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Immunotherapy is one of the future treatments applicable in most cases of cancer including malignant cancer. Malignant cancer
usually prevents some genes, e.g., p53 and pRb, from controlling the activation of the cell division and the cell apoptosis. In this
paper, we consider the interactions among the cancer cell population, the effector cell population that is a part of the immune
system, and cytokines that can be used to stimulate the effector cells called the IL-2 compounds.,ese interactions depend on both
time and spatial position of the cells in the tissue. Mathematically, the spatial movement of the cells is represented by the diffusion
terms. We provide an analytical study for the constant equilibria of the reaction-diffusion system describing the above inter-
actions, which show the initial behaviour of the tissue, and we conduct numerical simulation that shows the dynamics along the
tissue that represent the immunotherapy effects. In this case, we also consider the steady-state conditions of the system that show
the long-time behaviour of these interactions.

1. Introduction

Cancer is one of the malignant diseases triggered by gene
mutations on the cells in the tissues. ,e gene mutations
affect the cell cycle, DNA damages, and some anomalies on
the cells. Some anomalies’ behaviour of the enzymes in the
cells due to the DNA damage caused by cancer has been
shown in [1–3].

,e mathematical model that shows the dynamics of cancer
on the tissues has been given in [4, 5]. In these papers, the authors
consider the cervical cancer case and show the boundaries, in the
state space and in the parameter space, which separate two types
of solutions. One solution goes to an equilibrium point, and the
other one grows up to infinity that represents the cancer cells’
metastases. When the precancerous growth rate parameter and
the saturation parameter of the cancer cells are varied, the
boundary on the state space is adjusted; see [4].

In the subcellular level, the cancer infections are mainly
caused by the gene mutation represented by the shifting
concentration of the enzymes. ,ere are some enzymes that

can be used as the indicators of the mutation, e.g., p53, pRb,
and EBNA1; see [1–3]. For the breast cancer case, the gene
mutations triggered by the enzyme reactions can cause
anomalies on the cell cycle and cell repair regulations; see [2, 3].

,e immunotherapy model of cancer that involves the
interaction between the cancer cells, the effector cells, and
the IL-2 compounds was motivated by Kirschner et al. [6, 7].
,e basic model, the interactions, and the global stability of
the equilibria have been introduced in [6, 7]. In [8], the
authors added the periodic perturbation term in the system
that shows the periodic stimulation of the effector cells by
the IL-2 compounds and studied the bifurcations of the
system due to the variation of the perturbation parameter.

,e other immunotherapy method for cancer is done by
using oncolytic virus; see [9, 10]. Virus is injected into the
cancer site to reduce the DNA replication error while in-
creasing the apoptosis rate of the cancer cells. ,is type of
immunotherapy also plays an important role for stimulating
the effector cells and cytokines to prevent the growth of cancer
cells.
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In the real situation, the growth direction of the cancer
cells depends on the weakest parts of the tissue. ,e evo-
lution profiles of the infection in a tissue are interesting to
study. ,erefore, following the results in [11], we extend the
immunotherapy model in [6–8] by adding the reaction-
diffusion terms on each component. Unlike the model in
[11], we use different coordinate nondimensional trans-
formations to prevent the Michaelis–Menten constants on
the system to understand the role of these parameters in the
dynamics of the system.

Our model is a three-dimensional system of partial
differential equations, and the analysis is focused on the
study of the steady state and the cycle of infection of the
disease that is represented by the limit cycle of the system.
We apply the Runge–Kutta method to determine the so-
lutions of the system numerically. It is important to un-
derstand the behaviour of the system.

2. The Model Formulation

We separate the cell populations into three parts, which are
the cancer cells (T), the effector cells (E), and the IL-2
compounds (IL), as functions of time τ and position x. ,e
diffusion terms are expressed by the second-order partial
derivatives with respect to x.

In our model, we use constant parameters that have the
following meanings. ,e antigenicity for the cancer cells that
measures the ability of the immune system to recognize cancer
via the non-self-protein antigens and the average of the natural
lifespan of the effector cells are represented by parameters c and
μ−1
1 , respectively.,emaximumproliferation rate of the effector

cells by the IL-2 compounds, themaximum degradation rates of
the cancer cells that have an interaction with the effector cells,
and the maximum production rates of the IL-2 compounds by
the effector cells are represented by parameters p1, p2, and p3,
respectively. Parameters g1, g2, and g3, respectively, denote the
Michaelis–Menten constants that represent the proliferation
kinetics of the effector cells, the degradation kinetics of the
cancer cells, and the growth of the IL-2 compounds caused by
the interaction between the cancer cells and the effector cells.
Moreover, s1 represents the adoptive cellular immunotherapy
(ACI) to the effector cells such as LAK or TIL cells.

,e cancer growth is assumed to follow the logistic
model where the constant birth rate is r2 with the carrying
capacity b

− 1. Parameters μ3 and s3, respectively, show the
decay rate of the IL-2 compounds and the cytokine therapy
to increase IL-2 compounds.

Our model is formulated as a three-dimensional system
of PDE as follows:
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(1)

in Ω × (0,∞), where T, E, and IL are the cancer cells, ef-
fector cells, and IL-2 compounds, respectively, and the
boundary conditions are (zE/zx) � (zT/zx) � (zIL/zx) �

0 on zΩ × (0,∞).,e domainΩ is bounded inR, and zΩ is
the domain domain. We adopt the formulation in [12] for
the initial conditions of system (1), i.e.,
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(2)

where Eo, To, and ILo
show the natural growth rate of the

effector cells, cancer cells, and the IL-2 compounds and l is
the thickness of the epithelial layer. Parameters d1, d2, and
d3, which show the random motility coefficients of the ef-
fector cells, the cancer cells, and the IL-2 compounds, are
assumed to be positive. ,e initial conditions of the effector
cell, the cancer cell, and the IL-2 compound concentrations
are expressed by using the notations E0(x), T0(x), and
IL0

(x).
We apply the nondimensional transformation for the

variables and parameters of system (1) to study the inter-
actions between these variables. We have the transformed
system as the following:
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in Ω × (0,∞), where the variables are

u �
E

E0
,

v �
T

T0
,

w �
IL

IL0

,

t � tsτ,

x �
x

x0
,

(4)

and the parameters are c � (cT0/E0ts), μ1 � (μ1/ts),
p1 � (p1/ts), g1 � (g1/IL0

), s1 � (s1/tsE0), r2 � (r2/ts),
g2 � (g2/T0), b � bT0, p2 � (p2E0/T0ts), p3 � (p3E0/IL0

ts),
μ3 � (μ3/ts), g3 � (g3/T0), s3 � (s3/IL0

ts), d1 � (d1/tsx0
2
),
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and d2 � (d2/tsx0
2
), d3 � (d3/tsx0

2
). ,e transformation is

motivated by the results in [13].
,e initial condition of system (3) is
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2
􏼐 􏼑􏼐 􏼑, 0≤ x≤ l,
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and the boundary conditions are
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on (0,∞).

3. The Cancer-Free Equilibrium

,e analysis of the cancer-free equilibrium is important to
determine the conditions of the patients to be cured from
cancer. For the numerical simulation, we focus on the
dynamics of the solutions near the cancer-free
equilibrium.

System (3) has a cancer-free equilibrium solution, i.e.,

e0 �
s1 μ3g1 + s3( 􏼁

μ1 μ3g1 + s3( 􏼁 − p1s3
, 0,

s3

μ3
􏼠 􏼡, (7)

whose stability depends on the treatment parameters which
are applied to the system. We have four cases of the stability
for the cancer-free equilibrium: one is for the nontreatment
case, i.e., s1 � 0 and s3 � 0, and the others are for the
treatment cases, i.e., s1 > 0 and s3 � 0, s1 � 0 and s3 > 0, and
s1 > 0 and s3 > 0.

Theorem 1

(1) If s1 � 0 and s3 � 0, then the equilibrium
e01 � (0, 0, 0) is unstable.

(2) If s1 > r2(g2/p2)μ1 and s3 � 0, then the equilibrium
e02 � ((s1/μ1), 0, 0) is locally asymptotically stable.

(3) If s1 � 0 and s3 > 0, then the equilibrium
e03 � (0, 0, (s3/μ3)) is unstable.

(4) If s1 > r2(g2/p2)((μ1(μ3g1 + s3) − p1s3)/(μ3g1+ s3))

and s3 < (μ1g1μ3/(p1 − μ1)), then the equilibrium

e04 �
s1 μ3g1 + s3( 􏼁

μ1 μ3g1 + s3( 􏼁 − p1s3
, 0,

s3

μ3
􏼠 􏼡, (8)

is locally asymptotically stable.

,e proof of the theorem is given by using the linear-
ization of system (3) near the equilibrium point e0i

with
i � 1, 2, 3, 4. See [14] for the method.

4. The Initial Position of the Effector Cells,
Cancer Cells, and IL-2 Compounds on
the Tissue

In the beginning of cancer invasions, the cancer cells enter
the tissue via the epithelial layer. In this case, the effector cells
and the IL-2 compounds, which are parts of the immune
system, will respond to attack the cancer cells before they
enter the body via the outer epithelial layer.

,e numerical data that we used in this paper are based
on the clinical data from [6, 12, 15–17]. Based on [6], the
value of the parameter c is 0≤ c≤ 0.2778, μ1 � 0.167,
p1 � 0.69167, g1 � 20, r2 � 1, g2 � 0.1, p3 � 27.778,
g3 � 0.001, and μ3 � 55.55556. Following [12, 15–17], we use
(1/b) � 1, 0.05556≤p2 ≤ 555.55556, 3.8889 × 10− 4 ≤ d1 ≤
5.55556 × 10− 2, 5.55556 × 10− 4 ≤d3 ≤ 5.55556 × 10− 2, and
3.33333 × 10− 6 ≤d2 ≤ 4.8 × 10− 4. Following [15], we use
ts � 0.18. It implies that the time unit on system (1) is equal
to 5.555556 times of the time unit of system (3).

In Figure 1, we show the initial profile of the effector
cells, cancer cells, and IL-2 compounds. In Figure 1, we
found that the cancer cells are found on the inner epithelial
layer, which are between 0 and 0.2 cm; see Figure 1(b). At the
same time, the effector cells and the IL-2 compounds, as
parts of the immune system, are found on the outer epithelial
layer which are between 0.2 and 1 cm; see Figures 1(a) and
1(c).

In the following sections, we perform some numerical
simulations to study the dynamics of system (1) that rep-
resents spread of the cancer cells in a tissue. We employ the
Runge–Kutta method and adopt the method in [18] to
perform numerical simulations. In this case, we will simulate
the change of the positions of the cancer cells, the effector
cells, and the IL-2 compounds several times and show the
steady-state patterns of the solutions.

5. The Dynamics of the System for
Nontreatment Cases

We consider the dynamics of system (3) for s1 � s3 � 0. In
this case, we will show the natural patterns of the effector
cells and IL-2 compounds in response to the appearance of
the cancer cells.

According to ,eorem 1, we found that the cancer-free
equilibrium e01 is unstable. For the numerical simulation,
based on [6], we use c � 0.25( ∼ 0.045 day− 1) that shows
antigenicity for cancer, and the random motility d2 is equal
to 0.0000199( ∼ 3.6 × 10− 6 cm2day− 1). Parameter
p2 � 0.5555556 shows the decay rate of the cancer cells by
the effector cells, and the diffusion coefficients d1 � 0.001
and d3 � 0.01. We show the results in Figure 2.

In Figure 2, we show that the effector cell and the IL-2
compound concentrations give a response for the appear-
ance of the cancer cells, which is to isolate the activities of the
cancer cells. ,e increase of the effector cells’ concentration
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Figure 1: ,e initial position of the effector cell, the cancer cell, and the IL-2 compound concentrations. (a) Concentration of effector cells,
u(x). (b) Concentration of cervical cancer cells, v(x). (c) Concentration of IL-2, w(x).
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Figure 2: Evolution profiles of the effector cell (blue), the cancer cell (green), and IL-2 (red) concentrations for the cancer cell random
motility coefficient d2 � 0.0000199. (a) t� 0.01. (b) t� 0.1. (c) t� 2. (d) t� 7. (e) t� 60. (f ) t� 110. (g) t� 140. (h) t� 290. (i) t� 1500.
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will stimulate the increase of the IL-2 compounds’ con-
centration. By the fact that the cancer-free equilibrium is
unstable (see,eorem 1), it is predicted that the cancer cells’
concentration cannot be vanished from the system. How-
ever, it is isolated to a certain profile on the tissue.

In Figure 3, we show that if we adjust the random
motility d2 as d2 � 0.00048( ∼ 10− 9 cm2s− 1), then the
evolution profiles of each concentration are changed. In this
case, the solutions of system (3) cannot be isolated into a
certain profile.

By the results in Figures 2 and 3, we found that the
randommotility of the cancer cells can change the evolution
profile of each concentration on the tissue. In Figure 4, we
show the solution of system (3) with respect to time t, and we
found that the solutions converge to a stable limit cycle. ,e
stable limit cycle in this case represents that the concen-
trations of the effector cells, cancer cells, and the IL-2

compounds always fluctuate, but they are bounded to a
certain periodic cycle.

6. The Immunotherapy Case by Using ACI and
Cytokine Therapy

In this section, we consider the case that s1 > 0 and s3 > 0 that
represent the immunotherapy using ACI and cytokine
therapy. In this simulation, we use s1 � 0.0035 and s3 � 0.2.

,e evolution profile of the effector cell, cancer cell, and
the IL-2 compound concentrations is shown in Figure 5. By
using the immunotherapy, we found that the cancer cells’
concentration is decreasing and then vanishes after some-
time. ,ese results are due to the fact that, for the immu-
notherapy case, if the conditions in ,eorem 1 have been
satisfied, we have the stable cancer-free equilibrium.
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Figure 3: Evolution profiles of the effector cell (blue), the cancer cell (green), and IL-2 (red) concentrations for the cancer cell random
motility coefficient d2 � 0.00048. (a) t� 0.01. (b) t� 0.1. (c) t� 10. (d) t� 25. (e) t� 35. (f ) t� 50. (g) t� 95. (h) t� 400. (i) t� 960.
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Figure 4: ,e trajectory and the limit cycle of system (3).
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Figure 5: Continued.
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Figure 5: Evolution profiles of the effector cell (blue), the cancer cell (green), and IL-2 (red) concentrations for the cancer cell random
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Figure 6: ,e spatial-temporal evolutions of the cancer cells’ diffusion coefficients for t � 100, t � 500, and t � 1000, where the antigenicity
parameter is c � 0.25.,e top row is for d2 � 0.0000048, the second row is for d2 � 0.0000199, the third row is for d2 � 0.00025, and the last
row is for d2 � 0.00048.
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7. The Spatial-Temporal Evolutions of the
Cancer Cells Based on the Variation of the
Diffusion Parameter

,e evolution profile of the cancer cells’ concentrations for
the nontreatment case is shown in Figures 6 and 7. We vary
the values of the diffusion parameter that shows the motility
of the cancer cells, i.e., d2 � 0.0000048, d2 � 0.0000199,
d2 � 0.00025, and d2 � 0.00048. In this case, we will com-
pare the evolution profile of the higher and the lower an-
tigenicity for the cancer cells. We use the antigenicity
parameter c � 0.25 for the higher-antigenicity case where
the profiles are shown in Figure 6. For the lower-antigenicity
case, we use c � 0.000475, and the profile is presented in
Figure 7.

From the results in Figure 6, we found that the cancer
cells cannot vanish after sometime. However, in the long
period of time, the cancer cells’ concentration in the tissue is
isolated into an intermediate level.

Different situations occur in system (3) when we have
the lower antigenicity for the cancer cells, that is, for
c � 0.000475. In this case, the cancer cells’ concentration
becomes higher and covers the large part of the tissue; see
Figure 7. ,e situations are due to the fact that most of the
receptors of the immune system, which is represented by the
effector cells and the IL-2 compounds, cannot detect ac-
tivities of cancer.

From Figures 6 and 7, we found the fact that if the
motility of the cancer cells, which is represented by the
diffusion parameter d2, increases, then the spread of the
cancer cells in the tissue becomes faster. In the bottom right
of Figure 7, we show that most of the tissue is covered by the
cancer cells.

8. Concluding Remarks

,e spread of the cancer cells on the tissue does not only
depend on the time but also on the position of the cancer
cells in the tissue.,ere are two important parameters in our
system that represent the antigenicity for cancer and the
motility of the cancer cells. ,e higher motility of the cancer

cells implies that the spread of the cancer cells in the tissue
becomes faster. In this case, the lower antigenicity causes
higher concentration of the cancer cells to spread faster in
the tissue. For the higher antigenicity, although the cancer
cells cover most of the tissue, the cells’ concentration is on
the intermediate level.

One of the important phenomena in our system is the
appearance of the stable limit cycle when we choose a certain
value of the diffusion parameter of the cancer cells. ,e limit
cycle behaviour is usually caused by the Hopf bifurcation
when the parameter value is varied.,is bifurcation is one of
the entry points to the possibility for the system to have
chaotic behaviour that represents the metastases of the
cancer cells. ,e analysis of this case is one of the open
problems for our system.

,e other open problem is that, in the real situation, the
cancer cells can grow and spread to other tissues and organs
via blood vessels. In this case, we can approach the model
using the moving boundary condition that determines the
spread of the cancer cells in the body.
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