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In this paper, the conformable fractional-order SIR epidemic model are solved by means of an analytic technique for nonlinear
problems, namely, the conformable fractional differential transformation method (CFDTM) and variational iteration method
(VIM). (ese models are nonlinear system of conformable fractional differential equation (CFDE) that has no analytic solution.
(eVIM is based on conformable fractional derivative and proved.(e result revealed that bothmethods are in agreement and are
accurate and efficient for solving systems of OFDE.

1. Introduction

(e problem of spreading of a (non) fatal disease in a
population which is assumed to have a constant size over the
period of the epidemic is considered in COVID-19. (e goal
of the epidemic model is to understand and if possible
control the spread of disease [1]. At time t, suppose the
population consists of

(i) s(t): the number of susceptible, who do not have the
disease but could get it.

(ii) i(t): the number of infectives, who have the disease
and can transmit it to others.

(iii) r(t): the number of removed, who cannot get the
disease or transmit it; either they have a natural
immunity or they have recovered from the disease
and are immune from getting it again or they have
been placed in isolation or they have died. (e
mathematical model does not distinguish between
these possibilities.

Assume there is a steady constant rate between sus-
ceptible and infectives and that a constant proportion of this
constant results in transmission. (en, in time δtandδs, the
susceptible becomes infective:

δs � − βsiδt, (1)

where β is a positive constant. If c> 0 is the rate at which
current infectives become isolated, then

δi � βsiδt − ciδt, (2)

and the number of new isolated δr is given by

δr � ciδt. (3)

If we let δt⟶ 0, then the following nonlinear system of
ODEs determines the progress of the disease:

d
dt

s(t) � − βs(t)i(t),

d
dt

i(t) � βs(t)i(t) − ci(t) � 0,

d
dt

r(t) � ci(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

with initial conditions
s(0) � Ns,

i(0) � Ni,

r(0) � Nr.

(5)

(e following simple SIR model [2–5] is transformed to
conformable fractional differential equation and is tested to
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show the efficiency of the variational iteration method [6]
and differential transformation method [7–11] to solve such
models.

Fractional differentiation and integration operators have
different kinds of definitions which we can mention, the
Riemann–Liouville definition [12, 13], the Caputo definition
[14], and so on. Lately, Khalil et al. [15] introduced a new
simple definition of the fractional derivative named the
conformable fractional derivative (CFD), which can redress
shortcomings of the other definitions.(e main advantages
of the CFD can be summarized as follows [16–19]:

(1) It satisfies all concepts and rules of an ordinary
derivative such as: quotient, product, and chain
rules, while the other fractional definitions fail to
meet these rules

(2) It can be extended to solve exact and numerical
fractional differential equations and systems easily
and efficiently

(e reason for considering a fractional-order system
instead of its integer order counterpart is that fractional-
order differential equations are generalizations of integer
order differential equations. Also, using fractional-order
differential equations can help us to reduce the errors arising
from the neglected parameters in modelling real-life
phenomena.

We like to argue that fractional-order equations are
more suitable than integer order ones in modelling bio-
logical, economical, and social systems (generally com-
plex adaptive systems) where memory effects are
important.

(e main objective of our work is to introduce the
conformable fractional-order approach for the study of a
particular SIR model in a constant population. In this case,
the conformable fractional-order system of the SIR model
will be transformed to one conformable fractional equation
and are solved using the variational iterationmethod and the
conformable differential transformation method for nu-
merical comparison.

2. Conformable Fractional Derivative and
Some Properties

In this part, we review some definitions and some results of
conformable fractional derivative. For more details, the
reader can refer to [15, 18, 20–25]. (e conformable frac-
tional derivative of order α is defined as

Tαf(t) � lim
ε⟶0

f t + εt1− α
􏼐 􏼑 − f(t)

ε
, (6)

for all t> 0, α ∈ (0, 1), and the fractional derivative at 0 is
defined as

Tαf( 􏼁(0) � lim
t⟶0+

Tαf( 􏼁(t). (7)

Let α ∈ 0, 1 and f be α-differentiable at a point t> 0, and
if f is differentiable, then

Tαf(t) � t
1− α d

dt
f(t). (8)

(e fractional integral of order α is defined by

Iα(f)(t) � I t
α− 1

f􏼐 􏼑 � 􏽚
t

0
s
α− 1

f(s)ds, for all α ∈ (0, 1),

(9)

where the integral is the usual Riemann improper integral.

3. Mathematical Modeling of the Conformable
Fractional SIR Model

(e conformable fractional model of actual evolution of this
epidemic in a population of large size N is given by the
following conformable fractional differential system:

Tαs(t) � − βs(t)i(t),

Tαi(t) � βs(t)i(t) − ci(t),

Tαr(t) � ci(t),

⎧⎪⎪⎨

⎪⎪⎩
(10)

with initial conditions
s(0) � Ns,

i(0) � Ni,

r(0) � Nr.

(11)

3.1. ,e Conformable Fractional Differential Transformation
Method. In [9, 11], assume f is infinitely α-differentiable
function, for some 0< α≤ 1. f(t) can be expanded in
fractional power series expansion about a point t � 0 as

f(t) � 􏽘
∞

k�0

t
αk

αk
k!

Tαf( 􏼁
(k)

􏽨 􏽩
t�0, 0< t<R

1/α
, R> 0. (12)

Here, [(Tαf)(k)]t�0 denotes the application of the
fractional derivative for k times. Conformable fractional
differential transform of f(t) is defined as

Fα(k) �
1

αk
k!

Tαf( 􏼁
(k)

􏽨 􏽩
t�0. (13)

(en, the inverse conformable fractional differential
transform of F(k) is defined as

f(t) � 􏽘
∞

k�0
t
αk

Fα(k) � 􏽘
∞

k�0

t
αk

αk
k!

Tαf( 􏼁
(k)

􏽨 􏽩
t�0. (14)

(e fundamental mathematical operations performed by
conformable fractional differential transform method are
listed.

Proposition 1

(i) If f(t) � u(t) ± v(t), then Fα(k) � Uα(k) ± Vα(k).
(ii) If f(t) � cu(t), c ∈ R, then Fα(k) � cUα(k).
(iii) If f(t) � u(t)v(t), then Fα(k) � 􏽐

k
l�0 Uα(l)Vα

(k − l).
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(iv) If f(t) � Tαu(t), then Fα(k) � α(k + 1)Uα(k + 1).
(v) If f(t) � (t − t0)

p, then Fα(k) � δ(k − (p/α)),
where

δ(k) �
1, if k � 0,

0, if k≠ 0.
􏼨 (15)

3.1.1. Application of Conformable Fractional Differential
Transform Method. Equation (10) can be rewritten as
follows:

α(k + 1)Sα(t) � − β􏽘
k

l�0
Sα(l)Iα(k − l),

α(k + 1)Iα(t) � β􏽘
k

l�0
Sα(l)Iα(k − l) − cIα(k),

α(k + 1)Rα(t) � cIα(k).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Hence, recurrence relation is obtained as

Sα(t) �
1

α(k + 1)
− β􏽘

k

l�0
Sα(l)Iα(k − l)⎡⎣ ⎤⎦,

Iα(t) �
1

α(k + 1)
β􏽘

k

l�0
Sα(l)Iα(k − l) − cIα(k)⎡⎣ ⎤⎦,

Rα(t) �
1

α(k + 1)
cIα(k)􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

With initial conditions Ns � 2000, Ni � 300, and Nr �

200 and parameters N � 2500, β � 0.00012, and c � 0.1,
apply the condition in (17); then, the closed form of the
solution where k � 4 can be written as

s(t) � 􏽘
k

l�0
S(k)t

kα
� 2000 − 72

t
α

α
− 3.744

t
2α

α2
+ 0.034368

t
3α

α3

+ 0.013309
t
4α

α4
,

i(t) � 􏽘
k

l�0
I(k)t

kα
� 300 + 42

t
α

α
+ 1.644

t
2α

α2
− 0.089168

t
3α

α3

− 0.011080
t
4α

α4
,

r(t) � 􏽘
k

l�0
R(k)t

kα
� 200 + 30

t
α

α
+ 2.1

t
2α

α2
+ 0.0548

t
3α

α3

− 0.002229
t
4α

α4
.

(18)

3.2. Variational IterationMethod. To illustrate the basic idea
of the variational iteration method, we consider the fol-
lowing nonlinear differential equation in the operator form:

L(u(t)) + N(u(t)) � g(t), (19)

where L is a linear operator, N is a nonlinear operator, and g

is any real function which is called the inhomogeneous term.
(en, the corresponding correction functional for equation
(19) is given by

un+1(t) � un(t) + 􏽚
t

0
λ Lun(s) + N􏽥un(s) − g(s)􏼈 􏼉ds, (20)

where λ is the general Lagrange multiplier [26], which can be
identified optimally via the variational theory [27] and N􏽥un

is considered as restricted variation, i.e., δN􏽥un � 0. Consider
the stationary condition of the above correction functional.

Theorem 1. Consider the conformable fractional differential
equation (10). ,en, the variational iteration formula is given
by

sn+1(t) � sn(t) − Iα Tαsn(t) + βsn(t)in(t)􏼈 􏼉,

in+1(t) � in(t) − Iα Tαin(t) − βsn(t)in(t) + cin(t)􏼈 􏼉,

rn+1(t) � rn(t) − Iα Tαrn(t) − cin(t)􏼈 􏼉,

⎧⎪⎪⎨

⎪⎪⎩
(21)

where sn, in, andrn are the nth approximation, Tα is the
conformable fractional derivative of order α, and Iα is the
fractional integral of order α ∈ 0, 1.

Proof. Equation (10) may be rewritten equivalently as

Tαsn(t) + βsn(t)in(t) � 0,

Tαin(t) − βsn(t)in(t) + cin(t) � 0,

Tαrn(t) − cin(t) � 0.

⎧⎪⎪⎨

⎪⎪⎩
(22)

Multiplying equation (22) by a general Lagrange mul-
tiplier λ1(t), λ2(t), and λ3(t) yields

λ1(t) Tαsn(t) + βsn(t)in(t)􏼈 􏼉 � 0,

λ2(t) Tαin(t) − βsn(t)int + cin(t)􏼈 􏼉 � 0,

λ3(t) Tαrn(t) − cin(t)􏼈 􏼉 � 0.

⎧⎪⎪⎨

⎪⎪⎩
(23)

Now, upon applying Iα to the both sides of equation (23)
will give

Iα λ1(t) Tαsn(t) + βsn(t)in(t)􏼈 􏼉􏼂 􏼃 � 0,

Iα λ2(t) Tαin(t) − βsn(t)in(t) + cin(t)􏼈 􏼉􏼂 􏼃 � 0,

Iα λ3(t) Tαrn(t) − cin(t)􏼈 􏼉􏼂 􏼃 � 0.

⎧⎪⎪⎨

⎪⎪⎩
(24)

(en, the correction functional of equation (10) will be
read as follows:

sn+1(t) � sn(t) + Iα λ1(t) Tαsn(t) + β􏽥sn(t)􏽥in(t)􏼈 􏼉􏼂 􏼃,

in+1(t) � in(t) + Iα λ2(t) Tαin(t) − β􏽥sn(t)􏽥in(t) + c􏽥in(t)􏼈 􏼉􏼂 􏼃,

rn+1(t) � rn(t) + Iα λ3(t) Tαrn(t) − c􏽥in(t)􏼈 􏼉􏼂 􏼃.

(25)
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In this case, the value of λj(t), forj � 1, 2, 3{ }, cannot be
evaluated easily from equation (25), which will be a

functional with fractional integral. Equation (25) can be
expressed as follows:

sn+1(t) � sn(t) + 􏽚
t

0
τα− 1 λ1(τ) τ1− α d

dτ
sn(τ) + β􏽥sn(τ)􏽥in(τ)􏼨 􏼩􏼢 􏼣dτ,

in+1(t) � in(t) + 􏽚
t

0
τα− 1 λ2(τ) τ1− α d

dτ
in(τ) − β􏽥sn(τ)􏽥in(τ) + c􏽥in(τ)􏼨 􏼩􏼢 􏼣dτ,

rn+1(t) � rn(t) + 􏽚
t

0
τα− 1 λ3(τ) τ1− α d

dτ
rn(τ) − c􏽥in(τ)􏼨 􏼩􏼢 􏼣dτ,

(26)

where 􏽥sn and􏽥in are the restricted variations with δ􏽥sn � 0 and
δ􏽥in � 0. From equation (26), we obtain

δsn+1(t) � δsn(t) + δ􏽚
t

0
λ1(τ)

d
dτ

sn(τ) + βτα− 1
􏽥sn(τ)􏽥in(τ)􏼨 􏼩􏼢 􏼣dτ, (27)

δin+1(t) � δin(t) + δ􏽚
t

0
λ2(τ)

d
dτ

in(τ) − βτα− 1
􏽥sn(τ)􏽥in(τ) + cτα− 1􏽥in(τ)􏼨 􏼩􏼢 􏼣dτ, (28)

δrn+1(t) � δrn(t) + δ􏽚
t

0
λ3(τ)

d
dτ

rn(τ) − cτα− 1􏽥in(τ)􏼨 􏼩􏼢 􏼣dτ. (29)

Using integration by parts, equation (27) becomes (for
equations (28) and (29) are similar to the proof of equation
(27))

δsn+1(t) � δsn(t) + δ λ(t)sn(t) − 􏽚
t

0
λ1′(τ)sn(τ)dτ􏼠 􏼡

� 1 + λ1(t)( 􏼁δsn(t) − δ􏽚
t

0
λ1′(τ)sn(τ)dτ,

δin+1(t) � 1 + λ2(t)( 􏼁δin(t) − δ􏽚
t

0
λ2′(τ)in(τ)dτ,

δrn+1(t) � 1 + λ3(t)( 􏼁δrn(t) − δ􏽚
t

0
λ3′(τ)rn(τ)dτ.

(30)

(e Lagrange multipliers λ1(t), λ2(t), and λ3(t) can be
obtained by λj

′(τ) � 0 for all j � 1, 2, 3{ } with boundary
condition: 1 + λj(t) � 0, for all j � 1, 2, 3{ }. Solving the last
initial value problem for λj for all j � 1, 2, 3{ }, the general
Lagrange multiplier λj is found to be

λj � − 1, for allj � 1, 2, 3{ }. (31)

Hence, substituting the value of λj into the corre-
sponding correction functional (25) will give the following
iteration formula:

sn+1(t) � sn(t) − Iα Tαsn(t) + β􏽥sn(t)􏽥in(t)􏼈 􏼉,

in+1(t) � in(t) − Iα Tαin(t) − β􏽥sn(t)􏽥in(t) + c􏽥in(t)􏼈 􏼉,

rn+1(t) � rn(t) − Iα Tαrn(t) − c􏽥in(t)􏼈 􏼉.

(32)

□

3.2.1. Application of the Variational Iteration Method.
Applying the variational iteration method using (eorem 1,

sn+1(t) � sn(t) − Iα Tαsn(t) + β􏽥sn(t)􏽥in(t)􏼈 􏼉,

in+1(t) � in(t) − Iα Tαin(t) − β􏽥sn(t)􏽥in(t) + c􏽥in(t)􏼈 􏼉,

rn+1(t) � rn(t) − Iα Tαrn(t) − c􏽥in(t)􏼈 􏼉.

(33)

With initial conditions Ns � 2000, Ni � 300, andNr �

200 and parameter N � 2500, β � 0.00012, andc � 0.1, we
obtain
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s1(t) � 2000 − 72
t
α

α
,

i1(t) � 300 + 42
t
α

α
,

r1(t) � 200 + 30
t
α

α
,

s2(t) � 2000 − 72
t
α

α
− 3.744

t
2α

α2
+ 0.12096

t
3α

α3
,

i2(t) � 300 + 42
t
α

α
+ 1.644

t
2α

α2
− 0.12096

t
3α

α3
,

r2(t) � 200 + 30
t
α

α
+ 2.1

t
2α

α2
,

s3(t) � 2000 − 72
t
α

α
− 3.744

t
2α

α2
+ 0.034368

t
3α

α3
+ 0.014437

t
4α

α4
− 0.000183

t
5α

α5

− 0.000013
t
6α

α6
+ 2.51∗ 10− 7t

7α

α7
,

i3(t) � 300 + 42
t
α

α
+ 1.644

t
2α

α2
− 0.089168

t
3α

α3
− 0.014413

t
4α

α4
+ 0.000183

t
5α

α5

+ 0.000013
t
6α

α6
+ 2.51∗ 10− 7t

7α

α7
,

r3(t) � 200 + 30
t
α

α
+ 2.1

t
2α

α2
+ 0.0548

t
3α

α3
− 0.003024

t
4α

α4
.

(34)
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Figure 1: Comparison of VIM solutions with the CDTM solutions of S(t) for system (10) at different α.
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It can be observed that the result of the epidemic system
of equation (10) is in complete agreement with the result
obtained by the conformable fractional differential trans-
formation method. Figures 1, 2 and 3.

4. Conclusion

In this study, we have found out approximate solutions with
two numerical methods for the SIR epidemic model. (ese
methods are based on conformable derivative which is
extremely popular in the last years. Firstly, by using the
α-derivative, we have redefined the conformable differential
transformation method (CDTM) and variational iteration

method (VIM). (en, we have demonstrated the efficiencies
and accuracies of the proposed methods by applying them to
the SIR epidemic model. It is found that the approximate
solution generated the VIM by our method which is in
complete agreement with the corresponding approximate
solution CDTM. Besides, in view of their usability, our
methods are applicable to many epidemic models
SEIR/SEIRS and SIS of fractional order.
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