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Solving fractional optimal control problems (FOCPs) with an approximate analytical method has been widely studied by many
authors, but to guarantee the convergence of the series solution has been a challenge. We solved this by integrating the Galerkin
method of optimization technique into the whole region of the governing equations for accurate optimal values of control-
convergence parameters Cs

j. -e arbitrary-order derivative is in the conformable fractional derivative sense. We use
Euler–Lagrange equation form of necessary optimality conditions for FOCPs, and the arising fractional differential equations
(FDEs) are solved by optimal homotopy asymptotic method (OHAM). -e OHAM technique speedily provides the convergent
approximate analytical solution as the arbitrary order derivative approaches 1.-e convergence of the method is discussed, and its
effectiveness is verified by some illustrative test examples.

1. Introduction

-e general definition of an optimal control problem ne-
cessitates minimization of an objective function of the states
and control inputs of the system over a set of admissible
control functions. -e optimal control problems emerge
naturally in different areas of science, engineering, and
economics. Several significant works have been done in the
area of optimal control of integer order derivative dynamic
systems: the optimal control design for the hyperchaotic
Chen system [1], an optimal control of time-varying and
state time-delay systems using shooting method [2], a
CasADi software for nonlinear optimal control problem [3],
direct and simultaneous approach for constrained mixed-
integer optimal control [4], a tailored algorithm for mixed
integer nonlinear optimal control model of hybrid electric
vehicles [5], and many more.

-e arbitrary order of fractional derivative equations
(FDEs) from fractional calculus has contributed a substantial
part to mathematics, engineering, and different area of
sciences. -e previous studies review that arbitrary order

derivatives providemore exact models of several engineering
control systems and show the behaviour, performance, and
mathematical representation of the dynamic systems in
sciences than traditional calculus, for example, the posi-
tioning of satellite in space is a model using fractional order
because traditional calculus is better equipped to capture the
memory-like effect observed in the system. Fractional cal-
culus applications are but not limited to liquid-containing
gas bubbles [6], neurodynamics system [7], the FOCPs with
a general derivative operator [8], a new adaptive synchro-
nization and hyperchaos control of a biological snap os-
cillator [9], a new mathematical model for Zika virus
transmission [10], the fractional features of a harmonic
oscillator with position-dependent mass [11], electro-
hydrodynamic flow in a cylindrical conduit [12], fractional
order of HIV infection model [13], and novel solution
methods for IBVPs of arbitrary-order with conformable
differentiation [14]. Many areas of FDEs have been
researched by many authors: the multistage ADM for
solving NLP problems over a nonlinear fractional dynamical
system [15], the existence of the solution to FOCPs [16],
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stable analytical techniques for solving FDEs [17], Capu-
to–Fabrizio operator sense for brucellosis model [18], and
spectral collocation method of generalized fractional oper-
ator sense for fractional calculus equations [19]. Currently,
to obtain exact solutions for FOCPs is still difficult and
remain a challenge. But where there is not an exact solution,
appropriate approximate analytical solution (AAS) is suit-
able and applicable. A recent approximate analytical
methods are: modified ADM for fractional optimal control
problems (FOCPs) [20], optimal control of a constrained
fractionally damped elastic beam [21], analyses of an optimal
solutions of optimization problems from fractional gradient
based system using VIM [22], conformable fractional op-
timal control problem of an heat conduction equations using
Laplace and finite Fourier sine transforms [23], spectral
Galerkin approximation [24], and direct transcription
methods for FOCPs [25], but the aforementioned methods
lack convergence norm that will guarantee the convergence
of the series solution. In 1992, Liao proposed the homotopy
analysis method (HAM) [26] for solving the nonlinear
problem which was later advanced to optimal homotopy
asymptotic method for noninteger order [27], new fractional
homotopy method for optimal control problems (OCPs)
[28], and comparisons of OHAM [29]. But OHAMhas never
been used to solve FOCPs, which drives this research work.
We extend the work of (Alizadeh Effati, 2018a), who pro-
posed a fractional optimal control problem with an ap-
proximate analysis solution that lacks convergence norm.
We provided the solution using OHAM with an optimi-
zation technique of the Galerkin method. It is hoped that the
simplicity of this formulation will initiate a new interest in
the area of fractional order optimal control problems. Our
focus in this paper is to widen the application of the OHAM
to FOCPs. -e formulation, numerical scheme, and ap-
proximate analytical results for FOCPs presented in this
paper are attempts to fill this gap.

We arrange the paper as follows. In Section 2, a brief in-
troduction to the fractional calculus and the necessary opti-
mality conditions are discussed. In Section 3, we formulate
OHAM with FOCPs and show the convergence analysis of the
technique. We present numerical examples and results in
Section 4. Finally, in Section 5, we present the conclusion.

2. Fractional Calculus

-e definition of conformable fractional derivative (CFD)
preserves many properties of classical order derivatives [30].
Some features that we will adopt are as follows.

Definition 1. -e (left) FD starting from a function
z: [a,∞)⟶∈ of order 0< α< 1 is defined by

T
a
αz( 􏼁(ψ) � lim

ε⟶0

z ψ + ε(ψ − a)
1− α

􏼐 􏼑 − z(ψ)

ε
, ∀ψ > 0, 0< α< 1.

(1)

When a � 0, we write Tα. If (Tαz)(ψ) exists on (a, b),
then (Ta

αz)(a) � limψ⟶a+ (Ta
αz)(ψ). -e (right) FD of order

0< α≤ 1 ending at b of z is defined by

b
Tαz􏼐 􏼑(ψ) � − lim

ε⟶0

z ψ + ε(b − ψ)
1− α

􏼐 􏼑 − z(ψ)

ε
, ∀ψ > 0, 0< α< 1.

(2)

If (bTαz)(ψ) exists on (a, b), then
(bTαz)(b) � limψ⟶b− (bTαz)(ψ).

Note that if z is differentiable, then
(Ta

αz)(ψ) � (ψ − a)1− αz′(ψ) and (b
αTz)(ψ) � − (b − ψ)1− α

z′(ψ).

Notation. (Ia
αz)(ψ) � 􏽒 atz(ψ)dα(ψ, a) � 􏽒 at(ψ − a)α− 1

zψdψ. When a � 0, we write dα(ψ). Similarly, in the right
case, we have (bTαz)(ψ) � 􏽒 tbz(ψ)dα(b,ψ) �

􏽒 tb(b − ψ)α− 1z(ψ)dψ. -e operators Ia
α and bIα are called

conformable fractional integrals of left and right order
0< α< 1.

Lemma 1. Assume that z: [a,∞)⟶ R is continuous and
0< α< 1. .en, for all t> a, we have

T
a
αI

a
α � z(ψ). (3)

In the right case, we can similarly prove the following.

Lemma 2. Assume that z: (− ∞, b]⟶ R is continuous
and 0< α< 1. .en, ∀t< a, we have

b
Tα

b
Iα � z(ψ). (4)

2.1. Necessary Optimality Condition. We define optimal
control problems as a minimization of a performance index
(PI) subject to system dynamic constraints on the state
variable z(t) and control variable u(t). -e necessary
optimality condition helps reduce OCPs to a system of
integer order ODE. -e general formulation of Caputo and
Riemann–Liouville derivatives is with OCPs [31]. Using the
above definition equations (1) and (2), we present an
Euler–Lagrange equation form for FOCPs under some
consideration as follows.

Find the optimal control u(t) that minimizes the per-
formance index:

J(u) � 􏽚
1

0
F(z, u, t)dt, (5)

subject to the system dynamic constraints

T
a
αz � G(z, u, t), (6)

and the initial condition

z(0) � z0, (7)

where F and G are two arbitrary functions and Ta
α is the

conformable fractional derivative [30]. Some additional
terms containing z′s(t) may be included in equation (6) at
the endpoint. When α � 1, the problem above reduces to a
integer OCPs [32]. Here, we take the limits of integration
from 0 to 1 and consider 0.8≤ α≤ 1. According to [33], the
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necessary equations are obtained through the combination
of equations (5) and (6) and using a Lagrange multiplier
approach. -e variants of the resultant is taken, which is
followed by using integration by parts to revise the equation
so that it does not contain variants of a derivative term,
enforce the necessary terminal conditions, and set the co-
efficients of δλ, δz, and δu to zero. We have

T
a
αz � G(z, u, t), (8)

b
αTz �

zF

zz
+ λ

zG

zz
, (9)

zF

zu
+ λ

zG

zu
� 0, (10)

z(0) � z0, λ(1) � 0. (11)

Where λ is the Lagrange multiplier. -e details of the
derivation of equations (8)–(11) are seen in [33]. -e
Euler–Lagrange equations for FOCP equations (6) and (7)
represent the necessary conditions for the optimality of
FOCP. -e difference between arbitrary and integer OCP is
that the arbitrary order FOCP consists of the left and the
right FD. Examine that equation (8) contains left con-
formable derivative, whereas equation (9) contains the right
conformable derivative. -is demonstrates that the solution
of OCP requires the insight of not only forward derivatives
(FD) but also backward derivatives (BD) to account for end
conditions. In integer-order OCP theories, this issue is either
not addressed or not highlighted. -is is broad because the
BD of order 1 turns out to be negative of the FD of order 1. It
can be shown that, in the limα⟶1, equations (8)–(10) goes
back to those obtained using standard methods.

3. The Formulation of OHAM with FOCPs

We exemplify the basic concept of the OHAM by consid-
ering the following general FDEs system:

T
a
α xk(t)( 􏼁 + Lk xk(t)( 􏼁 + Nk xk(t)( 􏼁

− gk(t) � 0, t ∈ φ, k � 1, 2 . . . m,
(12)

with initial conditions
xk(b) � ai, (13)

where Ta
α is the conformable fractional derivative, lk is a

linear operator, Nk is a nonlinear operator, t is an inde-
pendent variable, xk(t) is unknown function, φ is the
problem domain, and gk(t) is a known function. According
to OHAM, one can construct a homotopy map
Hk(ϕi(t, p): φ × [0, 1]⟶ φ which satisfies that equation
(12) can be constructed using OHAM as [26]

(1 − ℓ) T
a
α 5k(t, ℓ)( 􏼁􏼂 􏼃 � Hk(ℓ)

T
a
α5k(t, ℓ) + N5k(t, ℓ) + L5k(t, ℓ) + gk(t, ℓ)􏼂 􏼃,

(14)

where embedding parameter (ℓ) is 0≤ ℓ ≤ 1, auxiliary
function Hk(ℓ)∀ℓ ≠ 0, unknown function (5k(t, ℓ)), and

H(0) � 0. Definitely, when ℓ � 0 and ℓ � 1, it holds that
5k(t, 0) � ψk,0(t) and 5k(t, 1) � ψk(t), respectively. -us, as
ℓ moves from 0 to 1, the solution 5k(t, ℓ) approaches from
ψk,0(t) to ψk(t), where initial guess ψk,0(t) satisfies the linear
operator generated from equation (14) for ℓ � 0 as

T
a
α ψk,0(t)􏼐 􏼑 � 0, ψk,0(b) � 0. (15)

Hk(ℓ) is given as

Hk(ℓ) � 􏽘
n

j�1
ℓj

Cj, (16)

where Cs
j can be known later. We get approximate solution

by expanding 5k(t, ℓ, Cj) in Taylor’s series in terms of ℓ

5k t, ℓ, Cj􏼐 􏼑 � ψk,0(t) + 􏽘
k≥1

ψi,k t, Cj􏼐 􏼑ℓi
, j � 1, 2, . . . , n,

(17)

using equation (14) with collections of the coefficient like
power of ℓ, gives the governing equations ψi,0(t) in a linear
form in equation (15). -en, the 1st problem is given as

T
a
α ψk,1(t)􏼐 􏼑 + gk(t) � C1N0 ψk,0(t)􏼐 􏼑,ψk,1(b) � 0. (18)

-e general governing equations for ψk,i(t) is

T
a
α ψk,i(t)􏼐 􏼑 − T

a
α ψk,i− 1(t)􏼐 􏼑 � CiNk,0 ψk,0(t)􏼐 􏼑 + 􏽘

i− 1

m�1
Cj,m

T
a
α ψk,i− m(t)􏼐 􏼑 + Nk,i− m ψk,i− 1(t)􏼐 􏼑􏽨 􏽩,

(19)

ψk,i(b) � 0, i � 2, 3, . . . , m, (20)

where Nk,m(ψ0(t),ψk,1(t), . . . ,ψk,m(t)) is the coefficient of
ℓm, produced by expanding Nk(5k(t, ℓ, Cj)) in series relating
to ℓ

Nk 5k t, ℓ, Cj􏼐 􏼑􏼐 􏼑 � Nk,0 ψk,0(t)􏼐 􏼑 + 􏽘
m≥1

Nk,m ψ0,ψ1, . . . ,ψm( 􏼁ℓm
.

(21)

-e convergence of series solution equation (21) relies
on Cs

j. If it is convergent at ℓ � 1, it gives solution to equation
(12) as

ψk t, Cj􏼐 􏼑 � ψk,0(t) + 􏽘
m

k≥1
ψi,k t, Cj􏼐 􏼑, j � 1, 2, . . . , n.

(22)

Using equation (22) in equation (12), we have expression
for the residual error as

Rk t, Cj􏼐 􏼑 � T
α ψk t, Cj􏼐 􏼑􏼐 􏼑 + Lk ψk t, Cj􏼐 􏼑􏼐 􏼑

+ Nk ψk t, Cj􏼐 􏼑 − gk(t)􏼐 􏼑.
(23)

If

Rk t, Cj􏼐 􏼑 � 0, (24)
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then 􏽥ψk(t, Cj) is the exact solution. Usually, such a case does
not occur. We adopt Galerkin method to find the optimal
values Cs

j as follows:

ℓk �
z􏽥ψk t, Cj􏼐 􏼑

zCj

� 0, k � 1, 2, . . . , m. (25)

Minimize the functional

Δk Cj􏼐 􏼑 � 􏽚
b

a
ℓk × Rk t, Cj􏼐 􏼑dt, (26)

where the values of a and b depend on the given problem.
With these known Cs

j, the approximate analytical solution
equation (12) is well known.

We calculate the correctness of OHAM by

(1) Error norm L2

L2 � Ψexact − ΨN

����
���� ≈

���������������������

b − a

N
􏽘

N

k�0
ψexact

k − ψN( 􏼁k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

􏽶
􏽴

(27)

(2) Error norm L∞

L∞ � Ψexact − ΨN

����
����∞ ≈ maxk ψ

exact
k − ψN( 􏼁k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (28)

3.1. Convergence Analysis of the Method

Theorem 3.1. If the series ψk(t, Cj) � ψk,0(t) + 􏽐
m
i�1

ψk,i(t, Cj), for j � 1, 2, . . . , n, converges where ψk(t, Cj) is
governed by equation (22) under the definitions equations
(19) and (20), it achieves the solution of equations (12) and
(13).

Proof. If we assume 􏽐
∞
m�1 ψk,m(t, Cj), for k � 1, 2, . . . , n,

converges to ψk(t, Cj), then

lim
m⟶∞

ψk,m t, Cj􏼐 􏼑 � 0, ∀k � 1, 2, . . . , n. (29)

From equation (19), we can write

􏽘

∞

i�1
CiNk,0 xk,0(t)􏼐 􏼑􏽨 + 􏽘

i− 1

m�1
Cj,m T

a
α ψk,i− m(t)􏼐 􏼑 + Nk,i− m ψk,i− 1(t)􏼐 􏼑􏽨 􏽩

� 􏽘

∞

k�1
T

a
α ψi,k(t)􏼐 􏼑 − T

a
α ψi,k− 1(t)􏼐 􏼑(t)􏽨 􏽩,

(30)

� lim
n⟶∞

􏽘

n

k�1
T

a
α ψi,k(t)􏼐 􏼑 − T

a
α ψi,k− 1(t)􏼐 􏼑, (31)

� T
a
αψ11(t) + T

a
αψ22(t) − T

a
αψ21(t)( 􏼁 + · · · + T

a
αψnn(t) − T

a
αxn(n− 1)(t)􏼐 􏼑, (32)

� T
a
α lim

n⟶∞
􏽘

n

m�1
ψnn(t)⎡⎣ ⎤⎦ � T

a
α lim

n⟶∞
ψnn(t)􏼔 􏼕 � 0. (33)

Equate the RHS of equation (33) with the following
equation:

0 � 􏽘
∞

m�1
T

a
αψk(m− 1) + Nψk(m− 1)Lψk(m− 1) + Nψk(m− 1) − gk(t)􏼑􏼑􏽨 􏽩, (34)

􏽘

∞

m�1
T

a
αψk(m− 1) + Lψk(m− 1) + Nψk(m− 1)􏼑􏽨 􏽩 � gk(t), (35)

T
a
αψk t, Cj􏼐 􏼑 + Lψk t, Cj􏼐 􏼑 + Nψk t, Cj􏼐 􏼑 − gk(t) � 0, ∀k � 1, 2, . . . , n. (36)

If the Cj is chosen properly, then equation (36) leads to
the solution of equations (12) and (13) □

4 International Journal of Differential Equations



4. Numerical Example and Results

Example 1. Find the control u(t) that minimizes the qua-
dratic performance index

J(u) �
1
2

􏽚
1

0
z
2
(t) + u

2
􏽨 􏽩dt, (37)

subject to system dynamics

T
a
α � − z + u, (38)

and the initial condition

z(0) � 1. (39)

-e exact solution for the system for α � 1 is given as

z(t) � cosh(
��
2t

√
) + β sinh(

��
2t

√
),

u(t) � (1 +

��

2β
􏽱

)cosh(
��
2t

√
) +(

�
2

√
+ β)sinh(

��
2t

√
),

(40)

where

β �
cosh(

�
2

√
+

������
2 sinh

√
(

�
2

√
)

��������������������
2 cosh(

�
2

√
+ sinh(

�
2

√
)

􏽰 ≈ − 0.98. (41)

Following equations (8)–(11) procedure, we have

T
a
αz � − z + u,

b
T

a
αu � − z − u,

z(0) � 1, u(1) � 0.

(42)

Using OHAM, the solutions for fractional-order are
acquired. We choose the linear and nonlinear operators in
the following forms:

L1 51(t, ℓ)􏼂 􏼃 � T
a
α51(t, ℓ), (43)

L2 52(t, ℓ)􏼂 􏼃 �
b
Tα52(t, ℓ), (44)

N1 51(t, ℓ)􏼂 􏼃 � T
a
α51(t, ℓ) + 51(t, ℓ) + 52(t, ℓ), (45)

N2 52(t, ℓ)􏼂 􏼃 �
b
Tα52(t, ℓ) − 51(t, ℓ) − 52(t, ℓ). (46)

Using homotopy in equation (14),

(1 − ℓ)Ta
α51(t, ℓ) � Hk(ℓ) T

a
α51(t, ℓ) + 51(t, ℓ) + 52(t, ℓ)􏼂 􏼃,

(47)

(1 − ℓ)b
Tα52(t, ℓ) � Hk(ℓ) b

Tα52(t, ℓ) − 51(t, ℓ) − 52(t, ℓ􏽨 􏽩,

(48)

where

51(t, ℓ) � z0(t) + 􏽘
j≤1

z1,j(t)ℓj
, (49)

52(t, ℓ) � u0(t) + 􏽘
j≤1

u1,j(t)ℓj
, (50)

Hk(ℓ) � ℓC1 + ℓ2C2 + ℓ3C3

+ · · · ℓm
Cm, k � 1, 2, . . . , m.

(51)

Substituting 51(t, ℓ), 52(t, ℓ), and Hk(ℓ) into equations
(47) and (48), and equating the coefficient of likes power of ℓ,
it gives linear FDEs as follows:

ℓ0: T
a
αz0(t) � 0, (52)

ℓ0: b
Tαu0(t) � 0, (53)

ℓ1: T
a
αz1(t) � T

a
αz0(t)C1 − T

a
αz0(t)

+ z0(t)C1 + u0(t)C1 � 0,
(54)

ℓ1: b
Tαu1(t) �

b
Tαu0(t)C1 − T

a
αu0(t)

+ z0(t)C1 + u0(t)C1 � 0,
(55)

ℓ2: T
a
αz2(t) � T

a
αz0(t)C2 + T

a
αz1(t)C1

− T
a
αz1(t) + z0(t)C2 + z1(t)C1

+ u0(t)C2 + u1(t)C1 � 0,

(56)

ℓ2: b
Tαu2(t) �

b
Tαu0(t)C2 +

b
Tαu1(t)C1

−
b
Tαu1(t) − u0(t)C2 − u1(t)C1

+ z0(t)C2 + z1(t)C1 � 0.

(57)

Using the operator Lemmas 1 and 2 on the above
equations with initial condition gives

z0(t) � 0, (58)

u0(t) � 0, (59)

z1 t, C1( 􏼁 � − 5t
1/5

C1 + 1, (60)

u1 t, C1( 􏼁 � 5t
1/5

C1, (61)

z2 t, C1, C2( 􏼁 � 5t
1/5

C
2
1 − 2C1 + C2 + 1, (62)

u2 t, C1, C2( 􏼁 � − 25t
2/5

C
2
1 − 5t

1/5
C
2
1

+ 10t
1/5

C1 + 5C2t
1/5

. . . .
(63)

Summing up the solution from equations (58)–(63), the
3rd-order approximate analytical method generated by
OHAM, for ℓ � 1, is

z t, C1, C2( 􏼁 � 5C
2
1 − 15C1 − 5C2􏼐 􏼑t

1/5
+ 3, (64)

u t, C1, C2( 􏼁 � 15C1 − 5C
2
1 + 5C2􏼐 􏼑t

1/5
− 252/5C2

1. (65)

We determine C1 and C2 by using the procedure
mentioned in equations (24)–(26).

For z(t),
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C1 � − 0.2553704121,

C2 � 1.408561895.
(66)

And, for u(t),

C1 � − 0.1925118854,

C2 � 1.0134328546.
(67)

Using the 3rd-order approximate analytical solution
given in equations (64) and (65), we have

z(t) � − 4.591553468t
1/5

+ 3, (68)

u(t) � − 0.9265206505t
2/5

+ 1.994181864t
1/5

. (69)

Figure 1 shows the approximate analytical solutions of
the state variable z(t) and control variable u(t) at different
values of α using OHAM after the 3rd order of approximate
solution. Table 1 shows the control-convergence parameter
at different values of fractional-order for both state and
control variables, Table 2 shows comparisons and absolute
errors between the proposed method and the exact solution
at integer order α � 1, and Table 3 shows the optimal values
of the cost function and the comparisons between OHAM
and VIM. It is observed that OHAM converges to optimal
values faster in CPU times and iterations.

Example 2. Considering the following problem of mini-
mising the functional

J(u) �
1
2

􏽚
1

0
z1(t)

2
+ z2(t)

2
+ u(t)

2
􏽨 􏽩dt, (70)

subjected to the dynamic constraints

T
a
αz1(t) � − z1(t) + z2(t) + u(t), (71)

b
Tαz2(t) � − 2z2(t), (72)

and the initial conditions

z1(0) � z2(0) � 1. (73)

-e exact solution for this system for α � 1 is

z1(t) �
− 3
2

e
− 2t

+ 2.48164e
−

��
2t

√

+ 0.018352e
��
2t

√

, (74)

z2(t) � e
− 2t

, (75)

u(t) �
1
2
e

− 2t
− 1.027934e

−
��
2t

√

+ 0.0443056e
��
2t

√

. (76)

For this example, the necessary optimality conditions are
as follows:

T
a
αz1(t) − z1(t) + z2(t) + u(t) � 0, (77)

b
Tαz2(t) + 2z2(t) � 0, (78)

u(t) + p1(t) � 0, (79)

T
a
αp1(t) + p(t) − z1(t) � 0, (80)

b
Tαp2(t) − 2p2(t) + p1(t) + z2(t) � 0, (81)

z1(0) � z2(0) � 1,

p1(1) � p2(1) � 0.
(82)

Following the same procedure above, we have

z1 t, C1, C2( 􏼁 − 30C1 + 10C
2
1 − 10C2􏼐 􏼑t

1/10
+ 50t

1/5
C
2
1 + 3,

(83)

z2 t, C1, C2( 􏼁 � 30C1 + 90C
2
1 + 10C2􏼐 􏼑t

1/10
− 30C1 − 50

× t
1/5

C
2
1 − 40C

2
1 − 10C2,

(84)

u t, C1, C2( 􏼁 � 30C1 + 110C
2
1 + 10C2􏼐 􏼑t

1/10
− 30C1 − 100

× t
1/5

C
2
1 − 10C

2
1 − 10C2.

(85)

We determine C1 and C2 by using the procedure
mentioned in equations (24)–(26).For z1(t),

C1 � 1.143999690 × 10− 9
,

C2 � 0.2950819638,
(86)

For z2(t),

C1 � − 0.1820636120,

C2 � 0.2099839413,
(87)

and u(t)

C1 � − 6.577999908 × 10− 10
,

C2 � 0.3913043497.
(88)

Using the 3rd-order approximate analytical solution
given in equations (83)–(85), we have

z1(t) � − 2.950819672 × t
1/10

+ 3.01234 + 6.543676455 × 10− 17
× t

1/5
, (89)

z2(t) � − 0.378824654 × t
1/10

+ 2.036182595 − 1.657357940 × t
1/5

, (90)
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u(t) � 3.913043477 × t
1/10

− 3.913043477 − 4.327008279 × 10− 17
× t

1/5
. (91)

Figure 2 shows the approximate analytical solutions of
the states variables z1(t) and z2(t) and control variable u(t)

at different values of α using OHAM after the 3rd order of

approximate solution. Tables 4 and 5 show the control-
convergence parameter at different values of fractional-or-
der for both states and control variables, Table 6 shows
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Figure 1: (a, b) For different values of α (exact� dot, α � 1: long dash, α � 0.9: solid, and α � 0.8: dash).

Table 1: Control-convergence parameters Cs
j at different values of α.

Variable z (t) z (t) u (t) u (t)
α C1 C2 C1 C2
1 − 0.2553704121 1.408561895 − 0.1925118854 1.0134328546
0.9 − 0.282311385 1.354541654 − 0.2136217553 0.9134328546
0.8 − 0.312012513 1.319562884 − 0.2414217624 0.8134328546

Table 2: Comparisons and absolute error between (OHAM and exact, α � 1).

tk OHAM z (t) OHAM u (t) Exact z (t) Exact u (t) Error z (t) Error u (t)
0.0 1.00000000 0.00000000 1.00000000 0.00000000 0.00000000 0.00000000
0.1 0.667606464 0.68114171 0.667144195 0.681603987 0.000462277 0.000462269
0.2 0.572490044 1.15082042 0.571814575 1.151495891 0.000675469 0.000675471
0.3 0.513009607 1.53717622 0.512155196 1.538030634 0.000854411 0.000854414
0.4 0.470973769 1.88672253 0.469955226 1.887741076 0.001018543 0.001018546
0.5 0.451473134 2.21698046 0.443945101 2.218155658 0.007528033 0.001175198
0.6 0.439567403 2.53673706 0.438392205 2.538065126 0.001175198 0.001328066
0.7 0.415403119 2.85112316 0.414075062 2.852602442 0.001328057 0.001479282
0.8 0.396528946 3.16344266 0.395049669 3.165072917 0.001479277 0.001630257
0.9 0.38171058 3.47597703 0.38008033 3.477758981 0.00163025 0.001781951
1 0.36841575 3.79138812 0.368333813 3.792323188 8.1937E-05 0.000935068

Table 3: Optimal values of J at different choices of α for example 1.

α VIM Ali et al. (2018) OHAM
1.0 0.1929093 0.1929090
0.9 0.17953 0.17152
0.8 0.16711 0.16709
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Figure 2: (a–c) For different values of α (exact� dot, α � 1: long dash, α � 0.9: solid, and α � 0.8: dash).

Table 4: Control-convergence parameters Cs
j at different values of α.

Variable z1 (t) z1 (t) z2 (t) z2 (t)

α C1 C2 C1 C2
1 1.143999690 x 10− 9 0.2950819638 − 0.1820636120 0.2099839413
0.9 1.113328281 x 10− 9 0.2536726322 − 0.2121547231 0.1845623225
0.8 1.091424280 x 10− 9 0.1963215213 − 0.2431545343 0.159436311

Table 5: Control-convergence parameters Cs
j at different values of α.

Variable u (t) u (t)
α C1 C2
1 − 6.577999908 x 10− 10 0.3913043497
0.9 − 6.661323216 x 10− 10 0.3612134421
0.8 − 6.755673906 x 10− 10 0.3125152370

Table 6: Comparisons of (OHAM and exact, α � 1).

tk OHAM z1 (t) OHAM z2 (t) OHAM u (t) Exact z1 (t) Exact z2 (t) Exact u (t)

0.0 1.0000000 0.00000000 1.0000000 0.00000000 0.0000000 0.00000000
0.1 0.388025392 0.852996359 − 0.178200169 0.387385984 0.852143789 − 0.178609739
0.2 0.348055508 0.727602788 − 0.126901219 0.347524221 0.726149037 − 0.127572209
0.3 0.360826387 0.620642529 − 0.102402516 0.360365496 0.618783392 − 0.10322697
0.4 0.385903334 0.529405818 − 8.63E− 02 0.385494492 0.527292424 − 8.72E− 02
0.5 0.385903334 0.451581235 − 7.29E− 02 0.385494492 0.449328964 − 7.38E− 02
0.6 0.411381137 0.385197149 − 5.97E− 02 0.411013257 0.382892886 − 6.06E− 02
0.7 0.433264531 0.328571766 − 4.68E− 02 0.432930139 0.326279795 − 4.69E− 02
0.8 0.450436393 0.28027052 − 3.21E− 02 0.4501301 0.278037301 − 3.22E− 02
0.9 0.46293519 0.239069733 − 1.65E− 02 0.462652925 0.236927759 − 1.66E− 02
1 0.47099984 0.207193943 − 1.69E− 03 0.470997167 0.205152843 − 1.70E− 03
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comparisons between OHAM and the exact solution at
integer order α � 1, Table 7 shows absolute errors between
the proposed method and the exact solution at integer order
at α � 1, and Table 8 shows the optimal values of the cost
function and the comparisons between OHAM and VIM. It
is observed that OHAM converges to optimal values faster in
CPU times and iterations.

5. Conclusion

In this research article, we examine the effectiveness of the
OHAM to generate an accurate approximate analytical
solution to FOCPs. We derive the necessary optimal con-
dition and then solve the system of nonlinear FDEs with
OHAM. -e technique helps provide an accurate approx-
imate analytical solution to the problems. -e fractional
derivative operator is in the conformable fractional deriv-
ative operator sense.We show that Galerkin method helps to
determine the optimal values of the control-convergence
parameter. It can be seen that the OHAM results corre-
sponded with the exact solution at α � 1, which shows the
effectiveness of the proposed method to provide an accurate
approximate analytical solution. OHAM is used to solve this
type of problems for the first time and gave optimal values to
the convergence norm challenge for accurate series solution.
No existing approximate solution is known to have con-
sidered such a nonlinear constrained programming problem
with OHAM ahead of this one. OHAM technique is very
easy to implement and efficient for solving FOCPs.
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