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For q, c> 0, we study existence and regularity of solutions for unbounded elliptic problems whose simplest model is
− div[(1 + |u|

q
)∇u] � (f/|u|

c
) inΩ

u � 0 on zΩ􏼨 , where f ∈ Lm(Ω), m≥ 1.

1. Introduction

Consider the Dirichlet problem for some nonlinear elliptic
equations:

− div a(x) +|u|
q

􏼂 􏼃∇u( 􏼁 �
f

|u|
c, x ∈ Ω, u ∈ H

1
0(Ω), (1)

under the following assumptions. *e set Ω is a bounded
open subset of RN, with N≥ 3:

q, c> 0. (2)

a: Ω⟶ R is a measurable function satisfying the
following conditions:

α≤ a(x)≤ β, (3)

for almost every x ∈ Ω, where α and β are positive constant,
and

0≨f ∈ L
m

(Ω), withm≥ 1. (4)

A possible motivation for studying the existence of these
types of problems arises from the calculation of variations
and stochastic control. For example, if we consider the
functional

J(v) �
1
2

􏽚
Ω

a(x) +|v|
1− θ

􏽨 􏽩|∇v|
2

− 􏽚
Ω

f(x)v, (5)

the Euler–Lagrange equation associated to the functional J is

− div a(x) +|v|
1− θ

􏽨 􏽩∇v􏼐 􏼑 +
1 − θ
2

|∇v|
2

|v|
θ sign(v) � f. (6)

Several papers deal with existence of solutions to the
singular elliptic problems with lower order terms having a
quadratic growth with respect to the gradient (for example,
[1–9]), namely, with the model problem

− div(M(x, u)∇u) +
|∇u|

2

|u|
θ sign(u) � f(x), x ∈ Ω,

u(x) � 0, x ∈zΩ ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where θ is a positive constant and M: Ω × R⟶ R is a
Carathéodory function. More precisely, existence of positive
solutions for (7) was shown in [1–3], for M(x, t) � 1 and
0< θ ≤ 1, and the uniqueness of positive solution, for
M(x, t) � 1 and 0< θ< 1, in [4]. On the contrary, the ex-
istence of positive solutions of (7) is shown in [6] for
0< θ ≤ 1, provided M is a bounded uniformly elliptic matrix
and 0≨f ∈ Lm(Ω) (m> (2N/N + 2)). Later, in [9], it is

Hindawi
International Journal of Differential Equations
Volume 2021, Article ID 5589504, 9 pages
https://doi.org/10.1155/2021/5589504

mailto:a.bouhlal86@gmail.com
https://orcid.org/0000-0001-9738-2380
https://orcid.org/0000-0003-0279-5081
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5589504


proved the existence of solution for (7) with 0< θ< 1, where
M(x, t) � 1 and the data f ∈ Lm(Ω) with m> (N/2), and
does not satisfy any sign assumption. Recently, a problem
introduced by L. Boccardo (see [7, 10]) has given a strong
impulse to the study of quasilinear problems having the
unbounded divergence operator. In particular, in [7], the
authors have proved the existence of positive solutions to
problem (7) under the assumption that 0< θ< 1,
M(x, t) � 1 + |t|q, and 0≨f ∈ Lm(Ω). We refer also that, in
[5], the author has shown the same result as in [7], in the case
0< θ< 1 and without any sign restriction over f.

Let us now consider the Dirichlet boundary value
problem (7) in the simple case:

− 2Δu +
|∇u|

2

u
� f(x), x ∈ Ω,

u(x) � 0, x ∈ zΩ .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

If we define v � 2(u/
���
|u|

√
), then the function v is so-

lution of

− Δv �
f(x)

|v|
, x ∈ Ω,

v(x) � 0, x ∈ zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

which is singular on the right-hand side. Let us remark that,
in the case of nonnegative f, in [11], the authors considered
the elliptic semilinear problems whose model is

− Δu �
f

u
c, x ∈ Ω,

u � 0, x ∈ zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where c> 0. More precisely, they have shown that the term
(f/|u|c) has a regularizing effect on the solutions u. In [12],
the author has shown the existence of solutions to the
following elliptic problem with degenerate coercivity:

− div
∇u

(1 +|u|)
p􏼠 􏼡 �

f

|u|
c, x ∈ Ω,

u � 0, x ∈ zΩ ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

where p, c> 0.
*e purpose of this paper is to study the same kind of

lower order term as in problems (7) and (9) (indeed,
(f/|u|c)) in the case of an elliptic operator with unbounded
coefficients.*emain difficulties posed by this problemwere
that the principal part of the differential operator
div((a(x) + |u|q)∇u) is not well defined on the whole
H1

0(Ω); the solutions did not belong, in general, to H1
0(Ω)

and the lower order term has a singularity at u � 0. Despite
these difficulties, we prove that, in our case too, the lower
order term (f/|u|c) has a regularizing effect.

Our main existence results are as follows.

Theorem 1. Assume that (2) and (3) hold true. If
0≨f ∈ Lm(Ω) with m> (N/2), then there is a positive so-
lution u ∈ L∞(Ω) of (1), in the sense of distributions, that is,

􏽚
Ω

a(x) + u
q

􏼂 􏼃∇u∇φ � 􏽚
Ω

fφ
u

c , (12)

for any test function φ in C1
0(Ω). Moreover, we have the

following summability results for u:

(1) Let 0< q< 1:

(i) If 0< c≤ 1 − q, then u ∈ H1
0(Ω).

(ii) If c> 1 − q, then u ∈ H1
loc(Ω).

(2) Let q � 1:

(i) If 0< c≤ 1, then u ∈ H1
0(Ω).

(ii) If c> 1, then u ∈ H1
loc(Ω).

(3) Let q> 1, then u ∈ H1
loc(Ω).

When f ∈ Lm(Ω), 1<m< (N/2), we will prove the
following regularizing effects.

Theorem 2. We suppose that 0≨f ∈ Lm(Ω), 1<m< (N/2)

and that (2) and (3) are satisfied. If 0< q< 1, then, there exists
a solution u of (1) in the sense (19), such that

(1) If c< 1 − q and (2∗/2∗ + q − 1 + c)≤m< (N/2),
then u ∈ H1

0(Ω)∩Lm∗∗(1+q+c)(Ω), where

m
∗∗

� m
∗

( 􏼁
∗

�
Nm

N − 2m
. (13)

(2) If c � 1 − q, then u ∈ H1
0(Ω).

(3) If c> 1 − q, then u ∈ L(1+q+c/2)2∗(Ω)∩H1
loc(Ω).

Notation: throughout this paper, we fix an integer N≥ 3.
For any p> 1, p′ � (p/p − 1) will be the Hölder conjugate
exponent of p, and if 1≤p<N, we will denote by p∗ �

(Np/N − p) the Sobolev conjugate exponent of p. As usual,
let us denote by S the Sobolev constant, i.e.,

S � inf
u∈H1

0(Ω)− 0{ }

‖∇u‖
2
2

‖u‖
2
2∗

. (14)

We denote by P the Poincaré constant given by

P � inf
u∈H1

0(Ω)− 0{ }

‖∇u‖
2
2

‖u‖
2
2

. (15)

For all k> 0, we recall the definition of a truncated
function Tk(s) defined by

Tk(s) � max min k, s{ } − k{ }. (16)

We also consider

Gk(s) � s − Tk(s). (17)

As usual, we consider the positive and negative part of a
measurable function u(x)
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u(x) � u
+
(x) − u

−
(x), where u

+
(x)

� u(x)χ u≥0{ } and u
−

(x) � − u(x)χ u<0{ }.
(18)

2. The Approximated Problem

To prove our existence results, we will use the following
approximating problems:

− div a(x) + un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏽨 􏽩∇un􏼐 􏼑 �
fn

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1/n)􏼐 􏼑

c, x ∈ Ω,

(19)

where n ∈ N∗, and

fn(x) �
f(x)

1 +(1/n)|f(x)|
. (20)

As in [11], we prove existence of positive solution of the
approximated problem.

Lemma 1. Let g be positive function belonging to L∞(Ω).
Suppose that (2) and (3) are satisfied. ;en, there exists a
positive solution un ∈ H1

0(Ω)∩L∞(Ω) of the problem

− div a(x) + un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏽨 􏽩∇un􏼐 􏼑 �
g

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1/n)􏼐 􏼑

c, x ∈ Ω, un ∈ H
1
0(Ω).

(21)

Proof. To prove it, we define the following operator
Sn: L2(Ω)⟶ L2(Ω) which associates to every v ∈ L2(Ω)

the solution wn ∈ H1
0(Ω) to

− div a(x) + Tn wn( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩∇wn􏼐 􏼑 �
g

(|v| +(1/n))
c, inΩ,

wn � 0, on zΩ .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

From the results of [13], the operator Sn is well defined
and wn is bounded by the results of [14]. We take wn as a test
function in (19), and we use Hölder’s inequality and (3) to
deduce that

α􏽚
Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤􏽚
Ω

a(x) + Tn wn( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩 ∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 􏽚
Ω

gwn

(|v| +(1/n))
c,

≤ n
c
‖g‖L∞(Ω)􏽚

Ω
wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ n
c
‖g‖L∞(Ω)

���
|Ω|

􏽰
wn

����
����L2(Ω)

.

(23)

*anks to Poincaré’s inequality, we deduce

αP wn

����
����
2
L2(Ω)
≤ n

c
‖g‖L∞(Ω)

���
|Ω|

􏽰
wn

����
����L2(Ω)

. (24)

Hence, there exists an invariant ball for Sn. On the
contrary, from the H1

0(Ω)↪L2(Ω) embedding, it is easily
seen that Sn is continuous and compact. *e Schauder
theorem shows that Sn has a fixed point or equivalently, and
there exists a solution un ∈ H1

0(Ω) to problems

− div a(x) + Tn un( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩∇un􏼐 􏼑 �
g

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1/n)􏼐 􏼑

c, inΩ,

un � 0, on zΩ .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(25)

Moreover, by the maximum principle, it is clear that the
sequence un is nonnegative since g is nonnegative, and we
choose Gk(un) as test function in (25) and use (3) to obtain

α􏽚
Ak

Gk un( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤

1
k

c 􏽚
Ak

gGk un( 􏼁, (26)

where Ak � x ∈ Ω: |un|> k􏼈 􏼉. By the method of Stampacchia
(see [14]), the sequence un is bounded in L∞(Ω). Supposing
that un is bounded by dn in L∞(Ω), we have that un: �

un+[dn]+1 ∈ L∞(Ω)∩H1
0(Ω) is a solution of (13).

By Lemma 1, it follows the existence of a solution
un ∈ L∞(Ω)∩H1

0(Ω) of (19).
Now, we are going to prove that the sequence un is not 0

inΩ. For this, we are going to prove that it is uniformly away
from zero in every compact set inΩ. We will follow a similar
technique to that one in [12]. □

Lemma 2. Assume that (2) and (3) hold true. If 0≨f ∈ L1(Ω)

and un is the solution of problem (19), then for every n ∈ N∗:
un ≤ un+1 a.e. in Ω. Furthermore, if ω ⊂ ⊂ Ω, then, for every
n ∈ N∗, there exists cω > 0 such that un ≥ cω > 0 a.e. in ω.

Proof. Let us consider Tk[(un − un+1)
+] as a test function in

problems (19). *en,

􏽚
Ω

a(x) + u
q
n􏼂 􏼃∇un∇Tk un − un+1( 􏼁

+
􏼂 􏼃 � 􏽚

Ω

fn

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +(1/n)􏼐 􏼑

cTk un − un+1( 􏼁
+

􏼂 􏼃. (27)
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Observing that fn ≤fn+1, we have

􏽚
Ω

fn

un +(1/n)( 􏼁
cTk un − un+1( 􏼁

+
􏼂 􏼃≤􏽚

Ω

fn+1

un+1 +(1/n + 1)( 􏼁
cTk un − un+1( 􏼁

+
􏼂 􏼃

� 􏽚
Ω

a(x) + u
q
n+1􏼂 􏼃∇un+1∇Tk un − un+1( 􏼁

+
􏼂 􏼃

≤􏽚
Ω

a(x) + u
q
n􏼂 􏼃∇un+1∇Tk un − un+1( 􏼁

+
􏼂 􏼃.

(28)

*erefore, by (3), we deduce that

α􏽚
Ω
∇Tk un − un+1( 􏼁

+
􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤􏽚
Ω

a(x) + u
q
n􏼂 􏼃 ∇Tk un − un+1( 􏼁

+
􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 0. (29)

Consequently, we obtain 􏽒Ω|∇Tk[(un − un+1)
+]|2 � 0, so

by Poincaré’s inequality, we have Tk[(un − un+1)
+] � 0 for

every k> 0. *us, un ≤ un+1 a.e. x ∈ Ω.
We remark that u1 is bounded; indeed, |u1|≤ c, for some

positive constant c. *en, it follows that

− div a(x) + u1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽨 􏽩∇u1􏼐 􏼑≥
f1

(c + 1)
c, x ∈ Ω. (30)

*anks to (3), we have α≤ a(x) + |u1|
q ≤ β + cq. *us, we

infer that u1 is a supersolution of a linear Dirichlet problem
with a strictly positive and bounded, measurable coefficient.
*e strong maximum principle implies that u1 > 0. In ad-
dition, Harnack’s inequality gives the stronger conclusion:
for every ω ⊂ ⊂ Ω, there exists cω such that u1 ≥ cω a.e. in ω.
Finally, using that the sequence un is increasing, one deduces
that un ≥ cω a.e. in ω for every n ∈ N∗. □

2.1. Existence of Bounded Solutions. In this section, we will
prove existence of bounded weak solutions for (1).

Lemma 3. Let 0≨f ∈ Lm(Ω) with m> (N/2). Suppose that
(2) and (3) hold true. Let un􏼈 􏼉 be a sequence solutions of (19)
with fn � f for every n ∈ N∗. ;en, the norm of the sequence
un􏼈 􏼉 in L∞(Ω) is bounded by a constant which depends on

q, m, N, α, c,meas(Ω) and on the norm of f in Lm(Ω).

Proof. *e use of Gk(un) as test function in (19) and (3),
implies that

α􏽚
Ak

∇Gk un( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤

1
k

c 􏽚
Ak

fGk un( 􏼁, (31)

where Ak � x ∈ Ω: |un|> k􏼈 􏼉. Hence, we can use *eorem
4.1 in [14] and obtain a positive constant, say M, that only
depends on the parameters: q, N, α, c,meas(Ω) and ‖f‖Lm(Ω)

such that: ‖un‖L∞(Ω)≤M for all n ∈ N∗. □

Lemma 4. We assume that 0≨f ∈ Lm(Ω) with m> (N/2),
and (2) and (3) are satisfied. Let un􏼈 􏼉 be a sequence solutions
of (19) with fn � f for every n ∈ N∗. If q< 1 and c≤ 1 − q,
then the sequence un􏼈 􏼉 is uniformly bounded in H1

0(Ω).

Proof. We denote by C a positive constant which may only
depend on the parameters of our problem, and its value may
vary from line to line.

We use (1 + un)1− q − 1 as test function in (19) to obtain

(1 − q)􏽚
Ω

a(x) + u
q
n

1 + un( 􏼁
q ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤C􏽚

Ω
f un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1− q− c

, (32)

and thus (since q≤ 1),

(1 − q)min(α, 1)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤C􏽚

Ω
|f| un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1− q− c ≤C‖u‖nL

1− q− c

∞(Ω)􏽚
Ω

f≤C. (33)

from which the sequence un is bounded in H1
0(Ω). □
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Lemma 5. Let 0≨f ∈ Lm(Ω) with m> (N/2), and we sup-
pose that (2) and (3) are satisfied. If q< 1 and c> 1 − q and un

is a solution to problem (19), then un is uniformly bounded in
H1

loc(Ω).

Proof. Let φ ∈ C1
0(Ω) and ω � Suppφ be the support of φ;

then, from Lemma 2, there exists cω > 0 such that un ≥ cω for
a.e. x ∈ ω.

Choosing [(un + 1)1− q − 1]φ2 as test function in (19) and
using (3), we obtain

α(1 − q)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ 2􏽚
Ω

a(x) + u
q
n􏼂 􏼃 un + 1( 􏼁

1− q
− 1􏽨 􏽩∇un∇φφ

≤􏽚
Ω

fn

un +(1/n)( 􏼁
c un + 1( 􏼁

1− q
− 1􏽨 􏽩φ2 ≤

‖φ‖
2
L∞(Ω)

c
c
ω

􏽚
Ω

f,

(34)

which then implies

α(1 − q)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

≤
‖φ‖

2
L∞(Ω)

c
c
ω

􏽚
Ω

f − 2􏽚
Ω

a(x) + u
q
n􏼂 􏼃 un + 1( 􏼁

1− q
− 1􏽨 􏽩∇un∇φφ.

(35)

We can use Young’s inequality with ϵ, and we obtain

2 􏽚
Ω

a(x) + u
q
n􏼂 􏼃 un + 1( 􏼁

1− q
− 1􏽨 􏽩∇un∇φφ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε)􏽚
Ω

a(x) + u
q
n􏼂 􏼃

2
un + 1( 􏼁

1− q
− 1􏽨 􏽩

2
|∇φ|

2
.

(36)

Using (3), we have

a(x) + t
q ≤ c0(1 + t)

q
, (37)

for every q> 0 and t≥ 0 (and for a suitable c0 independent on
n).

We then have

2 􏽚
Ω

a(x) + u
q
n􏼂 􏼃 un + 1( 􏼁

1− q
− 1􏽨 􏽩∇un∇φφ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε)c20􏽚
Ω

u
2
n|∇φ|

2
. (38)

Applying (38) to (35) and letting ε � (α(1 − q)/2), we
obtain

􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2 ≤C + C􏽚

Ω
u
2
n|∇φ|

2 ≤C + C un

����
����
2
L∞(Ω)

􏽚
Ω

|∇φ|
2 ≤C, (39)

and this gives that un is bounded in H1
loc(Ω). □

Lemma 6. Let q � 1. Suppose that (2) and (3) hold. If
0≨f ∈ Lm(Ω) with m> (N/2), then the sequence un􏼈 􏼉 de-
fined by (19) satisfies the following summability:

(1) If 0< c≤ 1, then un is uniformly bounded in H1
0(Ω)

(2) If c> 1, then un is uniformly bounded in H1
loc(Ω)

Proof. (1) Let us take log(1 + un) as test function in (19) and
use (3) to obtain that

min(1, α)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤􏽚
Ω

f
log 1 + un( 􏼁

un +(1/n)( 􏼁
c ≤􏽚
Ω

fu
1− c
n

≤ un

����
����
1− c

L∞(Ω)
􏽚
Ω

f≤C.

(40)
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(2) Let φ ∈ C1
0(Ω) and choose log(1 + un)φ2, as a test

function in problem (19). From assumption (19), one
has

min(1, α)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ 2􏽚
Ω

a(x) + u
q
n􏼂 􏼃log 1 + un( 􏼁∇un∇φφ

≤􏽚
Ω

f
log 1 + un( 􏼁

un +(1/n)( 􏼁
cφ

2 ≤􏽚
Ω

f
φ2

u
c− 1
n

≤
‖φ‖

2
L∞(Ω)

c
c− 1
ω

􏽚
Ω

f,

(41)

where ω � Suppφ. By Young’s inequalities, it is easy to prove

2 􏽚
Ω

a(x) + u
q
n􏼂 􏼃log 1 + un( 􏼁∇un∇φφ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε).

(42)

Hence, equality (41) implies that

min(1, α)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2 ≤

‖φ‖
2
L∞(Ω)

c
c− 1
ω

􏽚
Ω

f + ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε).

(43)

Letting ε � (min(1, α)/2), we get that un is bounded in
H1

loc(Ω). □

Lemma 7. Let q> 1. Assume that (2) and (3) hold true. If
0≨f ∈ Lm(Ω) with m> (N/2), then the solution un of (19) is
uniformly bounded in H1

loc(Ω).

Proof. Let φ be a function in C1
0(Ω) and ω � Suppφ. Take

[1 − (un + 1)1− q]φ2 as test function in (19) and use (3) to
obtain

min(1, α)

2q− 1 􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2 ≤ (q − 1)min(1, α)􏽚

Ω

1 + u
q
n

1 + un( 􏼁
q ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

≤􏽚
Ω

f

un +(1/n)( 􏼁
cφ

2
− 2􏽚
Ω

a(x) + u
q
n􏼂 􏼃 1 − un + 1( 􏼁

1− q
􏽨 􏽩∇un∇φφ.

(44)

Using Young’s inequality with ϵ, we have by (3) and
Lemma 3 that

2 􏽚
Ω

a(x) + u
q
n􏼂 􏼃 1 − un + 1( 􏼁

1− q
􏽨 􏽩∇un∇φφ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε)􏽚
Ω

|∇φ|
2
.

(45)

Taking the above estimate in (44) and letting
ε � (min(1, α)/2q), we obtain

min(1, α)

2q 􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2 ≤

‖φ‖
2
L∞(Ω)

c
c
ω

􏽚
Ω

f + C, (46)

and thus, Lemma 7 is proved. □

Proof. of *eorem 1.
We start by proving point (1.i), the rest of the proof of the

theorem can be proven similarly. According to Lemmas 3
and 4, there exists a subsequence un and a function
u ∈ H1

0(Ω)∩L∞(Ω) such that un weakly converges to u in
H1

0(Ω). Now, we can pass to the limit in the equation
satisfied by the approximated solutions un:

􏽚
Ω

a(x) + u
q
n􏼂 􏼃∇un∇φ � 􏽚

Ω

fnφ
un +(1/n)( 􏼁

c, ∀φ ∈ C
1
0(Ω),

(47)

where fn(x) � (f(x)/1 + (1/n)f(x)).
For the term of the left-hand side, it is sufficient to

observe that ∇un converge to ∇u weakly in L2
loc(Ω) and

[a(x) + u
q
n] a.e. (and weakly − ∗ in L∞(Ω) converges towards

[a(x) + uq]. On the contrary, for the limit of the right-hand

side of (47), let ω � Suppφ, and one can use Lebesgue’s
dominated convergence theorem, since

fnφ
un +(1/n)( 􏼁

c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

f|φ|

c
c
ω

. (48)

Finally, passing to the limit as n goes to infinity in
equation (47), we conclude that

􏽚
Ω

a(x) + u
q

􏼂 􏼃∇u∇φ � 􏽚
Ω

fφ
u

c , ∀φ ∈ C
1
0(Ω). (49)

□

2.2. Further Existence Result. In this section, we suppose (2)
and (3) and we assume that

0< q< 1 (50)

holds true.

Lemma 8. We suppose that (2), (3), and (50) hold true. Let
c< 1 − q and 0≨f ∈ Lm(Ω), with

2∗

2∗ + q − 1 + c
≤m<

N

2
. (51)

;en, the solutions un to problem (19) are uniformly
bounded in H1

0(Ω)∩ Lm∗∗(1+q+c)(Ω).

Proof. Let us take (1 + un)1− q − 1 as a test function in (19)
and use assumption (3) to obtain
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(1 − q)min(1, α)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ (1 − q)􏽚

Ω

a(x) + u
q
n

1 + un( 􏼁
q ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤C􏽚
Ω

f un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1− q− c

.

(52)

We can use Hölder’s inequality on the right-hand side
with exponent p � (2∗/2∗ + q − 1 + c) � (2N

/N(c + 1 + q) + 2(1 − q − c))> 1, and Sobolev inequality on
the left-hand side to deduce

Smin(1, α)(1 − q) 􏽚
Ω

u
2∗
n􏼒 􏼓

2/2∗

≤C 􏽚
Ω

u
p′(1− q− c)
n􏼒 􏼓

1/p′
.

(53)

We note that 2∗ � p′(1 − q − c); moreover,
(2/2∗)≥ (1/p′) (thanks to the fact that c< 1 − q). *is last

estimate imply that un is uniformly bounded in L2∗(Ω) and
in H1

0(Ω).
We are going to prove now that the sequence un is

bounded in Lm∗∗(1+q+c)(Ω). Let
λ � (N(1 + q)(m − 1) + cm(N − 2)/N − 2m); using
(1 + un)λ − 1 as a test function for problem (19), we can
deduce

λmin(1, α)􏽚
Ω

∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + un( 􏼁
1− λ− q
≤􏽚
Ω

fn

(1/n) + un( 􏼁
c 1 + un( 􏼁

λ
− 1􏽨 􏽩,

≤C + C􏽚
Ω

f

1 + un( 􏼁
c− λ.

(54)

Now, we rewrite

4λmin(1, α)

(1 + q + λ)
2 􏽚
Ω
∇ 1 + un( 􏼁

1+q+λ/2
− 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� λmin(1, α)􏽚
Ω

∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + un( 􏼁
1− λ− q

(55)

and use the Sobolev inequality and the Hölder inequality in
(54) to obtain

􏽚
Ω

1 + un( 􏼁
1+q+λ/2

− 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2∗

􏼒 􏼓
2/2∗

≤ 􏽚
Ω

un + 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
m′(λ− c)

􏼒 􏼓
1/m′

.

(56)

We note that the choice of λ is equivalent to require
(2/2∗)(1 + q + λ) � m′(λ − c); furthermore,
(2/2∗)≥ (1/m′) and (2/2∗)(1 + q + λ) � m∗∗(1 + q + c).
*us, the sequence un􏼈 􏼉 is uniformly bounded in
Lm∗∗(1+q+c)(Ω). □

Lemma 9. Under the hypotheses 0≨f ∈ L1(Ω), (2), (3), and
(50), if c � 1 − q, then the solutions un are uniformly bounded
in H1

0(Ω).

Proof. We choose (1 + un)1− q − 1 as test function in (19) to
obtain, by hypothesis (3), that

(1 − q)min(α, 1)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ (1 − q)􏽚

Ω

a(x) + u
q
n

1 + un( 􏼁
q ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤C􏽚

Ω
f.

(57)

*erefore, un is bounded in H1
0(Ω). □

Lemma 10. Let 0≨f ∈ L1(Ω). Under hypotheses (2), (3), and
(50), if c> 1 − q, then the solutions un are uniformly bounded
in L(1+q+c/2)2∗(Ω)∩H1

loc(Ω).

Proof. Choosing u
c
n as test function in (19) and using Hölder

and Sobolev inequalities, thanks to (3), we obtain that

4cS

(1 + q + c)
2 􏽚
Ω

u
(1+q+c/2)2∗
n􏼒 􏼓

2/2∗

≤ c􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
u

c+q− 1
n ,

≤ c􏽚
Ω

a(x) + u
q
n􏼂 􏼃 ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
u

c− 1
n ≤􏽚

Ω
f.

(58)

*e above inequality implies that

􏽚
Ω

u
(1+q+c/2)2∗
n ≤C. (59)

Now, we prove that the sequence un is bounded in
H1

loc(Ω). Let φ ∈ C1
0(Ω) and choose [(1 + un)1− q − 1]φ2, as a

test function in problems (19). From assumption (19), one
has

min(1, α)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ +2􏽚
Ω

a(x) + u
q
n􏼂 􏼃 un + 1( 􏼁

1− q
− 1􏽨 􏽩∇un∇φφ

􏽚
Ω

fn

un +(1/n)( 􏼁
c un + 1( 􏼁

1− q
− 1􏽨 􏽩φ2 ≤

‖φ‖
2
L∞(Ω)

c
c− q+1
ω

􏽚
Ω

f,

(60)
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where ω � Suppφ. We can use Young’s inequality with ϵ and
both (37) and (59) to obtain

2 􏽚
Ω

a(x) + u
q
n􏼂 􏼃 un + 1( 􏼁

1− q
− 1􏽨 􏽩∇un∇φφ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε)􏽚
Ω

a(x) + u
q
n􏼂 􏼃 un + 1( 􏼁

1− q
− 1􏽨 􏽩|∇φ|

2

≤ ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε)c0􏽚
Ω

u
2
n|∇φ|

2

≤ ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε).

(61)

Hence, equality (60) implies that

min(1, α)􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2 ≤

‖φ‖
2
L∞(Ω)

c
c+q− 1
ω

􏽚
Ω

f + ε􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C(ε).

(62)

Letting ε � (min(1, α)/2), we get that un is bounded in
H1

loc(Ω). □

Lemma 11. Under the assumptions of ;eorem 2, let un be a
solution to problem (19). ;en, the sequence u

q
n|∇un| is

uniformly bounded in Lσ
loc(Ω), for every σ < (N/N − 1).

Proof. We will prove our proof in two steps:

Step 1: we want to prove that, for every λ> 1,
(1 + un)q− λ|∇un|2 ∈ L1

loc(Ω). Indeed, let λ> 1,
φ ∈ C1

0(Ω) and ω � Suppφ is the support of φ. *anks
to (3), we have from (19) with test function
[1 − (1/(1 + un)λ− 1)]φ2

(λ − 1)􏽚
Ω

∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + un( 􏼁
λ− q

φ2
+ 2􏽚
Ω

a(x) + u
q
n􏼂 􏼃 1 − un + 1( 􏼁

1− λ
􏽨 􏽩∇un∇φφ≤C(ω). (63)

We use Young’s inequality, and since q< 1, we deduce
from (37) that

(λ − 1)􏽚
Ω

∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + un( 􏼁
λ− q

φ2

≤C(ω) +
1
2

􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+
1
2

􏽚
Ω

a(x) + u
q
n􏼂 􏼃

2

1 − un + 1( 􏼁
1− λ

􏽨 􏽩
2
|∇φ|

2

≤C(ω) +
1
2

􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+
c0

2
􏽚
Ω

1 + un( 􏼁
2q

|∇φ|
2

≤C(ω) +
1
2

􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2φ2

+ C􏽚
Ω

u
2
n|∇φ|

2
+ C.

(64)

*us, by the above estimate and since un is uniformly
bounded in H1

loc(Ω), this proves Step 1.
Step 2: here, we show that u

q
n|∇un| is uniformly

bounded in Lr
loc(Ω) for every r< (N/Nt − n1). For this,

let σ < 2, 0<φ ∈ C1
0(Ω), and ω � Suppφ. We use

Hölder inequality with exponent 2/σ and by step 1,
and1 we obtain

􏽚
Ω

u
qσ
n ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
σφσ

≤􏽚
Ω

∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
σ

1 + un( 􏼁
σ(λ− q)/2φ

σ2(N− 2)/2(N− σ) 1 + un( 􏼁
σ(λ+q)/2φNσ(2− σ)/2(N− σ)

≤ 􏽚
Ω

∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + un( 􏼁
λ− q

φσ(N− 2)/N− σ⎛⎝ ⎞⎠

σ/2

􏽚
Ω

1 + un( 􏼁
σ(λ+q)/2− σφσ∗

􏼒 􏼓
2− σ/2

≤C(ω) 􏽚
Ω

1 + un( 􏼁
σ(λ+q)/2− σφσ∗

􏼒 􏼓
2− σ/2

.

(65)
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Using the Sobolev inequality, we obtain

􏽚
Ω

u
(q+1)σ∗
n φσ∗

􏼒 􏼓
σ/σ∗

≤C(ω) 􏽚
Ω

1 + un( 􏼁
σ(λ+q)/2− σφσ∗

􏼒 􏼓
2− σ/2

+ C(ω).

(66)

Noticing that (σ/σ∗)> (2 − σ/2) and choosing σ such
that (q + 1)σ∗ � (σ(λ + q)/2 − σ) yields
σ � (N(2 + q − λ)/N(q + 1) − (λ + q)). Using Young’s in-
equality with ϵ, we obtain

􏽚
Ω

u
(q+1)σ∗
n φσ∗

􏼒 􏼓
σ/σ∗

≤ ε 􏽚
Ω

1 + un( 􏼁
(q+1)σ∗φσ∗

􏼒 􏼓
σ/σ∗

+ C(ω, ε).

(67)

It is easy to check that the hypotheses λ> 1 imply
σ < (N/N − 1)< 2. □

Proof. of *eorem 2.
*e proof of the theorem is similar to the proof of the

previous theorem with just a small change for the conver-
gence of the term on the left side of equation (47). Indeed,
using Lemma 11, we have that [a(x) + u

q
n]∇un⟶ [a(x) +

uq]∇u is weak in (Lσ
loc(Ω))N for every σ < (N/N − 1).

Hence, for every φ ∈ C1
0(Ω), we can pass to the limit with

respect to n in the integral in the left-hand side of (47). □

Remark 1. Assume that (2) and (3) are satisfied. We can
choose u

c
n, as test function in (19), using (3), and we obtain

that
4c

(c + q + 1)
2 􏽚
Ω
∇ u

c+q+1/2
n􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� c􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
u

c+q− 1
n ,

≤ c􏽚
Ω

a(x) + u
q
n􏼂 􏼃 ∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
u

c− 1
n ≤􏽚

Ω
f.

(68)

We deduce from (68) that the sequence u
c+q+1/2
n is

bounded in H1
0(Ω). *erefore, uc+q+1/2 belongs to H1

0(Ω).
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