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We obtain the optimal system’s generating operators associated with a generalized Levinson–Smith equation; this one is related to
the Liénard equation which is important for physical, mathematical, and engineering points of view.)e underlying equation has
applications in mechanics and nonlinear dynamics as well. )is equation has been widely studied in the qualitative scheme. Here,
we treat the equation by using the Lie group method, and we obtain certain operators; using those operators, we characterized all
invariants solutions associated with the generalized equation of Levinson Smith considered in this paper. Finally, we classify the
Lie algebra associated with the given equation.

1. Introduction

Lie group symmetry method is a powerful tool employed to
study ODEs, PDEs, FPDEs, FODEs, and so on. )is theory
was introduced in the 19th century by Sophus Lie [1], fol-
lowing the idea of Galois theory in algebra. Lie group
method applied to differential equations has received great
interest among researchers in different fields of science such
as mathematics, theoretical, and applied physics, due to the
physical interpretations of the underlying equations that are
studied. As a consequence, this method leads to construct,
for example, conservation laws, using the well known
Noether’s theorem [2], even more applying Ibragimov’s
approach [3]. In the same way, it is possible to build sim-
ilarity solutions which, in the traditional methods, are not
possible.

Furthermore, this method contributes to establish
schemes and the usefulness of some numerical methods;
here, many packages are being built in different environ-
ments of computations, e.g., [4, 5]. In general, taking into
account the importance of the equations’ study (such as
ODEs, PDEs, and others), this method can be interesting to
different researchers. A vast reference in Lie group method
can be found in the literature, e.g., [6–9]. Recently, the Lie

group method approach has been applied to solve and
analyze different problems in many scientific fields, e.g., in
[10], the authors applied the Lie symmetry method to in-
vestigate a fourth-order 1 + 2 evolutionary partial differential
equation which has been proposed for the image processing
noise reduction. References in the latest progress in sym-
metry analysis can be found in [11–18] and therein.

In [19], Kamke proposes the following differential
equation:

yxx −
fy(y)

f(y)
y
2
x + g(x)yx + h(x)f(y) � 0, (1)

where f, g, h are the arbitrary functions, for this equation
presents the transformation y(x) � η(ξ(x)) which reduces
this equation to a system of two first-order equations.
Equation (1) can be written as

yxx + ϕ x, y, yx( 􏼁yx � c(x, y), (2)

where ϕ(x, y, yx) � − ((fy(y)/f(y))yx + g(x)) and
c(x, y) � − h(x)f(y). )is means that the coefficient of
friction, i.e., ϕ is a function that depends on x, y, and yx, and
it will almost always be a nonlinear function, and on the
other hand, function c, which is known as function of
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disturbance, is also nonlinear. It is worth remembering that
this type of equation (2) is known as generalizations of the
Levinson–Smith equation. Also, equation (2), which is a
particular case of the generalized Levinson–Simth equations,
is related to the Liénard-type second-order nonlinear dif-
ferential equation [20]. )e underlying equations describe
several phenomena in different areas such as electronics,
biology, mechanics, seismology, chemistry, physics, and
cosmology, for example, an important model in physical and
biological sciences is the van der Pol equation, which de-
scribes a nonconservative oscillator with nonlinear damping.
Levinson and Smith in [21] studied a general equation for
relaxation oscillations.

In [8], the equation,

yxx � 2y
2
xy

− 1
+ x

− 1
yx + x

− 1
y
2
, (3)

is presented; note that equation (3) is a particular case of
equation (1), with f(y) � y2, g(x) � − x− 1 and
h(x) � − x− 1; in [8], Cantwell states that equation (3) has a
group of symmetries 5− dimensional; but it does not exhibit
the development of said statement; they affirm the Lie group
of symmetries of (3), using a ODEtools Maple package. In
fact, the goal of this work is (i) to calculate the
5− dimensional Lie symmetry group in detail, (ii) to present
the optimal system (optimal algebra) for (3), (iii) to make use
of all elements of the optimal algebra to propose invariant
solutions for (3), then (iv) to construct the Lagrangian with
which we could determine the variational symmetries using
Noether’s theorem and thus to present conservation laws
associated, and (iv) also to build some nontrivial conser-
vation laws using Ibragimov’s method, and finally (v) to
classify the Lie algebra associated to (3), corresponding to
the symmetry group.

2. Continuous Group of Lie Symmetries

In this section, we study the Lie symmetry group for (3). )e
main result of this section can be presented as follows.

Proposition 1. 'e Lie symmetry group for equation (3) is
generated by the following vector fields:

Π1 � − x
z

zx
+ y

z

zy
,

Π2 � y
2 z

zy
,

Π3 � − x
z

zx
+ xy

2 z

zy
,

Π4 � x
2
y
2 z

zy
,

Π5 � x
3 z

zx
− 2x

2
y + x

3
y
2 z

zy
.

(4)

Proof. A general form of the one-parameter Lie group
admitted by (3) is given by

x⟶ x + εξ(x, y) + O ε2􏼐 􏼑,

y⟶ y + εη(x, y) + O ε2􏼐 􏼑,
(5)

where ϵ is the group parameter. )e vector field associated
with the group of transformations shown above can be
written as Γ � ξ(x, y)(z/zx) + η(x, y)(z/zy), where ξ, η are
differentiable functions in R2. Applying its second
prolongation,

Γ(2)
� Γ + η[x]

z

zyx

+ η[xx]

z

zyxx

, (6)

to equation (3), we must find the infinitesimals ξ, η, satis-
fying the symmetry condition,

ξ x
− 2

y
2

+ yxx
− 2

􏼐 􏼑 + η 2y
2
xy

− 2
− 2x

− 1
y􏼐 􏼑

+ η[x] − 4y
− 1

yx − x
− 1

􏼐 􏼑 + η[xx] � 0,

(7)

associated with (3). Here, η[x], η[xx] are the coefficients in
Γ(2) given by

η[x] � Dx[η] − Dx[ξ]( 􏼁yx � ηx + ηy − ξx􏼐 􏼑yx − ξyy
2
x,

η[xx] � Dx η[x]􏽨 􏽩 − Dx[ξ]( 􏼁yxx,

� ηxx + 2ηxy − ξxx􏼐 􏼑yx + ηyy − 2ξxy􏼐 􏼑y
2
x − ξyyy

3
x + ηy − 2ξx􏼐 􏼑yxx − 3ξyyxyxx.

(8)

Being Dx as the total derivative operator,
Dx � zx + yxzy + yxxzyx

+ · · ·. Replacing (8) into (7) and
using (3), we obtain
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− ξyy − 2y
− 1ξy􏼐 􏼑y

3
x + ηyy − 2ξxy − 2y

− 1ηy − 2ξyx
− 1

+ 2y
− 2η􏼐 􏼑y

2
x

+ 2ηxy − ξxx − x
− 1ξx + x

− 2ξ − 3ξyx
− 1

y
2

− 4y
− 1ηx􏼐 􏼑yx

+ ηxx − x
− 1ηx − 2x

− 1
yη + x

− 1
y
2ηy − 2x

− 1
y
2ξx + x

− 2
y
2ξ􏼐 􏼑 � 0.

(9)

From (9), canceling the coefficients of the monomial
variables in derivatives 1, y3

x, y2
x, and yx, we obtain the

determining equations for the symmetry group of (3). )at
is,

yξyy + 2ξy � 0,

(9a)

y
2
xηyy − 2y

2
xξxy − 2yxηy − 2y

2ξy + 2xη � 0,

(9b)

2x
2
yηxy − x

2
yξxx − xyξx + yξ − 3xy

3ξy − 4x
2ηx � 0,

(9c)

x
2ηxx − xηx − 2xyη + xy

2ηy − 2xy
2ξx + y

2ξ � 0.

(9d)

Solving the system of equations (9a)–(9d) for ξ and η, we
get

ξ � − c1x − c3x + c5x
3
,

η � c1y + c2y
2

+ c3xy
2

+ c4x
2
y
2

+ c5 − 2x
2
y
2

+ x
3
y
2

􏼐 􏼑.

(10)

)us, the infinitesimal generators of the group of
symmetries of (3) are the operators Π1 − Π5 described in the
statement of Proposition 1, thus having the proposed
result. □

3. Optimal System

Taking into account [22–25], we present in this section the
optimal system associated to the symmetry group of (3),
which shows a systematic way to classify the invariant so-
lutions. To obtain the optimal system, we should first cal-
culate the corresponding commutator table, which can be
obtained from the operator

Πα,Πβ􏽨 􏽩 � ΠαΠβ − ΠβΠα � 􏽘
n

i�1
Πα ξi

β􏼐 􏼑 − Πβ ξi
α􏼐 􏼑􏼐 􏼑

z

zx
i
,

(11)

where i � 1, 2, with α, β � 1, . . . , 5, and ξi
α, ξi

β are the cor-
responding coefficients of the infinitesimal operatorsΠα,Πβ.
After applying the operator (11) to the symmetry group of
(3), we obtain the operators that are shown in Table 1.

Now, the next thing is to calculate the adjoint action
representation of the symmetries of (3), and to do that, we
use Table 1 and the operator

Ad(exp(λΠ))H � 􏽘
∞

n�0

λn

n!
(ad(Π))

n
G for the symmetries

Π andG.

(12)

Making use of this operator, we can construct Table 2,
which shows the adjoint representation for each Πi.

Proposition 2. 'e optimal system associated to equation (3)
is given by the vector fields

Π5, a2Π2,Π4,

a1Π1 + a3Π3,

b1Π4 + Π5,

− a3Π1 + a3Π3,

a3Π3 − 2a3b12Π5,

Π2 + b17Π4,

− a3Π1 + a3Π3 + Π5,

a2Π2 + a3Π3 + b9 +
a2

a3
􏼠 􏼡Π4,

a2Π2 + b10Π4 + Π5,

a1Π1 + a3Π3 + b2Π5,

− Π1 +Π3 + b3Π4,

− 2Π1 + Π3 + b14Π5,

a1Π1 + b5Π4 + b6Π5,

Π1 + b7Π2 + b8Π5,

− 2a3Π1 + a3Π3 +Π4 + 2a3b13Π5,

a2Π2 + a3Π3 + b11Π4 −
a3b11

a2
Π5,

a1Π1 +Π3 + b3Π4 + b4Π5,

− 2Π1 + Π3 + b15Π4 + b16Π5.

(13)
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Proof. To calculate the optimal system, we start with the
generators of symmetries (4) and a generic nonzero vector.
Let

G � a1Π1 + a2Π2 + a3Π3 + a4Π4 + a5Π5. (14)

)e objective is to simplify as many coefficients, ai, as
possible, through maps adjoint to G, using Table 2.

(1) Assuming a5 � 1 in (14), we have that
G � a1Π1 + a2Π2 + a3Π3 + a4Π4 + Π5. Applying the
adjoint operator to (Π1, G) and (Π3, G), we do not
have any reduction; on the other hand, applying the
adjoint operator to (Π2, G), we get

G1 � Ad exp λ1Π2( 􏼁( 􏼁G � a1Π1 +Π2 a2 + a1λ1( 􏼁

+ a3Π3 +Π4 a4 − 2λ1( 􏼁 + Π5.
(15)

(1.1) Case a1 ≠ 0. Using λ1 � (− a2/a1)a1 ≠ 0, in (15),
Π2 is eliminated, therefore G1 � a1Π1 + a3Π3
+b1Π4 + Π5, where b1 � a4 + (2a2/a1). Now, ap-
plying the adjoint operator to (Π4, G1), we get G2 �

Ad(exp(λ2Π4))G1 � a1Π1 + a3Π3 + (b1 − λ2(a1+

2a3))Π4 + Π5.
(1.1.A) Case a1 + 2a3 ≠ 0. Using λ2 � (b1/a1 + 2a3),
with a1 + 2a3 ≠ 0, eliminated is Π4, and then
G2 � a1Π1 + a3Π3 +Π5. Applying the adjoint op-
erator to (Π5, G2), we get

G3 � Ad exp λ3Π5( 􏼁( 􏼁G2 � a1Π1 + a3Π3
+ 1 − 2λ3 a1 + a3( 􏼁( 􏼁Π5.

(16)

(1.1.A.A1) Case a1 + a3 ≠ 0. Using λ3 � (1/2(a1+

a3))), with a1 + a3 ≠ 0, in (16), Π5 is eliminated,
therefore G3 � a1Π1 + a3Π3. )en, we have the first
element of the optimal system.

G3 � a1Π1 + a3Π3, (17)

with a1 ≠ 0, a1 + 2a3 ≠ 0, and a1 + a3 ≠ 0. )is is
how the first reduction of the generic element (14)
ends.
(1.1.A.A2) Case a1 + a3 � 0. We get G3 �

− a3Π1 + a3Π3 +Π5. )en, we have the other ele-
ment of the optimal system.

G3 � − a3Π1 + a3Π3 +Π5, (18)

with a3 ≠ 0. )is is how the other reduction of the
generic element (14) ends.
(1.1.B) Case a1 + 2a3 � 0. We get G2 � − 2a3Π1
+a3Π3 + b1Π4 + Π5. Applying the adjoint operator
to (Π5, G2), we have

G19 � Ad exp λ19Π5( 􏼁( 􏼁G2 � − 2a3Π1 + a3Π3 + b1Π4
+ 1 + 4a3λ19( 􏼁Π5.

(19)

(1.1.B.1) Case a3 ≠ 0. Using λ19 � (− 1/4a3), with
a3 ≠ 0, in (19), Π5 is eliminated, therefore
G19 � − 2a3Π1 + a3Π3 + b1Π4. )en, we have the
other element of the optimal system.

G19 � − 2a3Π1 + a3Π3 + b1Π4, (20)

with a1 ≠ 0, a1 + 2a3 ≠ 0, and a1 + a3 ≠ 0. )is is
how the other reduction of the generic element (14)
ends.
(1.1.B.2) Case a3 � 0. We get G19 � b1Π4 + Π5.
)en, we have the other element of the optimal
system.

G19 � b1Π4 + Π5. (21)

)is is how the other reduction of the generic el-
ement (14) ends.
(1.2) Case a1 � 0. We get G1 � a2Π2+
a3Π3 + (a4 − 2λ1)Π4 + Π5, using λ1 � (a4/2), then
Π4 is eliminated, and then G1 � a2Π2 + a3Π3 + Π5.
Now, applying the adjoint operator to (Π4, G1), we
have G16 � Ad(exp(λ16Π4))G1 � a2Π2 + a3

Table 1: Commutators table associated to the symmetry group of (3).

Π1 Π2 Π3 Π4 Π5
Π1 0 Π2 0 − Π4 − 2Π5
Π2 − Π2 0 0 0 2Π4
Π3 0 0 0 − 2Π4 − 2Π5
Π4 Π4 0 2Π4 0 0
Π5 2Π5 − 2Π4 2Π5 0 0

Table 2: Adjoint representation of the symmetry group of (3).

adj[, ] Π1 Π2 Π3 Π4 Π5
Π1 Π1 e− λΠ2 Π3 eλΠ4 e2λΠ5
Π2 Π1 + λΠ2 Π2 Π3 Π4 Π5 − 2λΠ4
Π3 Π1 Π2 Π3 e2λΠ4 e2λΠ5
Π4 Π1 − λΠ4 Π2 Π3 − 2λΠ4 Π4 Π5
Π5 Π1 − 2λΠ5 Π2 + 2λΠ4 Π3 − 2λΠ5 Π4 Π5
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Π3 − 2a3λ16Π4 +Π5. It is clear that we do not have
any reduction.
(1.2.1) Case a3 ≠ 0. )en, using λ16 � (− b9/2a3),
with a3 ≠ 0, we get G16 � a2Π2 + a3Π3 + b9Π4 +Π5.
Applying the adjoint operator to (Π5, G16), we have

G17 � Ad exp λ17Π5( 􏼁( 􏼁G16 � a2Π2 + a3Π3
+ b9 + 2a2λ17( 􏼁Π4 + 1 − 2a3λ17( 􏼁Π5.

(22)

Using λ17 � (1/2a3), with a3 ≠ 0, in (22), Π5 is
eliminated, therefore G17 � a2Π2 + a3Π3+
(b9 + (a2/a3))Π4. )en, we have the other element
of the optimal system.

G17 � a2Π2 + a3Π3 + b9 +
a2

a3
􏼠 􏼡Π4, with a3 ≠ 0.

(23)

(1.2.2) Case a3 � 0. We get G16 � a2Π2 +Π5. Ap-
plying the adjoint operator to (Π5, G16), we have

G18 � Ad exp λ18Π5( 􏼁( 􏼁G16 � a2Π2 + 2a2λ18Π4 +Π5.
(24)

It is clear that we do not have any reduction.
(1.2.2.A) Case a2 ≠ 0. )en, using λ18 � (− b10/2a2),
with a2 ≠ 0, in (24), we get G18 � a2Π2+ b10Π4 +Π5.
)en, we have the other element of the optimal
system.

G18 � a2Π2 + b10Π4 + Π5, with a2 ≠ 0. (25)

(1.2.2.B) Case a2 � 0.)en, we get G18 � Π5, hence
we have the other element of the optimal system.

G18 � Π5. (26)

(2) Assuming a5 � 0 and a4 � 1 in (14), we have that
G � a1Π1 + a2Π2 + a3Π3 + Π4. Applying the adjoint
operator to (Π1, G) and (Π3, G), we do not have any
reduction; on the other hand, applying the adjoint
operator to (Π2, G), we get

G4 � Ad exp λ4Π2( 􏼁( 􏼁G � a1Π1 + a2 + a1λ4( 􏼁Π2
+ a3Π3 + Π4.

(27)

(2.1) Case a1 ≠ 0. Using λ4 � (− a2/a1) with a1 ≠ 0,
in (27), Π2 is eliminated, therefore G4 � a1Π1
+a3Π3 + Π4. Now, applying the adjoint operator to
(Π4, G4), we get G5 � Ad(exp(λ5Π4))G4 � a1Π1 +

a3 Π3 + (1 − λ5(a1 + 2a3))Π4.
(2.1.A) Case a1 + 2a3 ≠ 0. Using λ5 � (1/a1 + 2a3),
with a1 + 2a3 ≠ 0, eliminated is Π4, then
G5 � a1Π1 + a3Π3. Applying the adjoint operator
to (Π5, G5), we get

G6 � Ad exp λ6Π5( 􏼁( 􏼁G5 � a1Π1 + a3Π3
− 2λ6 a1 + a3( 􏼁􏼁Π5.

(28)

It is clear that we do not have any reduction.

(2.1.A.A1) Case a1 + a3 ≠ 0. )en, substituting λ6 �

(− b2/2(a1 + a3)) with a1 + a3 ≠ 0, we have the other
element of the optimal system

G6 � a1Π1 + a3Π3 + b2Π5, (29)

with a1 ≠ 0, a1 + 2a3 ≠ 0, and a1 + a3 ≠ 0. )is is
how the other reduction of the generic element (14)
ends.
(2.1.A.A2) Case a1 + a3 � 0. We get G6 �

− a3Π1 + a3Π3, and then we have the other element
of the optimal system,

G6 � − a3Π1 + a3Π3, (30)

with a1, a3 ≠ 0 and a1 + 2a3 ≠ 0, a1 � − a3. )is is
how the other reduction of the generic element (14)
ends.
(2.1.B) Case a1 + 2a3 � 0. We get G5 � − 2a3Π1
+a3Π3 +Π4. Applying the adjoint operator to
(Π5, G5), we have

G23 � Ad exp λ23Π5( 􏼁( 􏼁G5 � − 2a3Π1 + a3Π3 + Π4
+ 2a3λ23Π5.

(31)

It is clear that we do not have any reduction; it is
also clear that a1 ≠ 0 and then a3 ≠ 0; then,
substituting λ23 � b13, we have the other element of
the optimal system

G23 � − 2a3Π1 + a3Π3 +Π4 + 2a3b13Π5, (32)

with a3 ≠ 0 y a1 + 2a3 � 0. )is is how the other
reduction of the generic element (14) ends.
(2.2) Case a1 � 0. We get G4 � a2Π2 + a3Π3 + Π4.
Now, applying the adjoint operator to (Π4, G4), we
have G20 � Ad(exp(λ20Π4))G4 � a2Π2 + a3Π3+
(1 − 2a3λ20)Π4.
(2.2.A) Case a3 ≠ 0. Using λ20 � (1/2a3), with
a3 ≠ 0, Π4 is eliminated, then G20 � a2Π2 + a3Π3.
Applying the adjoint operator to (Π5, G20), we get

G21 � Ad exp λ21Π5( 􏼁( 􏼁G20 � a2Π2 + a3Π3
+ 2a2λ21Π4 − 2a3λ21Π5.

(33)

It is clear that we do not have any reduction.
(2.2.A.1) Case a2 ≠ 0. )en, substituting λ21 �

(+b11/2a2) with a2 ≠ 0, we have other element of the
optimal system

G21 � a2Π2 + a3Π3 + b11Π4 −
a3b11

a2
Π5, (34)

with a2, a3 ≠ 0. )is is how the other reduction of
the generic element (14) ends.
(2.2.A.2) Case a2 � 0. We get G21 �

a3Π3 − 2a3λ21Π5; we do not have any reduction;
then, using λ21 � b12, we have the other element of
the optimal system
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G21 � a3Π3 − 2a3b12Π5, with a2 ≠ 0. (35)

)is is how the other reduction of the generic el-
ement (14) ends.
(2.2.B) Case a3 � 0. We get G20 � a2Π2 +Π4.
Applying the adjoint operator to (Π5, G20), we get

G22 � Ad exp λ22Π5( 􏼁( 􏼁G20 � a2Π2 + 1 − 2a2λ22( 􏼁Π4.
(36)

(2.2.B.1) Case a2 ≠ 0. Using λ22 � (1/2a2) with
a2 ≠ 0, Π4 is eliminated, then we have the other
element of the optimal system

G22 � a2Π2, with a2 ≠ 0. (37)

)is is how the other reduction of the generic el-
ement (14) ends.
(2.2.B.2) Case a2 � 0. We get G22 � Π4, and then
we have the other element of the optimal system

G22 � Π4. (38)

)is is how the other reduction of the generic el-
ement (14) ends.

(3) Following a procedure analogous to the previous one
and analyzing the respective cases for a4 � a5 � 0,

a3 � 1 in (14); a3 � a4 � a5 � 0, a2 � 1 in (14) and
a2 � a3 � a4 � a5 � 0, a1 � 1 in (14); we can reduce
and obtain all the elements presented for the optimal
system. □

4. InvariantSolutionsbySomeGeneratorsof the
Optimal System

In this section, we characterize invariant solutions taking
into account all operators that generate the optimal system
presented in Proposition 2. For this purpose, we use the
method of invariant curve condition [23] (presented in
Section 4.3), which is given by the following equation:

Q x, y, yx( 􏼁 � η − yxξ � 0. (39)

Using the element Π5 from Proposition 2, under the
condition (39), we obtain that Q � η5 − yxξ5 � 0, which
implies (− 2x2y + x3y2) − yx(x3) � 0; then, solving this
ODE, we have y(x) � (1/x(c1x + 1)), where c is an arbitrary
constant, which is an invariant solution for (3); using an
analogous procedure with all of the elements of the optimal
system (Proposition 2), we obtain both implicit and explicit
invariant solutions that are shown in Table 3, with c being a
constant.

5. Variational Symmetries and
Conserved Quantities

In this section, we present the variational symmetries of (3)
and we are going to use them to define conservation laws via
Noether’s theorem [26]. First of all, we are going to de-
termine the Lagrangian using the Jacobi last multiplier

method, presented by Nucci in [27], and for this reason, we
are urged to calculate the inverse of the determinant Δ,

Δ �

x yx yxx

Π2,x Π2,y Π
(1)
2

Π4,x Π4,y Π
(1)
4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�

x yx yxx

0 y
2 2yyx

0 x
2
y
2 2xy

2
+ 2x

2
yyx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (40)

where Π2,x,Π2,y,Π4,x, and Π4,y are the components of the
symmetriesΠ2,Π4 shown in the Proposition 4 andΠ

(1)
2 ,Π(1)

4
are its first prolongations. )en, we get Δ � 2xy4 which
implies that M � (1/Δ) � (x− 1y− 4/2). Now, from [27], we
know that M can also be written as M � Lyxyx

which means
that Lyxyx

� (x− 1y− 4/2); then, integrating twice with respect
to yx, we obtain the Lagrangian,

L x, y, yx( 􏼁 �
y
2
x

4xy
4 + yxf1(x, y) + f2(x, y), (41)

where f1, f2 are arbitrary functions. From the preceding
expression, we can considerf1 � f2 � 0. It is possible to find
more Lagrangians for (3) by considering other vector fields
given in the Proposition 4. We then calculate

ξ(x, y)Lx + ξx(x, y)L + η(x, y)Ly + η[x](x, y)Lyx

� Dx[f(x, y)],
(42)

using (41) and (8). )us, we get

ξ −
y
2
xx

− 2
y

− 4

4
􏼠 􏼡 + ξx

y
2
xx

− 1
y

− 4

4
􏼠 􏼡 + η − x

− 1
y

− 5
y
2
x􏼐 􏼑

+ ηx + ηy − ξx􏼐 􏼑yx − ξyy
2
x􏼐 􏼑

x
− 1

y
− 4

yx

2
􏼠 􏼡 − fx − yxfy � 0.

(43)

From the preceding expression, rearranging and asso-
ciating terms with respect to 1, yx, y2

x and y3
x, we obtain the

following determinant equations:

ξy � fx � 0, (44a)

x
− 1

y
− 4

2
ηx − fy � 0, (44b)

− yξ − 4xη − 2xyξx + 2xyηy � 0. (44c)

Solving the preceding system for ξ, η and f, we obtain
the infinitesimal generators of Noether’s symmetries

η � − 2a1yx
2

− a2y
2
x
2

+ a4y
2

+ a5y,

ξ � −
4a5x

2

5
−
8a1x

4

9
,

f(y) � a1y
− 2

+ a2y
− 1

+ a3.

(45)

with a1, a2, a3, a4, and a5 arbitrary constants. )en, the
Noether symmetry group or variational symmetries are
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V1 � −
8x

4

9
z

zx
− 2x

2
y

z

zy
,

V2 � − x
2
y
2 z

zy
,

V3 � y
2 z

zy
,

V4 � −
4x

2

5
z

zx
+ y

z

zy
.

(46)

Remark 1. Note that V2 � − Π4 and V3 � Π2, thus the
symmetries of equation (3) have two variational symmetries.
According to [28], in order to obtain the conserved quan-
tities or conservation laws, we should solve

I � Xyx − Y( 􏼁Lyx
− XL + f, (47)

using (41), (45), and (46). )erefore, the conserved quan-
tities are given by

I1 � −
2x

3
y

− 4
y
2
x

9
+ xy

− 3
yx + a1y

− 2
+ a2y

− 1
+ a3,

I2 �
xy

− 2
yx

2
+ a1y

− 2
+ a2y

− 1
+ a3,

I3 � −
x

− 1
y

− 1
yx

2
+ a1y

− 2
+ a2y

− 1
+ a3,

I4 � −
xy

− 4
y
2
x

5
−

x
− 1

y
− 3

yx

2
+ a1y

− 2
+ a2y

− 1
+ a3.

(48)

6. Nonlinear Self-Adjointness

In this section, we present the main definitions in the
N. Ibragimov’s approach to nonlinear self-adjointness of
differential equations adopted to our specific case. For
further details, the interested reader is directed to [29–31].

Consider second-order differential equation

F x, y, y(1), y(2), . . . , y(s)􏼐 􏼑 � 0, (49)

with independent variables x and a dependent variable y,
where y(1), y(2), . . . , y(s) denote the collection of
1, 2, . . . , s− th order derivatives of y.

Definition 1. LetF be a differential function and ] � ](x) be
the new dependent variable, known as the adjoint variable or
nonlocal variable [31]. )e formal Lagrangian for F � 0 is
the differential function defined by

L ≔ ]F. (50)

Definition 2. Let F be a differential function and for the
differential equation (49), denoted by F[y] � 0, we define
the adjoint differential function to F by

F
∗ ≔

δL
δy

, (51)

and the adjoint differential equation by

F
∗
[y, ]] � 0, (52)

where the Euler operator

δ
δy

�
z

zy
+ 􏽘
∞

m�1
(− 1)

m
Dxi

, . . . , Dxi,m
,

z

zyxi1xi2 ···xim

, (53)

and Dxi
is the total derivative operator with respect to xi

defined by

Dxi
� zxi

+ yxi
zy + yxixj

zyxj

+ · · · + yxixi1xi2 ,...,xin
zyxi1

xi2 ···xin
. . .

(54)

Definition 3. )e differential equation (40) is said to be
nonlinearly self-adjoint if there exists a substitution

] � ϕ(x, y)≠ 0, (55)

such that
􏽥F
∗
|]�ϕ(x,y) � λF, (56)

for some undetermined coefficients λ � λ(x, y, . . .). If ] �

ϕ(y) in the two previous expressions, equation (49) is called
quasi-self-adjoint. If ] � y, we say that equation (49) is
strictly self-adjoint.

Now, we shall obtain the adjoint equation to equation
(3). For this purpose, we write (3) in the form (49), where

F ≔ yxx − 2y
2
xy

− 1
− x

− 1
yx − x

− 1
y
2

� 0. (57)

)en, the corresponding formal Lagrangian (50) is given
by

L ≔ ] yxx − 2y
2
xy

− 1
− x

− 1
yx − x

− 1
y
2

􏼐 􏼑 � 0, (58)

and the Euler operator (53) assumes the following form:

δL
δy

�
zL

zy
− Dx

zL

zyx

+ D
2
x

zL

zyxx

. (59)

We calculate explicitly the Euler operator previously
applied to L determined by (58). In this way, we obtain the
adjoint equation (52) to (3):

F
∗

� − ] − 2y
2
xy

− 2
+ 4yxxy

− 1
− 2x

− 1
y − x

− 2
􏼐 􏼑

+ ]x 4yxy
− 1

+ x
− 1

􏼐 􏼑 + ]xx � 0.
(60)

)e main result in this section can be stated as follows.

Proposition 3. Equation (3) is nonlinearly self-adjoint, with
the substitution given by

ϕ(x, y) � y
− 2

k2x
(1/2(1+

�
5

√
))

+ k1x
(1/2(1−

�
5

√
))

􏼒 􏼓, (61)

where k1, k2 are the arbitrary constants.
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Proof. Substituting in (60), and then in (56), ] � ϕ(x, y) and
its respective derivatives, and comparing the corresponding
coefficients, we get the following five equations:

− ϕy � λ, (62a)

4y
− 1ϕ + 2ϕy � 0, (62b)

4y
− 1ϕx + 2ϕxy � 0, (62c)

− 2y
− 2ϕ + 2y

− 1ϕy + ϕyy � 0, (62d)

ϕ − 2x
− 1

y − x
− 2

􏼐 􏼑 + ϕxx − x
− 1

y
2ϕy � 0. (62e)

We observe that equation (62c) is obtained from
equation (62b) by differentiation with respect to x. )ere-
fore, we have to study only equations (62b), (62d), and (62e).
Solving for ϕ in (62b), we obtain

ϕ(x, y) � c1(x)y
− 2

, (63)

where c1(x) is the arbitrary function. Using (63) in (62e), we
get − (c1(x)/x2) + c1,xx(x) � 0, thus solving for c1(x), we
have c1(x) � k2x

(1/2(1+
�
5

√
)) + k1x

(1/2(1−
�
5

√
)); then,

substituting in (63), the statement in the theorem is
obtained. □

7. Conservation Laws

In this section, we shall establish some conservation laws for
equation (3) using the conservation theorem of N [31]. Since
equation (3) is of second order, the formal Lagrangian
contains derivatives up to order two. )us, the general
formula in [31] for the component of the conserved vector is
reduced to

C
x

� W
j zL

zyx

− Dx

zL

zyxx

􏼠 􏼡􏼢 􏼣 + Dx W
j

􏽨 􏽩
zL

zyxx

􏼢 􏼣, (64)

where

W
j

� ηj
− ξj

yx, (65)

where j � 1, . . . , 5 is the formal Lagrangian (58),

L ≔ ] yxx − 2y
2
xy

− 1
− x

− 1
yx − x

− 1
y
2

􏼐 􏼑, (66)

and ηj, ξj are the infinitesimals of a Lie point symmetry
admitted by equation (3), given in (4). Using (3), (4), and (3)
in (64), we obtain the following conservation vectors for
each symmetry stated in (4).

C
x
1 � ] yx(− 2) + y

2
x − 4xy

− 1
+ 2y

− 1
􏼐 􏼑 − x

− 1
y + y

2
􏼐 􏼑 − ]x y + xyx( 􏼁,

C
x
2 � ] yx(− 2y) − 2x

− 1
y
2

􏼐 􏼑 − ]x y
2

􏼐 􏼑,

C
x
3 � ] yx(− 2xy) + y

2
x − 2xy

− 1
− 1􏼐 􏼑 + y

2
􏼐 􏼑 − ]x xy

2
+ xyx􏼐 􏼑,

C
x
4 � ] yx − 2x

2
y􏼐 􏼑 + xy

2
􏼐 􏼑 − ]x x

2
y
2

􏼐 􏼑,

C
x
5 � ] yx − 13x

2
+ 6x

3
y􏼐 􏼑 + y

2
x 4x

3
y

− 1
− 2x

3
􏼐 􏼑 − 6xy + 3x

2
y
2

􏼐 􏼑 − ]x − 2x
2
y + x

3
y
2

− x
3
yx􏼐 􏼑,

(67)

where

] � y
− 2

k2x
(1/2(1+

�
5

√
))

+ k1x
(1/2(1−

�
5

√
))

􏼒 􏼓,

]x � y
− 2 k2x

(1/2(1+
�
5

√
))− 1

2(1 +
�
5

√
)

+
k1x

(1/2(1−
�
5

√
))− 1

2(1 −
�
5

√
)

⎛⎝ ⎞⎠.

(68)

8. Classification of Lie Algebra

Generically, a finite-dimensional Lie algebra in a field of
characteristic 0 is classified by the Levi’s theorem, which
states that any finite-dimensional Lie algebra can be written
as a semidirect product of a semisimple Lie algebra and a
solvable Lie algebra; the solvable Lie algebra is the radical of
that algebra. In other words, there exist two important
classes of Lie algebras, the solvable and the semisimple. In
each class mentioned above, there are some particular classes
that have other classifications, for example, in the solvable
one, we have the nilpotent Lie algebra.

According the Lie group symmetry of generators given
in Table 1, we have a five-dimensional Lie algebra. First of all,
we remember some basic criteria to classify a Lie algebra. In
the case of solvable and semisimple Lie algebra, we will
denote K(·, ·) as the Cartan-Killing form. )e next propo-
sitions can be found in [32].

Proposition 4. (Cartan’s theorem). A Lie algebra is semi-
simple if and only if its Cartan-Killing form is nondegenerate.

Proposition 5. A Lie subalgebra g is solvable if and only if
K(X, Y) � 0 for all X ∈ [g, g] and Y ∈ g. Another way to
write that is K(g, [g, g]) � 0.

We also need the next statements to make the
classification.

Definition 4. Let g be a finite-dimensional Lie algebra over
an arbitrary field k. Choose a basis ej, 1≤ i≤ n, in g where
n � dim g and set [ei, ej] � Ck

ijek. )en, the coefficients Ck
ij

are called structure constants.
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Proposition 6. Let g1 and g2 be two Lie algebras of di-
mension n. Suppose each has a basis with respect to which the
structure constants are the same. 'en, g1 and g2 are
isomorphic.

Let g be the Lie algebra related to the symmetry group of
infinitesimal generators of equation (1) as stated by the table
of the commutators; it is enough to consider the next re-
lations: [Π1,Π2] � Π2, [Π1,Π4] � − Π4, [Π1,Π5] � − 2Π5,
[Π2, Π5] � 2Π4, [Π3,Π4] � − 2Π4, and [Π3,Π5] � − 2Π5.
Using that, we calculate Cartan-Killing form K as follows:

K �

6 0 6 0 0

0 0 0 0 0

6 0 8 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (69)

where the determinant vanishes, and thus by Cartan cri-
terion, it is not semisimple (see Proposition 4). Since a
nilpotent Lie algebra has a Cartan-Killing form, that is,
identically zero, we conclude, using the counter-reciprocal
of the last claim, that the Lie algebra g is not nilpotent.

We verify that the Lie algebra is solvable using the Cartan
criteria to solvability (Proposition 5), and then we have a
solvable non-nilpotent Lie algebra. )e nilradical of the Lie
algebra g, M is generated by Π2,Π4,Π5, and it is isomorphic
to h3, the Heisenberg Lie algebra, and so we have a solvable
Lie algebra with three-dimensional nilradical. Let m be the
dimension of the nilradical M of a solvable Lie algebra. In
this case, in fifth-dimensional Lie algebra, we have that
3≤m≤ 5.

Mubarakzyanov in [33] classified the 5-dimensional
solvable non-nilpotent Lie algebras, in particular the solvable
non-nilpotent Lie algebra with three-dimensional nilradical.
)en, by Proposition 6 and consequently, we establish an
isomorphism of Lie algebras with g and the Lie algebra g5,35.
In summary, we have the next proposition.

Proposition 7. 'e 5-dimensional Lie algebra g related to
the symmetry group of equation (1) is a solvable non-nilpotent
Lie algebra with three-dimensional nilradical; this nilradical
is isomorphic to h3, the Heisenberg Lie algebra. Besides that,
Lie algebra is isomorphic with g5,35 in the Mubarakzyanov’s
classification.

9. Conclusion

For a generalized Levinson–Smith equation (3), we obtained
the optimal system’s generating operators (see Proposition
2); using those operators, it was possible to characterize all
invariant solutions as it is shown in Table 3; these invariant
solutions do not appear in the literature known until today.

It has been shown in the variational symmetries for (3),
as it was shown in (46) with its corresponding conservation
laws (48) and all these were using Noether’s theorem, but
nontrivial conservation laws were also calculated using the
Ibragimov’s method as it is shown in (67) using the

nonlinearly self-adjoint of equation (3) as mentioned in
Proposition 3.

)e results obtained in this study are new, and according
to the phenomena that govern this equation, which reaches
several fields of science, for instance, the nonlinear oscil-
lators, it may be of significant importance for several re-
searchers. )erefore, the goal initially proposed was
achieved.

)e Lie algebra associated to equation (3) is a solvable
non-nilpotent Lie algebra with three-dimensional nilradical,
and it is isomorphic with g5,35 in the Mubarakzyanov’s
classification; therefore, the goal initially proposed was
achieved.

For future works, equivalence group theory could be also
considered to obtain preliminary classifications associated to
a complete classification of (3).
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