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For q,y>0, we study existence and regularity of solutions for unbounded elliptic problems whose simplest model is

=div[(1 + |u|D)Vu] = (f/lul) inQ
u=0 on z(Q)

1. Introduction

Consider the Dirichlet problem for some nonlinear elliptic
equations:

—div([a(x) +|ul?]Vu) = i

i x€QueH)(Q), (1)

under the following assumptions. The set Q) is a bounded
open subset of RY, with N > 3:

q,y>0. (2)

a: Q — R is a measurable function satisfying the
following conditions:

a<a(x)<p, (3)

for almost every x € ), where a and 8 are positive constant,
and

0sf e L™(Q), withm>1. (4)
A possible motivation for studying the existence of these
types of problems arises from the calculation of variations

and stochastic control. For example, if we consider the
functional

, where f € L (Q), m>1.

10 =3 [ [a 4Nl - fom ©)

the Euler-Lagrange equation associated to the functional J is

| ) 1-6 Vv
div([a G+l ~]wr) + =20

sign(v) = f.  (6)

Several papers deal with existence of solutions to the
singular elliptic problems with lower order terms having a
quadratic growth with respect to the gradient (for example,
[1-9]), namely, with the model problem

2
—div(M (x,u)Vu) + ||VT!) sign(u) = f(x), xe€Q,
u

u(x) =0, x €0Q) ,

(7)

where 0 is a positive constant and M: O xR — R is a
Carathéodory function. More precisely, existence of positive
solutions for (7) was shown in [1-3], for M (x,t) =1 and
0<60<1, and the uniqueness of positive solution, for
M (x,t)=1and 0<0<1, in [4]. On the contrary, the ex-
istence of positive solutions of (7) is shown in [6] for
0<60<1, provided M is a bounded uniformly elliptic matrix
and 0sf € L (Q) (m> (2N/N +2)). Later, in [9], it is
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proved the existence of solution for (7) with 0 < 8 < 1, where
M(x,t) =1 and the data f € L™ (Q) with m > (N/2), and
does not satisfy any sign assumption. Recently, a problem
introduced by L. Boccardo (see [7, 10]) has given a strong
impulse to the study of quasilinear problems having the
unbounded divergence operator. In particular, in [7], the
authors have proved the existence of positive solutions to
problem (7) under the assumption that 0<6<1,
M (x,t) =1+1t]%, and 05 f € L™ (Q)). We refer also that, in
[5], the author has shown the same result as in [7], in the case
0 <6< 1 and without any sign restriction over f.

Let us now consider the Dirichlet boundary value
problem (7) in the simple case:

2
[Vul =f(x), xeQ,
“ (8)

—2Au +

x €0Q) .

If we define v = 2(u/+/Ju]), then the function v is so-
lution of
-Av = %, x €Q,
9

v(x) =0, x €0Q),

which is singular on the right-hand side. Let us remark that,
in the case of nonnegative f, in [11], the authors considered
the elliptic semilinear problems whose model is
-Au = i},, x €Q,
¢ (10)
u=0, x €0Q),

where y > 0. More precisely, they have shown that the term
(f/lul") has a regularizing effect on the solutions u. In [12],
the author has shown the existence of solutions to the
following elliptic problem with degenerate coercivity:

. Vu _f
—dlv(m) = |u|y,

u=0,

x € Q),

(11)
x € 0Q),

where p,y>0.

The purpose of this paper is to study the same kind of
lower order term as in problems (7) and (9) (indeed,
(f/lul")) in the case of an elliptic operator with unbounded
coefficients. The main difficulties posed by this problem were
that the principal part of the differential operator
div((a(x) + |u|7)Vu) is not well defined on the whole
H} (Q); the solutions did not belong, in general, to Hj (Q)
and the lower order term has a singularity at = 0. Despite
these difficulties, we prove that, in our case too, the lower
order term (f/|u|”) has a regularizing effect.

Our main existence results are as follows.
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Theorem 1. Assume that (2) and (3) hold true. If
0sf € L™ (Q) with m> (N/2), then there is a positive so-
lution u € L (Q) of (1), in the sense of distributions, that is,
j [a(x) +ul]VuVe = J f—(f, (12)
Q au
for any test function ¢ in C}(Q). Moreover, we have the
following summability results for u:

(1) Let 0<g<1:
(i) If0<y<1-—gq, then u € H} (Q).
(i) If y>1 - q, then u € Hj,_(Q).
(2) Let g =1:
(i) If 0<y<1, then u € H} (Q).
(ii) If y> 1, then u € H,_(Q).
(3) Let g>1, then u € Hj,_(Q).

When f € L™(Q), 1<m< (N/2), we will prove the
following regularizing effects.

Theorem 2. We suppose that 05 f € L™ (Q), 1 <m < (N/2)
and that (2) and (3) are satisfied. If0 < q < 1, then, there exists
a solution u of (1) in the sense (19), such that

1) If y<l-q and (*2**/2* +q-1+y)<m< (N/2),
then u € HY (Q)n L™ 14 (Q)), where

o Nm
m =\m

(m) = =om (13)

(2) Ify=1-gq, then u € H} (Q).
(3) If y>1-q, then u e L2 (Q)nHL_(Q).

Notation: throughout this paper, we fix an integer N > 3.
For any p>1, p' = (p/p — 1) will be the Holder conjugate
exponent of p, and if 1< p<N, we will denote by p* =
(Np/N — p) the Sobolev conjugate exponent of p. As usual,
let us denote by & the Sobolev constant, i.e.,

Vull3
&= in | 2"2. (14)
ueH (0} [Ju]|5.
We denote by & the Poincaré constant given by
Vull?
o IVul} s

in R
ueH} ()0} ||u||2

For all k>0, we recall the definition of a truncated
function T (s) defined by

T, (s) = max{min{k, s} — k}. (16)
We also consider
Gi(s) =s—Ty(s). (17)

As usual, we consider the positive and negative part of a
measurable function u(x)
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u(x)=u"(x)—u (x), whereu"(x)

(18)

= u(x)x{uzo} andu” (x) = —u(x))({ud)}.

2. The Approximated Problem

To prove our existence results, we will use the following
approximating problems:

_d. q v, — fn . .Q,
Mleb bl Tve) = Gy €
(19
where n € N*, and
. f®
T = i ol 20

As in [11], we prove existence of positive solution of the
approximated problem.

Lemma 1. Let g be positive function belonging to L™ (Q).
Suppose that (2) and (3) are satisfied. Then, there exists a
positive solution u,, € H} (Q) N L™ (Q) of the problem

—div( [a(x) +|un|q]Vun) = W, x € Q,u, € Hy(Q).

(21)
Proof. To prove it, we define the following operator

S,: L*(Q) — L*(Q) which associates to every v € L?(Q)
the solution w,, € H} (Q) to

. g .
~div([a ) #[T, (w,)']Vw,) = e B9
w, =0, onodQ) .
(22)

From the results of [13], the operator S, is well defined
and w,, is bounded by the results of [14]. We take w,, as a test
function in (19), and we use Holder’s inequality and (3) to
deduce that

<] oo = 2

S

< nVIIgIILoo(mm”wn”Lz(o)'
(23)

J alato s 1o =)' = |

Thanks to Poincaré’s inequality, we deduce
"“@"’“"n";(m = ”y”9"L°°(Q)\/@“wn“mn)' (24)

Hence, there exists an invariant ball for S,. On the
contrary, from the H} (Q)—L?(Q) embedding, it is easily
seen that S, is continuous and compact. The Schauder
theorem shows that S, has a fixed point or equivalently, and
there exists a solution u, € Hy (Q) to problems

—div( [a(x) +|T, (,)|"|Vu,) = m)

ono) .
(25)

Moreover, by the maximum principle, it is clear that the
sequence u,, is nonnegative since g is nonnegative, and we
choose G;. (u,,) as test function in (25) and use (3) to obtain

1
of G <55 [, 00w o)

where Ay = {x € Q: |u,| > k}. By the method of Stampacchia
(see [14]), the sequence u,, is bounded in L® (€2). Supposing
that u,, is bounded by d, in L™ (Q), we have that u,: =
Upita, 141 € L2 (Q)NH (Q) is a solution of (13).

By Lemma 1, it follows the existence of a solution
u, € L (Q)NH} (Q) of (19).

Now, we are going to prove that the sequence u,, is not 0
in Q. For this, we are going to prove that it is uniformly away
from zero in every compact set in Q0. We will follow a similar
technique to that one in [12]. O

Lemma 2. Assume that (2) and (3) hold true. If 05 f € L' (Q)
and u,, is the solution of problem (19), then for every n € N*:
u, <u,., a.e. in Q. Furthermore, if w C C Q, then, for every
n € N*, there exists c, >0 such that u,>c, >0 a.e. in w.

Proof. Let us consider T [(u, — u,,;)"] as a test function in
problems (19). Then,

Wﬂ[(% - Mn+1)+]' (27)



Observing that f, < f,,,, we have

J

fn
a(u, +(1/n)

J

<

Therefore, by (3), we deduce that

o IVTL =100 1 < [ [0+ 19T (= ) I <0
Q Q

Consequently, we obtain jQIVTk [(u,—u,.,)"]* =0,s0
by Poincaré’s inequality, we have T [ (u, — u,,;)"] = 0 for
every k> 0. Thus, u, <u,,, a.e. x € Q.

We remark that u; is bounded; indeed, |u,| < ¢, for some
positive constant c. Then, it follows that

A

—div( [a (x) +|u1|q]Vu1) ST

x € Q. (30)

Thanks to (3), we have a <a (x) + |u;]7 < B + 1. Thus, we
infer that u, is a supersolution of a linear Dirichlet problem
with a strictly positive and bounded, measurable coeflicient.
The strong maximum principle implies that »; >0. In ad-
dition, Harnack’s inequality gives the stronger conclusion:
for every w € C (), there exists ¢, such that u; >¢, a.e. in w.
Finally, using that the sequence u,, is increasing, one deduces
that u,>c, a.e. in w for every n € N*. O

2.1. Existence of Bounded Solutions. In this section, we will
prove existence of bounded weak solutions for (1).

Lemma 3. Let 05 f € L™ (Q) with m> (N/2). Suppose that
(2) and (3) hold true. Let {u,} be a sequence solutions of (19)
with f, = f for every n € N*. Then, the norm of the sequence
{u,} in L (Q) is bounded by a constant which depends on
g m, N, a,y, meas () and on the norm of f in L™ (Q).

(1 - g)min (a, I)JQ|Vun|2 scjg|f||un|1’q’y <Cllull, L%

from which the sequence u, is bounded in HJ (Q). O

Tl (0~ 4,0)") < |
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fn+1 +
o (un+1 +(1n+ 1))ka [ (un - un+1) ]
[a(x) + uZ+1]vun+1VTk [ (un - un+1)+] (28)
Q
JQ [a(x) + MZ]VunHVTk [ (un - un+1)+]'
(29)

Proof. The use of Gy (u,,) as test function in (19) and (3),
implies that
2 1
al |VG(u, S—J Gy (u,,), 31
J VG <] sGuw) oy
where A; = {x € Q: |u,| >k}. Hence, we can use Theorem
4.1 in [14] and obtain a positive constant, say M, that only

depends on the parameters: g, N, «, y, meas () and || | . ()
such that: [[u,,|l;e (o) <M for all n e N*. O

Lemma 4. We assume that 05 f € L™ (Q) with m > (N/2),
and (2) and (3) are satisfied. Let {u,} be a sequence solutions
of (19) with f, = f for every ne N*. If g<1 and y<1 - g,
then the sequence {u,} is uniformly bounded in H} (Q).

Proof. We denote by C a positive constant which may only
depend on the parameters of our problem, and its value may
vary from line to line.

We use (1+ un)l_q — 1 as test function in (19) to obtain

q
(l‘qﬂé%ggfg%V“A2ﬁcjngA‘qy, (32)
and thus (since g<1),
J f<C. (33)
Q
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Lemma 5. Let 05 f € L™ (Q) with m > (N/2), and we sup-
pose that (2) and (3) are satisfied. Ifg< 1 and y > 1 — qand u,,
is a solution to problem (19), then u,, is uniformly bounded in
H (Q).

loc

Proof. Let ¢ € Cj(Q) and w = Suppg be the support of ¢;
then, from Lemma 2, there exists ¢, > 0 such that u,, > c,, for
ae x €w.

Choosing [ (u,, + nita- 1]¢? as test function in (19) and
using (3), we obtain

a(l- q)JQ|Vun|2(p2 + ZLZ [a(x)+ul] [ (u, +1)77- I]VunV(,Mp

(34)

fn l-q 2 "‘P”ioo(n)
SJQ(un+(1/n))y[(u"+l) 1](’) = c Jnf’

which then implies

a(t-q) [ [vi[g’
Q

2
0o [ o fat) ][, 1)~ 1]70, 09
Q Q

€l
(35)

We can use Young’s inequality with €, and we obtain

ZUQ [a(x) + ul] [(un +1)71- 1]VunV(pq)’

< SJQ|Vun|2g02 + C(S)JQ [a(x) +ud]’ [ (u, +1)79 - 1]2|Vq)|2.

(36)

ZU [a(x) +uf] [ (u, + 1)79- 1]Vu,Vop
o

Applying (38) to (35) and letting ¢ = (a(1 — g)/2), we
obtain

Using (3), we have
a(x) +t7<cy(1+1), (37)
for every g >0and ¢ >0 (and for a suitable ¢, independent on

n).
We then have

SSJ |Vun|2¢2+C(s)c§J uf,IVq)IZ. (38)
Q Q

JQ|wn|2(p2 <C+ cjouiwmz <C+Cllu,}w (Q)JQ|V¢|2 <C, (39)

and this gives that u,, is bounded in H]_(Q). O

Lemma 6. Let g =1. Suppose that (2) and (3) hold. If
05f € L"™(Q) with m> (N/2), then the sequence {u,} de-
fined by (19) satisfies the following summability:
(1) If 0<y <1, then u, is uniformly bounded in Hy ()
(2) If y> 1, then u,, is uniformly bounded in H! (Q)

loc

Proof. (1) Let us takelog (1 + u,,) as test function in (19) and
use (3) to obtain that

. 2 log(1+u,) 1oy
min(l, a)JQWH"I = JQf (u, + (1/n))? : Jofu"

<ol | £ <C



(2) Let ¢ € C}(Q) and choose log(1 +u,)¢?, as a test
function in problem (19). From assumption (19), one
has

min (1, oc)J |V, | 0 +ZJ [a(x) + ulllog(1 + u,)Vu,Vep

log (1 +u,)
= JQf (u, + (l/n))yq)

u

2 90 "§0||Loo(g)
<,/ ST Jof
(41)

where w = Suppg. By Young’s inequalities, it is easy to prove

< eJ |Vun|2<p2 +C(e).
Q
(42)

ZU [a(x)+ ul]log(1 + u,)Vu,Vee
o

min (1, «)
217!

/
: JQ (u, + (1m))"?

Using Young’s inequality with €, we have by (3) and
Lemma 3 that

ZUQ [a(x)+ul] [1 - (u, + l)lfq]Vuan)(pl s
2 5 2
SsJ-QIVu,J @ +C(£)JQIV¢I )

Taking the above estimate in (44) and letting
¢ = (min (1, «)/29), we obtain

min (1, (x)J' |V | 2 ||§0||im(Q)J‘ fic (46)
21 = CZ) Q ’
and thus, Lemma 7 is proved. O

Proof. of Theorem 1.

We start by proving point (1.i), the rest of the proof of the
theorem can be proven similarly. According to Lemmas 3
and 4, there exists a subsequence u, and a function
ue H}) (Q)NL*®(Q) such that u, weakly converges to u in
H}(Q). Now, we can pass to the limit in the equation
satisfied by the approximated solutions u,;

JQ [a(x) +ul]Vu, Ve = j St

o,y Y G

(47)

where f,(x) = (f(x)/1+ (1/n)f (x)).

For the term of the left-hand side, it is sufficient to
observe that Vu, converge to Vu weakly in L (Q) and
[a(x) + ul] a.e. (and weakly —* in L (Q)) converges towards
[a(x) + ul]. On the contrary, for the limit of the right-hand

J |Vun|2(p2 <(g- l)min(l,cx)J
Q
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Hence, equality (41) implies that

2
min (1, a)J |Vun|2q)2 g%l f+ sJ |Vun|2q)2 +C ().
Q c Q

(43)

Letting € = (min (1, «)/2), we get that u, is bounded in
H} (). O

Lemma 7. Let q> 1. Assume that (2) and (3) hold true. If
05 f € L™ (Q) with m> (N/2), then the solution u,, of (19) is
uniformly bounded in Hj (Q).

Proof. Let ¢ be a function in Cj(Q) and w = Suppg. Take
[1- (u,+ D" 1 ¢? as test functlon in (19) and use (3) to
obtain

e

(44)

2—ZJQ[a(x)+u ][1—(u +1)' q]Vu Voo.

side of (47), let w = Suppg, and one can use Lebesgue’s
dominated convergence theorem, since

fu® f |<pI
(u, + (1/n))y '

(48)

Finally, passing to the limit as n goes to infinity in
equation (47), we conclude that

J [a(x)+ul]VuVe = J %, Vo € C)(Q). (49)
o Q 0

2.2. Further Existence Result. In this section, we suppose (2)
and (3) and we assume that

0<g<1 (50)

holds true.

Lemma 8. We suppose that (2), (3), and (50) hold true. Let
y<l—qand 0sf € L' (Q), with

2" N
S <m<—. (51)
2 +g-1+y 2

Then, the solutions u, to problem (19) are uniformly
bounded in H} (Q)n L™ (+a4) ().

Proof. Let us take (1 + u,)' "9~ 1 as a test function in (19)
and use assumption (3) to obtain
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a(x) +ul

(1+
SCJ Flug 77
Q

(1 —q)min(l,oc)JQqun'ZS (1 —q)J itouf

(52)

We can use Holder’s inequality on the right-hand side
with exponent p=Q2"2"+q-1+y)= (2N
IN(y+1+q) +2(1-q-7y))>1,and Sobolev inequality on
the left-hand side to deduce

202 , p'
§ min (1, a)(1 —q)(J- ”f; > SC(J uf (1—q—}')> '
Q Q
(53)

We note that 2*=p'(1-g-y); moreover,
(2/2*)> (1/p") (thanks to the fact that y <1 - q). This last

4A min (1, )
(1 +q+/\)2 Q

and use the Sobolev inequality and the Holder inequality in
(54) to obtain

oy 2/2% ’ 1/
(I |(1+un)1+q+m_1|2 ) S(J l, + 1] (A—Y)) "
Q Q

(56)

!

We note that the choice of A is equivalent to require
212°)(1+g+A) =m' (A-y); furthermore,
(2/2*)2 (1/m') and (212*)(1+q+A) =m** (1 +q+7Y).
Thus, the sequence {u,} is uniformly bounded in
Lm** (1+g+y) (Q) O

Lemma 9. Under the hypotheses 05 f € L' (Q), (2), (3), and
(50), if y = 1 — g, then the solutions u,, are uniformly bounded
in H} (Q).

Proof. We choose (1 + un)lfq — 1 as test function in (19) to
obtain, by hypothesis (3), that

a(x)+
“vuf<c|

(1 - g)min (e, 1)Ll|Vun|2 <(1- q)J (1+—

(57)

min (1, oc)J |Vun|2<p2 + +ZJ [a(x) +ul][ (u, + 1)"79-
o o

[ o+ 0"

J 'V[(l + un)lJqurM2 - 1”2 = Amin(l,(x)J

estimate imply that u,, is uniformly bounded in L*" (Q)) and
in Hy (Q).
We are going to prove now that the sequence u, is
bounded in L () (), Let
(N(l +q)(m—1)+ym(N - 2)/N - 2m); using
( 1+u ) —1 as a test function for problem (19), we can
deduce

Amin(1 a)J IVM"IZ <j S [(1+u )A—l]
’ a(1 +un)l_l_q_ a((/n) +u,)" " ’
<C+ cj S —
(1 +u,)
(54)
Now, we rewrite
2
Vu,
07 (55)
o(l+u,) 1

Therefore, u,, is bounded in H} (Q). O

Lemma 10. Let 05 f € L' (Q). Under hypotheses (2), (3), and
(50), if y > 1 — g, then the solutions u,, are uniformly bounded
in L4 22 (Q)n HL_(Q).

Proof. Choosing u}, as test function in (19) and using Hélder
and Sobolev inequalities, thanks to (3), we obtain that

4yd <J (1+q+)//2)2 > - J |Vu |2 y+q-1
(1+g+ y) (58)
< yj [a(x) + ud]|Vu, [l " < J f.
Q Q
The above inequality implies that
J ur(ll+q+y/2)2* <C (59)
Q

Now, we prove that the sequence u, is bounded in

H, . (Q). Let ¢ € Cj () and choose [ (1 +u )1 1-1]¢* asa

test function in problems (19). From assumption (19), one
has

1]VunV<p(p

J.#

) (60)
||§0||Loo Q)
CZ;_qH

1]g02£



where w = Suppg. We can use Young’s inequality with € and
both (37) and (59) to obtain

2 J [a(x)+ul] [(un +1)71- 1]VunV(p(p’

<e |Vun|2¢2+C(e)J [a(x)+uZ][(un+1)l_q—1]|V¢|2
Q Q

<e |Vun|2<p2 + C ().

Q
SSJ |Vun|2¢2+C(e)c0J quIVq)I2
Q Q
J,

(61)

Hence, equality (60) implies that

2

min(l,oc)J lV”n|2‘PZS"(P|k%J f+eJ |Vun|2q)2+C(£).

Q cl o) Q
(62)

2

\%
(A—I)J vl ””IA
01+ u,)

We use Young’s inequality, and since g < 1, we deduce
from (37) that

|Vun|2
0

1 1

gC(w)+—J |Vun|2q)2+—J [a(x)+uZ]2
2J)a 2Ja

12
[1—(1,1,,+1)1 A] Vol

1

sC(w)+—J IVunlzfp“c—OJ (1+u,) Vel
2J)a 2 Ja

1
<C(w) +—J |Vun|2go2 + CJ ui|V(p|2 +C.
2J)a Q
(64)

Jnuffqunrgoo

<J‘ |Vun|l7

- Q (1 + un)o'(/lfq)/Z
- j |Vun|2
"\,

<C (w)( jQ (1 +u,) VP20, )

—¢’ + ZJ [a(x)+ul] [1 —(u, + 1)1_A]VunV(pq)§C(w).
4 Q
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Letting € = (min(1, «)/2), we get that u, is bounded in
H} (). O

Lemma 11. Under the assumptions of Theorem 2, let u,, be a
solution to problem (19). Then, the sequence ul|\Vu,| is
uniformly bounded in L] (Q), for every o < (N/N - 1).

loc

Proof. We will prove our proof in two steps:

Step 1: we want to prove that, for every A>1,
(A +u )T Vu, > e LL_(Q). Indeed, let A>1,
¢ € C)(Q) and w = Suppy is the support of ¢. Thanks
to (3), we have from (19) with test function
[1-(1/(1+u,))lg?

(63)

Thus, by the above estimate and since u,, is uniformly
bounded in H{ _(Q), this proves Step 1.

Step 2: here, we show that u}|Vu,| is uniformly
bounded in L{ () for every r < (N/Nt — nl). For this,
let 0<2, 0<¢p€Ci(Q), and w = Suppp. We use
Holder inequality with exponent 2/c and by step 1,
andl we obtain

g% (N-2)/2(N-0) (1 ‘u )(7(/1+q)/2 (PNJ(Z— 0)/2(N-0)
n

(65)

(N-2)/N-o ” o(A+q)/2-0  o* 2-al2
o(N= _ -
(], @ruyomy)

2-0/2
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Using the Sobolev inequality, we obtain

. .\0lo" )
(J uy o7 ) SC(w)(J (1+4,)7 09270 )
@ Q

+C(w).

2-0/2

(66)

Noticing that (0/0*)> (2 - 0/2) and choosing ¢ such
that (q+1o* =(c(A+q)/2-0) yields
0=(NQ2+q-1)/N(q+1)- (A+q)). Using Young’s in-
equality with €, we obtain

. .\0lo" Do* o* ala*
(J A ) Ss(j (1+u,) 47 7 ) +C(w,e).
Q Q
(67)

It is easy to check that the hypotheses A>1 imply
0< (N/N-1)<2. O

Proof. of Theorem 2.

The proof of the theorem is similar to the proof of the
previous theorem with just a small change for the conver-
gence of the term on the left side of equation (47). Indeed,
using Lemma 11, we have that [a(x) + u}]Vu, — [a(x) +
ullVu is weak in (L] _ Q)N for every o< (N/N -1).
Hence, for every ¢ € Cj (Q), we can pass to the limit with
respect to n in the integral in the left-hand side of (47). O

Remark 1. Assume that (2) and (3) are satisfied. We can
choose u}, as test function in (19), using (3), and we obtain
that

4)/ J y+q+1/2 2 _ J- 2 y+g-1
(y+q+1)° o|v(u” W=y QW””' o
(68)

< yJQ [a(x) + ud]|Vas, [Pl < J-Qf.
y+q+1/2

We deduce from (68) that the sequence uy is
bounded in H{ (Q). Therefore, u'*"1/2 belongs to H} (Q).
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