranged in an increasing order, so that, at
runtime, the desired complexity of a mesh can be generated
by selecting a successive sequence of vertices and triangles
from the repositories. Then, the skeleton-based animations

are applied to deform the simplified meshes. Figure 2 shows
the different levels of detail of several source characters that
are used in our work. In this section, we brief the techniques
of LOD Selection and character animation.

4.1. LOD Selection. Let us denote 𝐾 as the total number of
instances in the virtual scene. A desired level of details for
an instance can be represented as the pair of {V𝑁𝑢𝑚, 𝑡𝑁𝑢𝑚},
where V𝑁𝑢𝑚 is the desired number of vertices, and 𝑡𝑁𝑢𝑚 is
the desired number of triangles. Given a value of V𝑁𝑢𝑚, the
value of 𝑡𝑁𝑢𝑚 can be retrieved from the prerecorded edge-
collapsing information [48]. Thus, the goal of LOD Selection
is to determine an appropriate value of V𝑁𝑢𝑚 for each
instance, with considerations of the available GPU memory
size and the instance’s spatial relationship to the camera. If
an instance is outside the view frustum, V𝑁𝑢𝑚 is set to zero.
For the instances inside the view frustum, we used the LOD
Selection metric in [48] to compute V𝑁𝑢𝑚, as shown in

V𝑁𝑢𝑚𝑖 = 𝑁
𝑤1/𝛼𝑖

∑𝐾𝑖=1𝑤
1/𝛼
𝑖

,

where 𝑤𝑖 = 𝛽𝐴 𝑖
𝐷𝑖

𝑃𝛽𝑖 , 𝛽 = 𝛼 − 1

(1)

Equation (1) is the same as the first-pass algorithm
presented by Peng and Cao [48]. It originates from the model
perception method presented by Funkhouser et al. [49] and
is improved by Peng and Cao [48, 50] to accelerate the
rendering of large CAD models. We found that (1) is also a
suitable metric for the large crowd rendering. In the equation,
𝑁 refers to the total number of vertices that can be retained
on the GPU, which is a user-specified value computed based
on the available size of GPU memory. The value of 𝑁 can
be tuned to balance the rendering performance and visual
quality. 𝑤𝑖 is the weight computed with the projected area of
the bounding sphere of the 𝑖th instance on the screen (𝐴 𝑖 ) and
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: The examples showing different levels of detail for seven source characters. From top to bottom, the numbers of triangles are as
follows: (a) Alien: 5,688, 1,316, 601, and 319; (b) Bug: 6,090, 1,926, 734, and 434; (c) Daemon: 6,652, 1,286, 612, and 444; (d) Nasty: 6,848, 1,588,
720, and 375; (e) Ripper Dog: 4,974, 1,448, 606, and 309; (f) Spider: 5,868, 1,152, 436, and 257; (g) Titan: 6,518, 1,581, 681, and 362.

the distance to the camera (𝐷𝑖). 𝛼 is the perception parameter
introduced by Funkhouser et al. [49]. In our work, the value
of 𝛼 is set to 3.

With V𝑁𝑢𝑚 and 𝑡𝑁𝑢𝑚, the successive sequences of
vertices and triangles are retrieved from the vertex and
triangle repositories of the source character. By applying the
parallel triangle reformation algorithm [48, 50], the desired
shape of the simplified mesh is generated using the selected
vertices and triangles.

4.2. Animation. In order to create character animations,
each LOD mesh has to be bound to a skeleton along with
skinning weights added to influence the movement of the
mesh’s vertices. As a result, the mesh will be deformed by
rotating joints of the skeleton. As we mentioned earlier, each
vertex may be influenced by a maximum of four joints. We
want to note that the vertices forming the LOD mesh are a
subset of the original vertices of the source character. There
is not any new vertex introduced during the preprocess of
mesh simplification. Because of this, we were able to use
original skinning weights to influence the LOD mesh. When
transformations defined in an animation frame are loaded
on the joints, the final vertex position will be computed
by summing the weighted transformations of the skinning
joints. Let us denote each of the four joints influencing a
vertex V as 𝐽𝑛𝑡𝑖, where 𝑖 ∈ [0, 3]. The weight of 𝐽𝑛𝑡𝑖 on the
vertex V is denoted as 𝑊𝐽𝑛𝑡𝑖 . Thus, the final position of the
vertex V, denoted as 𝑃󸀠V , can be computed by using

𝑃󸀠V = 𝐺
3

∑
𝑖=0

𝑊𝐽𝑛𝑡𝑖𝑇𝐽𝑛𝑡𝑖𝐵
−1
𝐽𝑛𝑡𝑖

𝑃V; where
3

∑
𝑖=0

𝑊𝐽𝑛𝑡𝑖 = 1 (2)

In (2), 𝑃V is the vertex position at the time when the
mesh is bound to the skeleton. When the mesh is first loaded

without the use of animation data, the mesh is placed in the
initial binding pose.When using an animation, the inverse of
the binding pose needs to be multiplied by an animated pose.
This is reflected in the equation, where 𝐵−1𝐽𝑛𝑡𝑖 is the inverse of
binding transformation of the joint 𝐽𝑛𝑡𝑖, and 𝑇𝐽𝑛𝑡𝑖 represents
the transformation of the joint 𝐽𝑛𝑡𝑖 from the current frame
of the animation. 𝐺 is the transformation representing the
instance’s global position and orientation. Note that the
transformations 𝐵−1𝐽𝑛𝑡𝑖 ,𝑇𝐽𝑛𝑡𝑖 , and𝐺 are represented in the form
of 4×4matrix.The weight𝑊𝐽𝑛𝑡𝑖 is a single float value, and the
four weight values must sum to 1.

5. Source Character and Instance Management

Geometry-instancing and pseudo-instancing techniques are
the primary solutions for rendering a large number of
instances, while allowing the instances to have different
global transformations. The pseudo-instancing technique is
used in OpenGL and calls instances’ drawing functions one-
by-one. The geometry-instancing technique is included in
Direct3D since the version 9 and in OpenGL since version
3.3. It advances the pseudo-instancing technique in terms of
reducing the number of drawing calls. It supports the use of
a single drawing call for instances of a mesh and therefore
reduces the communication cost of sending call requests from
CPU to GPU and subsequently increases the performance.
As regards data storage on the GPU, buffer objects are used
for shader programs to access and update data quickly. A
buffer object is a continuous memory block on the GPU
and allows the renderer to rasterize data in a retained mode.
In particular, a vertex buffer object (VBO) stores vertices.
An index buffer object (IBO) stores indices of vertices that
form triangles or other polygonal types used in our system.
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In particular, the geometry-instancing technique requires a
single copy of vertex data maintained in the VBO, a single
copy of triangle data maintained in the IBO, and a single copy
of distinct world transformations of all instances. However,
if the source character has a high geometric complexity and
there are lots of instances, the geometry-instancing technique
may make the uniform data type in shaders hit the size limit,
due to the large amount of vertices and triangles sent to the
GPU. In such case, the drawing call has to be broken into
multiple calls.

There are two types of implementations for instancing
techniques: static batching and dynamic batching [45]. The
single-call method in the geometry-instancing technique is
implementedwith static batching, while themulticallmethod
in both the pseudo-instancing and geometry-instancing tech-
niques are implemented with dynamic batching. In static
batching, all vertices and triangles of the instances are saved
into a VBO and IBO. In dynamic batching, the vertices
and triangles are maintained in different buffer objects and
drawn separately. The implementation with static batching
has the potential to fully utilize the GPU memory, while
dynamic batchingwould underutilize thememory.Themajor
limitation of static batching is the lack of LOD and skinning
supports. This limitation makes the static batching not
suitable for rendering animated instances, though it has been
proved to be faster than dynamic batching in terms of the
performance of rasterizing meshes.

In our work, the storage of instances is managed similarly
to the implementation of static batching, while individual
instances can still be accessed similarly to the implementation
of dynamic batching. Therefore, our approach can be seam-
lessly integrated with LOD and skinning techniques, while
taking the use of a single VBO and IBO for fast rendering.
This section describes the details of our contributions for
character and instance management, including texture pack-
ing, UV-guided mesh rebuilding, and instance indexing.

5.1. Packing Skeleton, Animation, and Skinning Weights into
Textures. Smooth deformation of a 3D mesh is a computa-
tionally expensive process because each vertex of the mesh
needs to be repositioned by the joints that influence it.
We packed the skeleton, animations, and skinning weights
into 2D textures on the GPU, so that shader programs can
access them quickly. The skeleton is the binding pose of the
character. As explained in (2), the inverse of the binding
pose’s transformation is used during the runtime. In our
approach, we stored this inverse into the texture as the skeletal
information. For each joint of the skeleton, instead of storing
individual translation, rotation, and scale values, we stored
their composed transformation in the form of a 4 × 4matrix.
Each joint’s binding pose transformation matrix takes four
RGBA texels for storage. Each RGBA texel stores a row
of the matrix. Each channel stores a single element of the
matrix. By usingOpenGL,matrices are stored as the format of
GL RGBA32F in the texture, which is a 32-bit floating-point
type for each channel in one texel. Let us denote the total
number of joints in a skeleton as 𝐾. Then, the total number
of texels to store the entire skeleton is 4𝐾.

We used the same format for storing the skeleton to store
an animation. Each animation frame needs 4𝐾 texels to store
the joints’ transformation matrices. Let us denote the total
number of frames in an animation as 𝑄. Then, the total
number of texels for storing the entire animation is 4𝐾𝑄.
For each animation frame, the matrix elements are saved into
successive texels in the row order. Here we want to note that
each animation frame starts from a new row in the texture.

The skinning weights of each vertex are four values in the
range of [0, 1], where each value represents the influencing
percentage of a skinning joint. For each vertex, the skinning
weights require eight data elements, where the first four
data elements are joint indices, and the last four are the
corresponding weights. In other words, each vertex requires
two RGBA texels to store the skinning weights. The first texel
is used to store joint indices, and the second texel is used to
store weights.

5.2. UV-Guided Mesh Rebuilding. A 3D mesh is usually a
seamless surface without boundary edges. The mesh has to
be cut and unfolded into 2D flatten patches before a texture
image can be mapped onto it. To do this, some edges have
to be selected properly as boundary edges, from which the
mesh can be cut. The relationship between the vertices of
a 3D mesh and 2D texture coordinates can be described as
a texture mapping function 𝐹(𝑥, 𝑦, 𝑧) 󳨀→ {(𝑠𝑖, 𝑡𝑖)}. Inner
vertices (those not on boundary edges) have a one-to-one
texturemapping. In other words, each inner vertex ismapped
to a single pair of texture coordinates. For the vertices on
boundary edges, since boundary edges are the cutting seams,
a boundary vertex needs to be mapped to multiple pairs of
texture coordinates. Figure 3 shows an example that unfolds a
cubemesh andmaps it into a flatten patch in 2D texture space.
In the figure, 𝑢𝑖 stands for a point in the 2D texture space.
Each vertex on the boundary edges is mapped to more than
one points, which are 𝐹(V0) = {𝑢1, 𝑢3}, 𝐹(V3) = {𝑢10, 𝑢12},
𝐹(V4) = {𝑢0, 𝑢4, 𝑢6}, and 𝐹(V7) = {𝑢7, 𝑢9, 𝑢13}.

In a hardware-accelerated renderer, texture coordinates
are indexed from a buffer object, and each vertex should
associate with a single pair of texture coordinates. Since the
texture mapping function produces more than one pairs of
texture coordinates for boundary vertices, we conducted a
mesh rebuilding process to duplicate boundary vertices and
mapped each duplicated one to a unique texture point. By
doing this, although the number of vertices is increased due
to the cuttings on boundary edges, the number of triangles
is the same as the number of triangles in the original mesh.
In our approach, we initialized two arrays to store UV
information. One array stores texture coordinates, the other
array stores the indices of texture points with respect to the
order of triangle storage. Algorithm 1 shows the algorithmic
process to duplicate boundary vertices by looping through
all triangles. In the algorithm, 𝑉𝑒𝑟𝑡𝑠 is the array of original
vertices storing 3D coordinates (𝑥, 𝑦, 𝑧). 𝑇𝑟𝑖𝑠 is the array
of original triangles storing the sequence of vertex indices.
Similar to 𝑇𝑟𝑖𝑠, 𝑇𝑒𝑥𝐼𝑛𝑥 is the array of indices of texture
points in 2D texture space and represents the same triangular
topology as the mesh. Note that the order of triangle storage
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Figure 3: An example showing the process of unfolding a cube mesh and mapping it into a flatten patch in 2D texture space. (a) is the 3D
cube mesh formed by 8 vertices and 6 triangles. (b) is the unfolded texture map formed by 14 pairs of texture coordinates and 6 triangles.
Bold lines are the boundary edges (seams) to cut the cube, and the vertices in red are boundary vertices that are mapped into multiple pairs
of texture coordinates. In (b), 𝑢𝑖 stands for a point (𝑠𝑖, 𝑡𝑖) in 2D texture space, and V𝑖 in the parenthesis is the corresponding vertex in the cube.

RebuildMesh(
Input: 𝑉𝑒𝑟𝑡𝑠, 𝑇𝑟𝑖𝑠, 𝑇𝑒𝑥𝐶𝑜𝑜𝑟𝑑𝑠,𝑁𝑜𝑟𝑚𝑠, 𝑇𝑒𝑥𝐼𝑛𝑥, 𝑜𝑟𝑖𝑇𝑟𝑖𝑁𝑢𝑚, 𝑡𝑒𝑥𝐶𝑜𝑜𝑟𝑑𝑁𝑢𝑚;
Output: 𝑉𝑒𝑟𝑡𝑠󸀠, 𝑇𝑟𝑖𝑠󸀠,𝑁𝑜𝑟𝑚𝑠󸀠)

(1) 𝑐ℎ𝑒𝑐𝑘𝑒𝑑[𝑡𝑒𝑥𝐶𝑜𝑜𝑟𝑑𝑁𝑢𝑚] ←󳨀 𝑓𝑎𝑙𝑠𝑒;
(2) for each triangle 𝑖 of 𝑜𝑟𝑖𝑇𝑟𝑖𝑁𝑢𝑚 do
(3) for each vertex 𝑗 in the 𝑖th triangle do
(4) 𝑡𝑒𝑥𝑃𝑜𝑖𝑛𝑡 𝑖𝑑 ←󳨀 𝑇𝑒𝑥𝐼𝑛𝑥[3 ∗ 𝑖 + 𝑗];
(5) if 𝑐ℎ𝑒𝑐𝑘𝑒𝑑[𝑡𝑒𝑥𝑃𝑜𝑖𝑛𝑡 𝑖𝑑] = 𝑓𝑎𝑙𝑠𝑒 then
(6) 𝑐ℎ𝑒𝑐𝑘𝑒𝑑[𝑡𝑒𝑥𝑃𝑜𝑖𝑛𝑡 𝑖𝑑] ←󳨀 𝑡𝑟𝑢𝑒;
(7) V𝑒𝑟𝑡 𝑖𝑑 ←󳨀 𝑇𝑟𝑖𝑠[3 ∗ 𝑖 + 𝑗];
(8) for each coordinate 𝑘 in the 𝑘th vertex do
(9) 𝑉𝑒𝑟𝑡𝑠󸀠[3 ∗ 𝑡𝑒𝑥𝑃𝑜𝑖𝑛𝑡 𝑖𝑑 + 𝑘] = 𝑉𝑒𝑟𝑡𝑠[3 ∗ V𝑒𝑟𝑡 𝑖𝑑 + 𝑘];
(10) 𝑁𝑜𝑟𝑚𝑠󸀠[3 ∗ 𝑡𝑒𝑥𝑃𝑜𝑖𝑛𝑡 𝑖𝑑 + 𝑘] = 𝑁𝑜𝑟𝑚𝑠[3 ∗ V𝑒𝑟𝑡 𝑖𝑑 + 𝑘];
(11) end for
(12) end if
(13) end for
(14) end for
(15) 𝑇𝑟𝑖𝑠󸀠 ←󳨀 𝑇𝑒𝑥𝐼𝑛𝑥;

Algorithm 1: UV-Guided mesh rebuilding algorithm.

for the mesh is the same as the order of triangle storage for
the 2D texture patches. 𝑁𝑜𝑟𝑚𝑠 is the array of vertex normal
vectors. 𝑜𝑟𝑖𝑇𝑟𝑖𝑁𝑢𝑚 is the total number of original triangles,
and 𝑡𝑒𝑥𝐶𝑜𝑜𝑟𝑑𝑁𝑢𝑚 is the number of texture points in 2D
texture space.

After rebuilding the mesh, the number of vertices in
𝑉𝑒𝑟𝑡𝑠󸀠 will be identical to the number of texture points
𝑡𝑒𝑥𝐶𝑜𝑜𝑟𝑑𝑁𝑢𝑚, and the array of triangles (𝑇𝑟𝑖𝑠󸀠) is replaced
by the array of indices of the texture points (𝑇𝑒𝑥𝐼𝑛𝑥).

5.3. Source Character and Instance Indexing. After applying
the data packing and mesh rebuilding methods presented
in Sections 5.1 and 5.2, the multiple data of a source char-
acter are organized into GPU-friendly data structures. The
character’s skeleton, skinning weights, and animations are
packed into textures and read-only in shader programs on

the GPU. The vertices, triangles, texture coordinates, and
vertex normal vectors are stored in arrays and retained on
the GPU. During the runtime, based on the LOD Selection
result (see Section 4.1), a successive subsequence of vertices,
triangles, texture coordinates, and vertex normal vectors
are selected for each instance and maintained as single
buffer objects. As mentioned in Section 4.1, the simplified
instances are constructed in a parallel fashion through a
general-purpose GPU programming framework. Then, the
framework interoperates with the GPU’s shader programs
and allows shaders to perform rendering tasks for the
instances. Because continuous LOD and animated instancing
techniques are assumed to be used in our approach, instances
have to be rendered one-by-one, which is the same as the way
of rendering animated instances in geometry-instancing and
pseudo-instancing techniques. However, our approach needs
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Figure 4: An example illustrating the data structures for storing vertices and triangles of three instances in VBO and IBO, respectively.Those
data are stored on the GPU and all data operations are executed in parallel on the GPU. The VBO and IBO store data for all instances that
are selected from the array of original vertices and triangles of the source characters. V𝑁𝑢𝑚 and 𝑡𝑁𝑢𝑚 arrays are the LOD section result.

to construct the data within one execution call, rather than
dealing with per-instance data.

Figure 4 illustrates the data structures of storing VBO
and IBO on the GPU. Based on the result of LOD Selection,
each instance is associated with a V𝑁𝑢𝑚 and a 𝑡𝑁𝑢𝑚 (see
Section 4.1) that represent the amount of vertices and trian-
gles selected based on the current view setting. We employed
CUDAThrust [51] to process the arrays of V𝑁𝑢𝑚 and 𝑡𝑁𝑢𝑚
using the prefix sum algorithm in a parallel fashion. As a
result, for example, each V𝑁𝑢𝑚[𝑖] represents the offset of
vertex count prior to the 𝑖th instance, and the number of
vertices for the 𝑖th instance is (V𝑁𝑢𝑚[𝑖 + 1] − V𝑁𝑢𝑚[𝑖]).

Algorithm 2 describes the vertex transformation process
in parallel in the vertex shader. It transforms the instance’s
vertices to their destination positions while the instance
is being animated. In the algorithm, 𝑐ℎ𝑎𝑟𝑁𝑢𝑚 represents
the total number of source characters. The inverses of
the binding pose skeletons are a texture array denoted as
𝑖𝑛V𝐵𝑖𝑛𝑑𝑃𝑜𝑠𝑒[𝑐ℎ𝑎𝑟𝑁𝑢𝑚]. The skinning weights are a texture
array denoted as 𝑠𝑘𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑠[𝑐ℎ𝑎𝑟𝑁𝑢𝑚]. We used a walk
animation for each source character, and the texture array
of the animations is denoted as 𝑎𝑛𝑖𝑚[𝑐ℎ𝑎𝑟𝑁𝑢𝑚]. 𝑔𝑀𝑎𝑡 is
the global 4 × 4 transformation matrix of the instance in
the virtual scene. This algorithm is developed based on the
data packing formats described in Section 5.1. Each source
character is assigned with a unique source character ID,
denoted as 𝑐 𝑖𝑑 in the algorithm. The drawing calls are
issued per instance, so 𝑐 𝑖𝑑 is passed into the shader as
an input parameter. The function of 𝐺𝑒𝑡𝐿𝑜𝑐() computes the
coordinates in the texture space to locate which texel to
fetch. The input of 𝐺𝑒𝑡𝐿𝑜𝑐() includes the current vertex or
joint index (𝑖𝑑) that needs to be mapped, the width (𝑤) and
height (ℎ) of the texture, and the number of texels (𝑑𝑖𝑚)
associating with the vertex or joint. For example, to retrieve
a vertex’s skinning weights, the 𝑑𝑖𝑚 is set to 2; to retrieve
a joint’s transformation matrix, the 𝑑𝑖𝑚 is set to 4. In the
function of 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠(), vertices of the instance are
transformed in a parallel fashion by the composed matrix
(𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑀𝑎𝑡) computed from a weighted sum of matrices
of the skinning joints. The function 𝑆𝑎𝑚𝑝𝑙𝑒() takes a texture
and the coordinates located in the texture space as input. It
returns the values encoded in texels. The 𝑆𝑎𝑚𝑝𝑙𝑒() function

is usually provided in a shader programming framework.
Different from the rendering of static models, animated char-
acters change geometric shapes over time due to continuous
pose changes in the animation. In the algorithm, 𝑓 𝑖𝑑 stands
for the current frame index of the instance’s animation. 𝑓 𝑖𝑑
is updated in the main code loop during the execution of the
program.

6. Experiment and Analysis

We implemented our crowd rendering system on a worksta-
tion with Intel i7-5930K 3.50GHz PC with 64GBytes of RAM
and an Nvidia GeForce GTX980 Ti 6GB graphics card. The
rendering system is built with Nvidia CUDA Toolkit 9.2 and
OpenGL. We employed 14 unique source characters. Table 1
shows the data configurations of those source characters.
Each source character is articulated with a skeleton and fully
skinned and animated with a walk animation. Each one
contains an unfolded texture UV set along with a texture
image at the resolution of 2048 × 2048. We stored those
source characters on theGPU.Also, all source characters have
been preprocessed by the mesh simplification and animation
algorithms described in Section 4. We stored the edge-
collapsing information and the character bounding spheres
in arrays on the GPU. In total, the source characters require
184.50MB memory for storage. The size of mesh data is
much smaller than the size of texture images. The mesh data
requires 16.50MBmemory for storage, which is only 8.94% of
the total memory consumed. At initialization of the system,
we randomly assigned a source character to each instance.

6.1. Visual Fidelity and Performance Evaluations. As defined
in Section 4.1, 𝑁 is a memory budget parameter that
determines the geometric complexity and the visual quality
of the entire crowd. For each instance in the crowd, the
corresponding bounding sphere is tested against the view
frustum to determine its visibility. The value of 𝑁 is only
distributed across visible instances.

We created a walkthrough camera path for the rendering
of the crowd.The camera path emulates a gaming navigation
behavior and produces a total of 1,000 frames. The entire
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GetLoc(
Input: 𝑤, ℎ, 𝑖𝑑, dim
Output: 𝑢𝑛𝑖𝑡 𝑥, 𝑢𝑛𝑖𝑡 𝑦, 𝑥, 𝑦)

(1) 𝑢𝑛𝑖𝑡 𝑥 ←󳨀 1/𝑤;
(2) 𝑢𝑛𝑖𝑡 𝑦 ←󳨀 1/ℎ;
(3) 𝑥 ←󳨀 𝑑𝑖𝑚 ∗ (𝑖𝑑%(𝑤/𝑑𝑖𝑚)) ∗ 𝑢𝑛𝑖𝑡 𝑥;
(4) 𝑦 ←󳨀 (𝑖𝑑/(𝑤/𝑑𝑖𝑚)) ∗ 𝑢𝑛𝑖𝑡 𝑦;

TransformVertices(
Input: 𝑉𝑒𝑟𝑡𝑠󸀠, 𝑖𝑛V𝑃𝑜𝑠𝑒[𝑐ℎ𝑎𝑟𝑁𝑢𝑚], 𝑠𝑘𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑠[𝑐ℎ𝑎𝑟𝑁𝑢𝑚], 𝑎𝑛𝑖𝑚[𝑐ℎ𝑎𝑟𝑁𝑢𝑚], 𝑔𝑀𝑎𝑡, 𝑐 𝑖𝑑, 𝑓 𝑖𝑑;
Output: 𝑉𝑒𝑟𝑡𝑠󸀠󸀠)

(1) for each vertex V𝑖 in 𝑉𝑒𝑟𝑡𝑠󸀠 in parallel do
(2) 𝑀𝑎𝑡𝑟𝑖𝑥4 × 4 : 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑀𝑎𝑡 ←󳨀 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦;
(3) {𝑢𝑛𝑖𝑡 𝑥, 𝑢𝑛𝑖𝑡 𝑦, 𝑥, 𝑦} ←󳨀 𝐺𝑒𝑡𝐿𝑜𝑐(𝑠𝑘𝑖𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑐 𝑖𝑑].𝑤𝑖𝑑𝑡ℎ, 𝑠𝑘𝑖𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑐 𝑖𝑑].ℎ𝑒𝑖𝑔ℎ𝑡, 𝑖, 2);
(4) ℎ ←󳨀 𝑠𝑘𝑖𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑐 𝑖𝑑].ℎ𝑒𝑖𝑔ℎ𝑡;
(5) 𝑉𝑒𝑐𝑡𝑜𝑟4 : 𝑗𝑛𝑡𝐼𝑛𝑥 ←󳨀 𝑆𝑎𝑚𝑝𝑙𝑒(𝑠𝑘𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑠[𝑐 𝑖𝑑], (0 ∗ 𝑢𝑛𝑖𝑡 𝑥 + 𝑥), 𝑦);
(6) 𝑉𝑒𝑐𝑡𝑜𝑟4 : 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ←󳨀 𝑆𝑎𝑚𝑝𝑙𝑒(𝑠𝑘𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑠[𝑐 𝑖𝑑], (1 ∗ 𝑢𝑛𝑖𝑡 𝑥 + 𝑥), 𝑦);
(7) for each 𝑗 in 4 do
(8) 𝑀𝑎𝑡𝑟𝑖𝑥4 × 4 : 𝑖𝑛V𝐵𝑖𝑛𝑑𝑀𝑎𝑡;
(9) {𝑢𝑛𝑖𝑡 𝑥, 𝑢𝑛𝑖𝑡 𝑦, 𝑥, 𝑦} ←󳨀 𝐺𝑒𝑡𝐿𝑜𝑐(𝑖𝑛V𝑃𝑜𝑠𝑒[𝑐 𝑖𝑑].𝑤𝑖𝑑𝑡ℎ, 𝑖𝑛V𝑃𝑜𝑠𝑒[𝑐 𝑖𝑑].ℎ𝑒𝑖𝑔ℎ𝑡, 𝑗𝑛𝑡𝐼𝑛𝑥[𝑗], 4);
(10) for each 𝑘 in 4
(11) 𝑖𝑛V𝐵𝑖𝑛𝑑𝑀𝑎𝑡𝑟𝑜𝑤[𝑘] ←󳨀 𝑆𝑎𝑚𝑝𝑙𝑒(𝑖𝑛V𝑃𝑜𝑠𝑒[𝑐 𝑖𝑑], (𝑘 ∗ 𝑢𝑛𝑖𝑡 𝑥 + 𝑥), 𝑦);
(12) end for
(13) {𝑢𝑛𝑖𝑡 𝑥, 𝑢𝑛𝑖𝑡 𝑦, 𝑥, 𝑦} ←󳨀 𝐺𝑒𝑡𝐿𝑜𝑐(𝑎𝑛𝑖𝑚[𝑐 𝑖𝑑].𝑤𝑖𝑑𝑡ℎ, 𝑎𝑛𝑖𝑚[𝑐 𝑖𝑑].ℎ𝑒𝑖𝑔ℎ𝑡, 𝑗𝑛𝑡𝐼𝑛𝑥[𝑗], 4);
(14) 𝑂𝑓𝑓𝑠𝑒𝑡 ←󳨀 𝑓 𝑖𝑑 ∗ (𝑡𝑜𝑡𝑎𝑙𝐽𝑛𝑡𝑁𝑢𝑚/𝑎𝑛𝑖𝑚[𝑐 𝑖𝑑].𝑤𝑖𝑑𝑡ℎ/4) ∗ 𝑢𝑛𝑖𝑡 𝑦;
(15) 𝑀𝑎𝑡𝑟𝑖𝑥4 × 4 : 𝑎𝑛𝑖𝑚𝑀𝑎𝑡;
(16) for each 𝑘 in 4 do
(17) 𝑎𝑛𝑖𝑚𝑀𝑎𝑡𝑟𝑜𝑤[𝑘] ←󳨀 𝑆𝑎𝑚𝑝𝑙𝑒(𝑎𝑛𝑖𝑚[𝑐 𝑖𝑑], (𝑘 ∗ 𝑢𝑛𝑖𝑡 𝑥 + 𝑥), 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝑦);
(18) end for
(19) 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑀𝑎𝑡+ = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑗] ∗ 𝑎𝑛𝑖𝑚𝑀𝑎𝑡 ∗ 𝑖𝑛V𝐵𝑖𝑛𝑑𝑀𝑎𝑡;
(20) end for
(21) 𝑉𝑒𝑟𝑡𝑠󸀠󸀠[𝑖] = 𝑚𝑜𝑑𝑒𝑙𝑉𝑖𝑒𝑤𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡 ∗ 𝑔𝑀𝑎𝑡 ∗ 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑀𝑎𝑡 ∗ 𝑉𝑒𝑟𝑡𝑠󸀠[𝑖];
(22) end for

Algorithm 2: Transforming vertices of an instance in vertex shader.

Table 1: The data information of the source characters used in our experiment. Note that the data information represents the characters that
are prior to the process of UV-guided mesh rebuilding (see Section 5.2).

Names of Source Characters # of Vertices # of Triangles # of texture UVs # of Joints
Alien 2846 5688 3334 64
Bug 3047 6090 3746 44
Creepy 2483 4962 2851 67
Daemon 3328 6652 4087 55
Devourer 2975 5946 3494 62
Fat 2555 5106 2960 50
Mutant 2265 4526 2649 46
Nasty 3426 6848 3990 45
Pangolin 2762 5520 3257 49
Ripper Dog 2489 4974 2982 48
Rock 2594 5184 3103 62
Spider 2936 5868 3374 38
Titan 3261 6518 3867 45
Troll 2481 4958 2939 55
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Figure 5: An example of the rendering result produced by our systemusing different𝑁 values. (a) shows the captured imageswith𝑁 = 1, 6, 10
million. The top images are the rendered frame from the main camera.The bottom images are rendered based on the setting of the reference
camera, which aims at the instances that are far away from the main camera. (b) shows the entire crowd including the view frustums of the
two cameras. The yellow dots in (b) represent the instances outside the view frustum of the main camera.

crowd contains 30,000 instances spread out in the virtual
scene with predefined movements and moving trajectories.
Figure 5 shows a rendered frame of the crowd with the value
of𝑁 set to 1, 6, and 10 million, respectively. Themain camera
moves on the walkthrough path. The reference camera is
aimed at the instances far away from the main camera and
shows a close-up view of those far-away instances. Our
LOD-based instancing method ensures the total number of
selected vertices and triangles is within the specified memory
budget, while preserving the fine details of instances that are
closer to the main camera. Although the far-away instances
are simplified significantly, because the long distances to
the main camera, their appearance in the main camera do
not cause a loss of visual fidelity. Figure 5(a) shows visual
appearance of the crowd rendered from the viewpoint of the
main camera (top images), in which far-away instances are
rendered using the simplified versions (bottom images).

If all instances are rendered at the level of full detail, the
total number of triangles would be 169.07 million. Through
the simulation of the walkthrough camera path, we had an
average of 15, 771 instances inside the view frustum. The

maximum and minimum numbers of instances inside the
view frustum are 29,967 and 5,038, respectively. We specified
different values for 𝑁. Table 2 shows the performance break-
downs with regard to the runtime processing components
in our system. In the table, the “# of Rendered Triangles”
column includes the minimum, maximum, and averaged
number of triangles selected during the runtime. As we can
see, the higher the value of 𝑁 is, the more the triangles are
selected to generate simplified instances and subsequently
the better visual quality is obtained for the crowd. Our
approach is memory efficient. Even when 𝑁 is set to a large
value, such as 20 million, the crowd needs only 26.23 million
triangles in average, which is only 15.51% of the original
number of triangles. When the value of 𝑁 is small, the
difference between the averaged and the maximum number
of triangles is significant. For example, when 𝑁 is equal to
5 million, the difference is at a ratio (𝑎V𝑒𝑟𝑎𝑔𝑒/𝑚𝑎𝑥𝑖𝑚𝑢𝑚)
of 73.96%. This indicates that the number of triangles in
the crowd varies significantly according to the change of
instance-camera relationships (including instances’ distance
to the camera and their visibility). This is because a small
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Table 2: Performance breakdowns for the systemwith a precreated camera pathwith total 30,000 instances.The FPS value and the component
execution times are averaged over 1000 frames. The total number of triangles (before the use of LOD) is 169.07 million.

N FPS
# of Rendered Component Execution Times (millisecond)

Triangles (million) View-FrustumCulling +
LOD Selection LOD Mesh Generation Animating Meshes +

RenderingMin. Max. Avg.
1 47.91 1.88 9.70 5.20 0.68 2.87 26.06
5 43.30 6.12 10.14 7.50 0.65 3.87 26.44
10 32.82 11.64 13.78 13.04 0.65 6.27 29.40
15 23.00 17.88 20.73 19.54 0.71 9.45 36.43
20 18.71 23.13 27.73 26.23 0.68 12.52 42.85

Frames per second (FPS)
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Figure 6: The change of FPS over different values of 𝑁 by using our approach.The FPS is averaged over the total of 1,000 frames.

value of 𝑁 limits the level of details that an instance can
reach up. Even if an instance is close to the camera, it may
not obtain a sufficient cut from 𝑁 to satisfy a desired detail
level. As we can see in the table, when the value of𝑁 becomes
larger than 10 million, the ratio is increased to 94%. The
View-Frustum Culling and LOD Selection components are
implemented together, and both are executed in parallel at
an instance level. Thus, the execution time of this component
does not change as the value of 𝑁 increases. The component
of LOD Mesh Generation is executed in parallel at a triangle
level. Its execution time increases as the value of𝑁 increases.
Animating Meshes and Rendering components are executed
with the acceleration of OpenGL’s buffer objects and shader
programs. They are time-consuming, and their execution
time increases asmore triangles need to be rendered. Figure 6
shows the change of FPS over different values of𝑁. As we can
see in the figure, the FPS decreases as the value of𝑁 increases.
When𝑁 is smaller than 4million, the decreasing slope of FPS
is small.This is because the change on the number of triangles
over frames of the camera path is small. When 𝑁 is small,
many close-up instances end down to the lowest level of
details due to the insufficient memory budget from𝑁. When
𝑁 increases from 4 to 17 million, the decreasing slop of FPS
becomes larger. This is because the number of triangles over
frames of the camera path varies considerably with different
values of𝑁. As𝑁 increases beyond 17million, the decreasing
slope becomes smaller again, asmany instances including far-
away ones reach the full level of details.

6.2. Comparison and Discussion. We analyzed two render-
ing techniques and compared them against our approach

in terms of performance and visual quality. The pseudo-
instancing technique minimizes the amount of data dupli-
cation by sharing vertices and triangles among all instances,
but it does not support LOD on a per-instance level [44, 52].
The point-based technique renders a complex geometry by
using a dense of sampled points in order to reduce the com-
putational cost in rendering [53, 54]. The pseudo-instancing
technique does not support View-Frustum Culling. For the
comparison reason, in our approach, we ensured all instances
to be inside the view frustum of the camera by setting a
fixed position of the camera and setting fixed positions for
all instances, so that all instances are processed and rendered
by our approach. The complexity of each instance rendered
by the point-based technique is selected based on its distance
to the camera which is similar to our LOD method. When
an instance is near the camera, the original mesh is used
for rendering; when the instance is located far away from
the camera, a set of points are approximated as sample
points to represent the instance. In this comparison, the
pseudo-instancing technique always renders original meshes
of instances. We chose two different N values (𝑁= 5 million
and 𝑁= 10 million) for rendering with our approach. As
shown in Figure 7, our approach results in better performance
than the pseudo-instancing technique. This is because the
number of triangles rendered by using the pseudo-instancing
technique is much larger than the number of triangles deter-
mined by the LOD Selection component of our approach.
The performance of our approach becomes better than the
point-based technique as the number of𝑁 increases. Figure 8
shows the comparison of visual quality among our approach,
pseudo-instancing technique, and point-based technique.
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Figure 7: The performance comparison of our approach, pseudo-instancing technique, and point-based technique over different numbers
of instances. Two values of 𝑁 are chosen for our approach (𝑁 = 5 million and 𝑁 = 10 million). The FPS is averaged over the total of 1,000
frames.
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Figure 8:The visual quality comparison of our approach, pseudo-instancing technique, and point-based technique.The number of rendered
instances on the screen is 20000. (a) shows the captured image of our approach rendering result with 𝑁 = 5 million. (b) shows the captured
image of pseudo-instancing technique rendering result. (c) shows the captured image of the point-based technique rendering result. (d), (e),
and (f) are the captured images zoomed in on the area of instances which are far away from the camera.
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The image generated from the pseudo-instancing technique
represents the original quality. Our approach can achieve
better visual quality than the point-based technique. As we
can see in the top images of the figure, the instances far
away from the camera rendered by the point-based technique
appear to have “holes” due to the disconnection between
vertices. In addition, the popping artifact appears when using
the point-based technique. This is because the technique
uses a limited number of detail levels from the technique of
discrete LOD.Our approach avoids the popping artifact since
continuous LOD representations of the instances are applied
during the rendering.

7. Conclusion

In this work, we presented a crowd rendering system that
takes the advantages of GPU power for both general-purpose
and graphics computations. We rebuilt the meshes of source
characters based on the flatten pieces of texture UV sets.
We organized the source characters and instances into buffer
objects and textures on the GPU. Our approach is integrated
seamlessly with continuous LOD and View-Frustum Culling
techniques. Our system maintains the visual appearance
by assigning each instance an appropriate level of details.
We evaluated our approach with a crowd composed of
30,000 instances and achieved real-time performance. In
comparison with existing crowd rendering techniques, our
approach better utilizes GPU memory and reaches a higher
rendering frame rate.

In the future, wewould like to integrate our approachwith
occlusion culling techniques to further reduce the number
of vertices and triangles during the runtime and improve
the visual quality. We also plan to integrate our crowd
rendering systemwith a simulation in a real game application.
Currently, we only used a single walk animation in the crowd
rendering system. In a real game application, more animation
types should be added, and a motion graph should be created
in order to make animations transit smoothly from one
to another. We also would like to explore possibilities to
transplant our approach onto a multi-GPU platform, where
a more complex crowd could be rendered in real time,
with the supports of higher memory capability and more
computational power provided by multiple GPUs.

Data Availability

The source character assets used in our experiment were
purchased from cgtrader.com. The source code including
GPU and shader programs were developed in our research
lab by the authors of this paper. The source code has been
archived in our lab and available for distribution upon
requests.The supplementary video (available here) submitted
together with the manuscript shows our experimental result
of real-time crowd rendering.
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Supplementary Materials

We submitted a demo video of our crowd rendering system
as a supplementary material. The video consists of two parts.
The first part is a recorded video clip showing the real-time
rendering result as the camera moves along the predefined
walkthrough path in the virtual scene. The bottom view
corresponds the user’s view, and the top view is a reference
view showing the changes of the view frustum of the user’s
view (red lines). In the reference view, the yellow dots
represent the character instances outside the view frustum
of the user’s view. At the top-left corner of the screen, the
runtime performance and data information are plotted. The
runtime performance is measured by the frames per second
(FPS). The N value is set to 10 million, the total number of
instances is set to 30,000, and the total number of original
triangles of all instances is 169.07 million. The number of
rendered triangles changes dynamically according to the
user’s view changes, since the continuous LOD algorithm is
used in our approach. The second part of the video explains
the visual effect of LOD algorithm. It uses a straight-line
moving path that allows the main camera moves from one
corner of the crowd to another corner at a constant speed.
The video is played 4 times faster than the original FPS of the
video clip. The top-right view shows the entire scene of the
crowd. The red lines represent the view frustum of the main
camera, which is moving along the straight-line path. The
blue lines represent the view frustum of the reference camera,
which is fixed and aimed at the far-away instances from the
main camera. As we can see in the view of reference camera
(top-left corner), the simplified far-away instances are gaining
more details as the main camera moves towards the location
of the reference camera. At the same time, more instances are
outside the view frustum of the main camera, represented as
yellow dots. (Supplementary Materials)
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[6] J. Pettré, P. D. H. Ciechomski, J. Maim, B. Yersin, J.-P. Laumond,
andD.Thalmann, “Real-time navigating crowds: scalable simu-
lation and rendering,”Computer Animation andVirtualWorlds,
vol. 17, no. 3-4, pp. 445–455, 2006.

[7] J. Maı̈m, B. Yersin, J. Pettré, and D. Thalmann, “YaQ: An
architecture for real-time navigation and rendering of varied
crowds,” IEEE Computer Graphics and Applications, vol. 29, no.
4, pp. 44–53, 2009.

[8] C. Peng, S. I. Park, Y. Cao, and J. Tian, “A real-time system
for crowd rendering: parallel LOD and texture-preserving
approach on GPU,” in Proceedings of the International Confer-
ence onMotion inGames, vol. 7060 ofLectureNotes in Computer
Science, pp. 27–38, Springer, 2011.

[9] A. Beacco, N. Pelechano, and C. Andújar, “A survey of real-time
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