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In this work, we study the sufficient condition for convergence of the reduced differential transform method for nonlinear
differential equations.)emain power of this method is its ability and flexibility in solving linear and nonlinear problems properly
and easily and obtain solutions both numerically and analytically. Simple approaches of reduced differential transform method
and the convergence results for different classes of differential equations such as linear and nonlinear ordinary, partial, fractional,
and system of differential equations are briefly discussed. Eight examples are checked to confirm convergence results as well as the
strength and efficiency of the method.

1. Introduction

)e reduced differential transform method (RDTM) is an
analytical-numerical technique introduced for the first time
by Keskin [1, 2] to study the analytical solutions of linear and
nonlinear wave equations [3, 4]. )is suggested technique is
highly efficient and powerful in obtaining the exact solutions
as well as approximate solutions of mathematical modeling
of many problems in technology, finance, engineering dis-
ciplines, natural sciences such as biology, physics, chemistry,
and Earth science, gives the solution in the form of rapidly
convergent successive approximations, and is capable of
handling linear and nonlinear equations in a similar manner.
In recent years, the reduced differential transform method
has been widely adopted by many researchers such as in
[5–9] and by the references therein. Also, it was shown by
many authors [10–14] that the solution procedure of the
RDTM is simpler and more straightforward than the
homotopy perturbation method (HPM), differential trans-
form method (DTM), variational iteration method (VIM),
Adomian decomposition method (ADM), etc. On the
contrary, the size of computational work has been reduced
while still maintaining high precision from the numerical
solution and rapid convergence has been guaranteed. )e

advantage of this method is its simplicity in using, and it
solves the equations straightforward and directly without
using Adomian’s polynomial, perturbation, linearization or
any other transformation, and restrictive conditions and
gives the solution as convergent power series with simply
determinable components. )erefore, the RDTM can
overcome the foregoing limitations and restrictions of
perturbation techniques and complicated computational so
that it provides us with a possibility to analyse accurately
nonlinear equations. )e RDTM was successfully applied to
ordinary differential equations [15], partial differential
equations [16–18], fractional differential equations [19–23],
Volterra integral equation [24–26], and integro-differential
equations [27–29].

In the present work, in light of the abovementioned
method, we will study linear and nonlinear problems. In
addition, our main objective is to study the sufficient con-
dition for convergence of the method for nonlinear equa-
tions. )e main ideas explained in this paper are expected to
be used for more linear and nonlinear models.

)e rest of this study is presented as follows. In Section 2,
we simply introduce the reduced differential transform
method (RDTM). In Section 3, we prove the convergences of
the considered method. In Section 4, RDTM approaches and
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convergence results are addressed. In Section 5, we apply this
method to obtain the exact solutions for linear and nonlinear
ordinary, partial, fractional, and system of differential
equations. Finally, we offer some summaries and conclu-
sions in Section 6.

2. Summary of the Method

We present some important definitions and mathematical
preliminaries operations of the reduced differential trans-
form method in which can help to more understand of the
stated method in this section. Now, consider the function of
two variables w(x, t) and assume that it can be expressed as
the product of two different variable functions, i.e.,
w(x, t) � ϕ(x)ψ(t). )e function w(x, t) can be displayed
due to the properties of differential transform as follows:

w(x, t) � 􏽘
∞

i�0
Φ(i)x

i⎛⎝ ⎞⎠ 􏽘

∞

j�0
Ψ(j)t

j⎛⎝ ⎞⎠ � 􏽘

∞

k�0
Wk(x)t

k
, (1)

whereWk(x) is the t-dimensional spectrum function of the
original function w(x, t).

Definition 1. )e reduced differential transform function of
w(x, t) can be yield in the following form:

Wk(x) �
1
k!

zk

ztk
w(x, t)􏼢 􏼣

t�t0

, (2)

where w(x, t) is analytic and differentiated continuously
function with regard to space x and time t, in the domain of
interest.

Definition 2. )e reduced differential inverse transform of
Wk(x) is determined as

w(x, t) � 􏽘
∞

k�0
Wk(x) t − t0( 􏼁

k
. (3)

Afterward, consolidating equations (2) and (3) yields

w(x, t) � 􏽘
∞

k�0

1
k!

zk

ztk
w(x, t)􏼢 􏼣

t�t0

t − t0( 􏼁
k
. (4)

By the help of the upper definitions, to illustrate the basic
idea of the RDTM, consider the following operator form of
nonlinear partial differential equations written as

Lw(x, t) + Rw(x, t) + Nw(x, t) � h(x, t), (5)

with considering the following initial condition:

w(x, 0) � g(x), (6)

where L � z/zt, R and N indicate linear and nonlinear
operators which have partial derivatives, and h is a non-
homogeneous term.

After applying the RDTM definition on both sides of
equation (5), we can write the following iteration formula:

(k + 1)Wk+1(x) � Hk(x) − RWk(x) − NWk(x), (7)

where LWk(x), RWk(x), NWk(x), and Hk(x) are the
reduced differential transform functions of Lw(x, t),
Rw(x, t), Nw(x, t), and h(x, t), respectively.

Implementing the aforesaid method to the initial con-
dition (6), we have

W0(x) � g(x). (8)

To discover the remaining iteration, we plug equation (8)
into (7) by simple reiterative calculation, and we tend to get
the subsequent Wk(x) values. Afterwards, the inverse
transformation of the set of values Wk(x)􏼈 􏼉

n
k�0 admits the

n-terms approximation solution as follows:

􏽥wn(x, t) � 􏽘
n

k�0
Wk(x) t − t0( 􏼁

k
. (9)

)us, the exact solution of the considered problem can
be gained by

w(x, t) � lim
n⟶∞

􏽥wn(x, t). (10)

Table 1 contains the basic mathematical operations
carried out by RDTM.

3. Convergence of Method

)e principal aim of this section is to survey the sufficient
conditions for convergence of the reduced differential
transform method, according to the approach described by
this method for solving the nonlinear equation (5) in Section
2. For this purpose, some theorems for convergence of the
method and the error computation are addressed.

)e fundamental point views of RDTM for the solutions
of nonlinear models include ascertaining power series ex-
pansion with the initial time t0:

w(x, t) � 􏽘
∞

k�0
ak(x) t − t0( 􏼁

k
, t ∈ l, (11)

where l � (t0, t0 + r), r> 0. )e important results are pro-
posed in the following theorems.

Theorem 1. If φk(x, t) � ak(x)(t − t0)
k, then the series so-

lution 􏽐
∞
k�0 φk(x, t), stated in equation (11), ∀k ∈ N∪ 0{ }.

(i) It is convergent if ∃0< λ< 1 such that ‖φk+1‖≤ λ‖φk‖

(ii) It is divergent if ∃λ> 1 such that ‖φk+1‖≥ λ‖φk‖

)eorem 1 is a specific case of Banach’s fixed point
theorem. Using this theorem and a brief description of its
proof, we investigate the truncation error of the series so-
lution equation (11) as follows.

Proof. Let (C[l], ‖.‖) be the Banach space of all continuous
functions on l with the norm ‖φk(x, t)‖ � ‖ak(x)(t − t0)

k‖.
Also, assume that ‖a0(x)‖<N0, where N0 is a positive
number. Define the sequence of partial sums Sn􏼈 􏼉

∞
n�0 as

Sn � φ0 + φ1 + · · · + φn. (12)
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We want to show that Sn􏼈 􏼉
∞
n�0 is a Cauchy sequence in

this Banach space. To reach this goal, we take

Sn+1 − Sn

����
���� � φn+1

����
����≤ λ φn

����
����≤ · · · ≤ λn+1 φ0

����
����≤ λn+1

N0.

(13)

)erefore, for any n, m ∈ N, n≥m, making use of (13)
and the triangle inequality successively, we have

Sn − Sm

����
���� � Sn − Sn− 1( 􏼁 + Sn− 1 − Sn− 2( 􏼁 + · · · + Sm+1 − Sm( 􏼁

����
����

≤ Sn − Sn− 1( 􏼁
����

���� + Sn− 1 − Sn− 2( 􏼁
����

���� + · · · + Sm+1 − Sm( 􏼁
����

����

≤
1 − λn− m

1 − λ
λm+1 φ0

����
����,

(14)

and because 0< λ< 1, we obtain

lim
n,m⟶∞

Sn − Sm

����
���� � 0. (15)

Hence, Sn􏼈 􏼉
∞
n�0 is a Cauchy sequence in the Banach space

(C[l], ‖.‖). )us, the series solution 􏽐
∞
k�0 φk(x, t), defined in

equation (11), is convergent and it completes the proof.

Remark 1. According to the assumptions in (ii) and by using
the ratio test, we have

φk+1
φk

��������

��������
≥ λ> 1. (16)

As a result, the series is divergent.

Remark 2. If the series 􏽐
∞
k�0 ak(x)(t − t0)

k of the nonlinear
equation (5) converges, then it is an exact solution.

Theorem 2. Suppose that the series solution 􏽐
∞
k�0 φk(x, t),

where φk(x, t) � ak(x)(t − t0)
k, converges to the solution

w(x, t). If the truncated series 􏽐
m
k�0 φk(x, t) is used as an

approximation to the solution u(x, t), then the maximum
absolute truncated error is estimated as

w(x, t) − 􏽘
m

k�0
φk(x, t)

���������

���������
≤

1
1 − λ

λm+1 φ0
����

����. (17)

Proof. According to )eorem 1, we have the inequality
equation (14) as follows:

Sn − Sm

����
����≤

1 − λn− m

1 − λ
λm+1 φ0

����
����, (18)

for n≥m. Also, since 0< λ< 1, in the numerator, we have
1 − λn− m < 1; therefore, the inequality equation (18) can be
reduced to

Sn − Sm

����
����≤

1
1 − λ

λm+1 φ0
����

����. (19)

It is clear when n⟶∞, Sn⟶ w(x, t). )us, in-
equality equation (17) is obtained and the theorem is proved.

In summary, )eorems 1 and 2 state that the reduced
differential transform solution of nonlinear equation (5),
obtained using the iteration formula (7) and (8), converges
to an exact solution under the condition that ∃0< λ< 1 such
that ‖φk+1‖≤ λ‖φk‖, ∀k ∈ N∪ 0{ }. In other words, if we de-
fine, for every i ∈ N∪ 0{ }, the parameters,

ci �

φi+1
����

����

φi

����
����

, φi

����
����≠ 0,

0, φi

����
���� � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

Table 1: )e fundamental operations of RDTM.

Original form Transformed form
w(x, t) Wk(x) � 1/k![zk/ztkw(x, t)]t�0

w(x, t) � λu(x, t) ± cv(x, t) Wk(x) � λUk(x) ± cVk(x) (λ, c are constants)

w(x, t) � xmtn Wk(x) � xmδ(k − n), δ(x) �
1, k � 0
0, k≠ 0􏼨 .

w(x, t) � xmtnu(x, t) Wk(x) � xmUk− n(x)

w(x, t) � u(x, t)v(x, t) Wk(x) � 􏽐
k
r�0 Ur(x)Vk− r(x) � 􏽐

k
r�0 Vr(x)Uk− r(x)

w(x, t) � zr/ztru(x, t) Wk(x) � (k + 1) . . . (k + r)Uk+r(x) � (k + r)!/k!Uk+r(x)

w(x, t) � z/zxu(x, t) Wk(x) � z/zxUk(x)

w(x, t) � eλt Wk(x) � λk/k!

w(x, t) � sin(λt + αx) Wk(x) � λk/k! sin(kπ/2 + αx)

w(x, t) � cos(λt + αx) Wk(x) � λk/k! cos(kπ/2 + αx)
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then the series solution 􏽐
∞
k�0 φk(x, t) of equation (5) con-

verges to an exact solution w(x, t), when
0≤ ci < 1, ∀i ∈ N∪ 0{ }. In addition, the maximum absolute
truncation error, as discussed in )eorem 2, is estimated to
be

w(x, t) − 􏽘
m

k�0
φk(x, t)

���������

���������
≤

1
c − 1

c
j+1 φ0

����
����, (21)

where c � max ci, i � 0, 1, . . . , j􏼈 􏼉.

Remark 3. )e first finite terms have no effect the con-
vergence of the series solution. In other words, if the first
finite cis, i � 0, 1, . . . , l, are not less than one and ci ≤ 1 for
i> l, then the series solution 􏽐

∞
k�0 φk(x, t) of equation (5)

converges to an exact solution. Because, according to
)eorem 1, we have

Sn − Sj

�����

�����≤
1 − λn− j

1 − λ
λj− l φl+1

����
���� (22)

and since 0< λ< 1, for n≥ j and fixed l, we get limn,j⟶∞
‖Sn − Sj‖ � 0. In this case, the convergence of the RDTM
approach depends on ci, for i> l.

4. RDTM Approaches and Convergence Results

)e principal aim of this section is to summarize RDTM
inclusive convergence results of the method for solving
different classes of differential equations.

4.1. Ordinary Differential Equations (ODE). Let us write the
nonlinear ordinary differential equation as the following:

dr

dt
r w(t) + Rw(t) + Nw(t) � h(t), t> 0, (23)

where r ∈ N, R is a linear operator, N is a nonlinear op-
erator, and h is a nonhomogeneous term, with the initial
conditions w(k)(0) � ck, k � 0, 1, . . . , r − 1. According to the
operations of differential transformation, the series solution
w(t) � 􏽐

∞
k�0 φk(t) is obtained using the following iteration

formula:

(k + r)!

k!
W(k + r) + RW(k) + NW(k) � H(k), (24)

which converges to a solution of equation (23) if ∀k ∈ N∪ 0{ },
∃0< λ< 1 such that ‖φk+1‖≤ λ‖φk‖.

4.2. Partial Differential Equations (PDE). Let us write the
nonlinear partial differential equation as the following:

z
r

zt
r w(x, t) + Rw(x, t) + Nw(x, t) � h(x, t), t> 0,

(25)

where r ∈ N, R is a linear operator, N is a nonlinear op-
erator, and h is a nonhomogeneous term, with the initial
conditions w(k)(x, 0) � gk(x), k � 0, 1, . . . , r − 1. According
to the operations of differential transformation, the series

solution w(x, t) � 􏽐
∞
k�0 φk(x, t) is obtained using the fol-

lowing iteration formula:

(k + r)!

k!
Wk+r(x) + RWk(x) + NWk(x) � Hk(x), (26)

which converges to a solution of equation (25) if
∀k ∈ N∪ 0{ }, ∃0< λ< 1 such that ‖φk+1‖≤ λ‖φk‖.

4.3. Fractional Partial Differential Equations (FPDE). Let us
write the nonlinear fractional partial differential equation as
follows:

z
αr

zt
αr w(x, t) + Rw(x, t) + Nw(x, t)

� h(x, t), t> 0, m − 1< α≤m,

(27)

where m ∈ N, zαr/ztαr is the Caputo fractional derivative of
order αr, R is a linear operator, N is a nonlinear operator,
and h is a nonhomogeneous term, with the initial conditions
w(k)(x, 0) � gk(x), k � 0, 1, . . . , m − 1.

Definition 3. )e Caputo fractional derivative operator is
defined as

D
α
aw(t) �

1
Γ(m − α)

􏽚
t

a
(t − ξ)

m− α− 1
w

(m)
(ξ)dξ, (28)

where α> 0 and a are the order of the derivative and the
initial value of function w, respectively.

Properties of Caputo fractional derivative operator can
be found in [30–32].

Also, to determine the result, we introduce the subse-
quent Riemann–Liouville fractional integral operator.

Definition 4. )e Riemann–Liouville fractional integral
operator is defined as

J
α
aw(t) �

1
Γ(α)

􏽚
t

a
(t − ξ)

α− 1
w(ξ)dξ, t> 0, α> 0. (29)

Properties of Riemann–Liouville fractional integral
operator can be found in [33, 34].

Definition 5. Let function w(x, t) be analytic and differ-
entiated continuously with respect to space x and time t in
the domain of interest, and the fractional reduced differ-
ential transform function (FRDTM) is

W
α
k(x) �

1
Γ(αk + 1)

zαk

ztαk
w(x, t)􏼢 􏼣

t�t0

, (30)

where 0< α≤ 1, the t-dimensional spectrum function
Wα

k(x) is the transformed function, and Γ is gamma
function is defined as

Γ(p) � 􏽚
∞

0
x

p− 1
e

− xdx. (31)
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Definition 6. )e fractional reduced differential inverse
transform of Wα

k(x) is determined as follows:

w(x, t) � 􏽘
∞

k�0
W

α
k(x) t − t0( 􏼁

αk
. (32)

Afterward, combining equations (30) and (32), we write

w(x, t) � 􏽘
∞

k�0

1
Γ(αk + 1)

zαk

ztαk
w(x, t)􏼢 􏼣

t�t0

t − t0( 􏼁
αk

, (33)

which in practical application can be approximated by a
finite series:

􏽥wn(x, t) � 􏽘
n

k�0
W

α
k(x) t − t0( 􏼁

αk
. (34)

)us, the exact solution to the problem can be obtained
by

w(x, t) � lim
n⟶∞

􏽥wn(x, t). (35)

In case of α � 1, FRDTM is reduced to classical RDTM.
)e basic properties of mathematical operations performed
by FRDTM can be found in [33]. According to RDTM and
Caputo differential operator and then following the same
analysis presented in the previous section, the series solution
w(x, t) � 􏽐

∞
k�0 φk(x, t) is obtained using the following it-

eration formula:

Γ(α(k + r) + 1)

Γ(αk + 1)
W

α
k+r(x) + RWk(x) + NWk(x) � Hk(x),

(36)

which converges to a solution of equation (27) if
∀k ∈ N∪ 0{ } and ∃0< λ< 1 such that ‖φk+1‖≤ λ‖φk‖.

4.4. Systems of Fractional Partial Differential Equations.
Let us write the following system of nonlinear fractional
partial differential equations:

z
α

zt
α w1(x, t) + R1 w1, w2, . . . , wn( 􏼁 + N1 w1, w2, . . . , wn( 􏼁 � h1(x, t),

z
α

zt
α w2(x, t) + R2 w1, w2, . . . , wn( 􏼁 + N2 w1, w2, . . . , wn( 􏼁 � h2(x, t),

⋮

z
α

zt
α wn(x, t) + Rn w1, w2, . . . , wn( 􏼁 + Nn w1, w2, . . . , wn( 􏼁 � hn(x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

where m − 1< α≤m, m, n ∈ N, R1,R2, . . . ,Rn are linear
operators, N1,N2, . . . ,Nn are nonlinear operators, and
h1, h2, . . . , hn are the nonhomogeneous terms, with the
initial conditions

w
(k)
1 (x, 0) � g1,k(x),

w
(k)
2 (x, 0) � g2,k(x),

⋮

w
(k)
n (x, 0) � gn,k(x),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

for k � 0, 1, . . . , m − 1. )en, for i � 1, 2, . . . , n, the series
solution wi(x, t) � 􏽐

∞
k�0 φi,k(x, t) is obtained using the it-

eration formula:

Γ(α(k + r) + 1)

Γ(αk + 1)
W

α
i,k+1(x) + RWi,k(x) + NWi,k(x) � Hi,k(x),

(39)

which converges to a solution of equation (37) if
∀k ∈ N∪ 0{ } and ∃0< λi < 1 such that ‖φi,k+1‖≤ λi‖φi,k‖.?

5. Applications

)e principal aim of this section is to apply the reduced
differential transform method on the following examples to
illustrate the accuracy of the presented method.

Example 1. We first consider the following linear ordinary
differential equation,

w″(t) + w(t) � 0, 0< t≤ 1, (40)

subject to the initial conditions:
w(0) � 0, w′(0) � 1. (41)

According to the operations of differential transforma-
tion given in Table 1 for equation (40), we obtain the fol-
lowing recurrent relation:

(k + 1)(k + 2)W(k + 2) + W(k) � 0, (42)

and from initial conditions (42), we write

W(0) � 0,W(1) � 1. (43)
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Substituting the above equations in equation (43), we
drive the following results:

W(2) � 0,W(3) � −
1
3!

,W(4) � 0,W(5) �
1
5!

, · · · . (44)

Hence, the solution in the series form is as follows:

􏽥wn(t) � 􏽘
∞

k�0
W(k)t

k
� W(0) + W(1)t + W(2)t

2
+ · · ·

� t −
t
3

3!
+

t
5

5!
− · · · ,

(45)

which converges efficiently to the exact solution w(t) � sin t.

Example 2. As the second example, we consider the fol-
lowing nonlinear ordinary differential equation:

w′(t) � w
2
(t) + 1, 0< t≤ 1, (46)

which subjects to the initial condition:

w(0) � 0. (47)

According to the operations of differential transforma-
tion given in Table 1 for equation (46), we obtain the fol-
lowing recurrent relation:

(k + 1)W(k + 1) � 􏽘
k

r�0
W(r)W(k − r) + δ(k), (48)

and from initial condition (47), we write

W(0) � 0. (49)

Substituting the above equation in equation (48), we
drive the following results:

W(1) � 1,W(2) � 0,W(3) �
1
3
,W(4) � 0,

W(5) �
2
15

, . . . .

(50)

Hence, the solution in series form is as follows:

􏽥wn(t) � 􏽘

∞

k�0
W(k)t

k
� W(0) + W(1)t + W(2)t

2
+ · · ·

� t +
1
3
t
3

+
2
15

t
5

+ · · · ,

(51)

which converges efficiently to the exact solution
w(t) � tan t.

Example 3. As the third example, we consider the following
Burger’s equation [35]:

zw

zt
+ w

zw

zx
�

z
2
w

zx
2 , 0≤ t<

1
2
, (52)

which subjects to the initial condition:

w(x, 0) � 2x. (53)

According to the operations of differential transforma-
tion given in Table 1 for equation (52), we obtain the fol-
lowing recurrent relation:

(k + 1)Wk+1(x) + 􏽘
k

r�0
Wr(x)

z

zx
Wk− r(x) �

z
2

zx
2Wk(x),

(54)

and from initial condition (53), we write

W0(x) � 2x. (55)

Substituting the above equation in equation (54), we
drive the following results:

W1(x) � − 4x,W2(x) � 8x,W3(x) � − 16x,

W4(x) � 32x, . . . .
(56)

Hence, the solution in the series form is as follows:

􏽥wn(x, t)� 􏽘
∞

k�0
Wk(x)t

k
� W0(x) + W1(x)t + W2(x)t

2
+ · · ·

� 2x 1 − 2t +(2t)
2

− · · ·􏼐 􏼑,

(57)

which converges efficiently to the exact solution
w(x, t) � 2x/1 + 2t.

Example 4. As the fourth example, we consider the fol-
lowing nonlinear Klein–Gordon equation [36]:

z
2
w

zt
2 −

z
2
w

zx
2 + w

2
� − x cos t + x

2cos2 t, (58)

which subjects to the initial conditions:

w(x, 0) � x,
z

zt
w(x, 0) � 0. (59)

According to the operations of differential transforma-
tion given in Table 1 for equation (58), we obtain the fol-
lowing recurrent relation:

(k + 1)(k + 2)Wk+2(x) −
z
2

zx
2Wk(x) + 􏽘

k

r�0
Wr(x)Wk− r(x)

� − x
cos kπ/2

k!
+
1
2
x
2δ(k) + 2kcos kπ/2

k!
,

(60)

and from initial conditions (59), we write

W0(x) � x,W1(x) � 0. (61)

Substituting the above equation in equation (60), we
drive the following results:

W2(x) � −
x

2!
,W3(x) � 0,W4(x) �

x

4!
,W5(x) � 0, . . . .

(62)

Hence, the solution in the series form is as follows:
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􏽥wn(x, t)�􏽘
∞

k�0
Wk(x)t

k
� W0(x) + W1(x)t + W2(x)t

2
+ · · ·

� x 1 −
t
2

2!
+

t
4

4!
− · · ·􏼠 􏼡,

(63)

which converges efficiently to the exact solution
w(x, t) � x cos t.

Example 5. As the fifth example, we consider the following
homogeneous nonlinear time-fractional gas dynamics
equation as [37, 38]

z
α
w

zt
α + w

zw

zx
− w + w

2
� 0, (64)

which subjects to the initial condition:

w(x, 0) � e
− x

. (65)

According to the operations of differential transforma-
tion given in Table 1 for equation (64), we obtain the fol-
lowing recurrent relation:

Γ(α(k + 1) + 1)

Γ(αk + 1)
W

α
k+1(x) + 􏽘

k

r�0
Wr(x)

z

zx
Wk− r(x)

− Wk + 􏽘
k

r�0
Wr(x)Wk− r(x) � 0,

(66)

and from initial conditions (65), we write
W

α
0(x) � e

− x
. (67)

Substituting the above equation in equation (66), we
drive the following results:

W
α
1(x) �

e
− x

Γ(α + 1)
,W

α
2(x) �

e
− x

Γ(2α + 1)
,

W
α
3(x) �

e
− x

Γ(3α + 1)
, . . . .

(68)

Hence, the solution in series form is as follows:

􏽥wn(x, t) � 􏽘

∞

k�0
W

α
k(x)t

αk

� W
α
0(x) + W

α
1(x)t

α
+ W

α
2(x)t

2α
+ · · · � e

− x 1 +
1
Γ(α + 1)

t
α

+
1

Γ(2α + 1)
t
2α

+ · · ·􏼠 􏼡,

(69)

which for α � 1 converges efficiently to the exact solution
w(x, t) � e− x+t.

Example 6. As the sixth example, we consider the following
system of inhomogeneous linear PDEs [33]:

zw

zt
−

zv

zx
− w + v � − 2,

zv

zt
+

zw

zx
− w + v � − 2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(70)

which subjects to the initial condition:

w(x, 0) � 1 + e
x
,

v(x, 0) � − 1 + e
x
.

􏼨 (71)

According to the operations of differential transforma-
tion given in Table 1 for equation (70), we obtain the fol-
lowing recurrent relation:

(k + 1)Wk+1(x) −
z

zx
Vk(x) − Wk(x) + Vk(x) � − 2δ(k),

(k + 1)Vk+1(x) +
z

zx
Wk(x) − Wk(x) + Vk(x) � − 2δ(k),

(72)

and from initial conditions (71), we write

W0(x) � 1 + e
x
,

V0(x) � − 1 + e
x
.

(73)

Substituting the above equations in equation (72), we
drive the following results:

W1(x) � e
x
,

W2(x) �
1
2!

e
x
,

W3(x) �
1
3!

e
x
,

W4(x) �
1
4!

e
x
, . . . ,

V1(x) � − e
x
,

V2(x) �
1
2!

e
x
,

V3(x) � −
1
3!

e
x
,

V4(x) �
1
4!

e
x
, . . . .

(74)

Hence, the solutions in the series form are as follows:
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􏽥wn(x, t) � 􏽘
∞

k�0
Wk(x)t

k
� W0(x) + W1(x)t + W2(x)t

2
+ · · · � 1 + e

x 1 + t +
t
2

2!
+ · · ·􏼠 􏼡,

􏽥vn(x, t) � 􏽘
∞

k�0
Vk(x)t

k
� V0(x) + V1(x)t + V2(x)t

2
+ · · · � − 1 + e

x 1 − t +
t
2

2!
− · · ·􏼠 􏼡,

(75)

which converges efficiently to the exact solutions w(x, t) �

1 + ex+t and v(x, t) � − 1 + ex− t.

Example 7. As the seventh example, we consider the fol-
lowing system of nonlinear PDEs:

zw

zt
+

zw

zx
v − w

zv

zx
− w � 0,

zv

zt
− w

zv

zx
+

zw

zx
v + v � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(76)

which subjects to the initial conditions:

w(x, 0) � e
x
,

v(x, 0) � e
x
.

􏼨 (77)

According to the operations of differential transforma-
tion given in Table 1 for equation (76), we obtain the fol-
lowing recurrent relation:

(k + 1)Wk+1(x) + 􏽘
k

r�0

z

zx
Wr(x)Vk− r − 􏽘

k

r�0
Wr

z

zx
Vk− r(x) − Wk(x) � 0,

(k + 1)Vk+1(x) − 􏽘

k

r�0
Wr

z

zx
Vk− r(x) + 􏽘

k

r�0

z

zx
Wr(x)Vk− r + Vk(x) � 0,

(78)

and from initial conditions (77), we write

W0(x) � e
x
,

V0(x) � e
x
.

(79)

Substituting the above equations in equation (78), we
drive the following results:

W1(x) � e
x
,

W2(x) �
1
2!

e
x
,

W3(x) �
1
3!

e
x
,

W4(x) �
1
4!

e
x
, . . . ,

V1(x) � − e
x
,

V2(x) �
1
2!

e
x
,

V3(x) � −
1
3!

e
x
,

V4(x) �
1
4!

e
x
, . . . . (80)

Hence, the solutions in the series form are as follows:

􏽥wn(x, t) � 􏽘
∞

k�0
Wk(x)t

k
� W0(x) + W1(x)t + W2(x)t

2
+ · · · � e

x 1 + t +
t
2

2!
+ · · ·􏼠 􏼡,

􏽥vn(x, t) � 􏽘

∞

k�0
Vk(x)t

k
� V0(x) + V1(x)t + V2(x)t

2
+ · · · � e

x 1 − t +
t
2

2!
− · · ·􏼠 􏼡,

(81)

which converges efficiently to the exact solutions w(x, t) �

ex+t and v(x, t) � ex− t.
Example 8. Lastly, we consider the following system of
homogeneous linear FPDEs [39, 40]:
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Figure 4: Comparison of the exact solution (blue) and the ap-
proximate solutions (red) of Example 4.
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Figure 3: Comparison of the exact solution (blue) and the ap-
proximate solutions (red) of Example 3.
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Figure 1: Comparison of the exact solution (blue) and the ap-
proximate solutions (red) of Example 1.
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Figure 6: Comparison of the exact solution (blue) and the approximate solutions (red) of Example 6. (a) )e solution of wn(x, t). (b) )e
solution of vn(x, t).
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Figure 5: Comparison of the exact solution (blue) and the approximate solutions (red) of Example 5 for α � 1.
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Figure 8: Comparison of the exact solution (blue) and the approximate solutions (red) of Example 8 for α � 1. (a) )e solution of wn(x, t).
(b) )e solution of vn(x, t).
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Figure 7: Comparison of the exact solution (blue) and the approximate solutions (red) of Example 7. (a) )e solution of wn(x, t). (b) )e
solution of vn(x, t).
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z
α
w

zt
α −

zv

zx
+ v + w � 0,

z
β
v

zt
β −

zw

zx
+ v + w � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(82)

which subject to the initial conditions:

w(x, 0) � sinhx,

v(x, 0) � cosh x.
􏼨 (83)

Table 2: Numerical result of Example 1.

t uE u7,R u9,R n � 7, e(u) n � 9, e(u)

0 0 0 0 0 0
0.2 0.1986693308 0.1986693309 0.1986693309 7.02×10− 12 5.6×10− 12

0.4 0.3894183423 0.3894183415 0.3894183422 7.12×10− 10 6.36×10− 12

0.6 0.5646424734 0.5646424457 0.5646424735 2.77×10− 8 7.57×10− 11

0.8 0.7173560909 0.7173557232 0.7173560931 3.68×10− 7 2.13×10− 9

1 0.8414709848 0.8414682539 0.8414710096 2.73×10− 6 2.49×10− 8

Table 3: Numerical result of Example 2.

t uE u7,R u9,R n � 7, e(u) n � 9, e(u)

0 0 0 0 0 0
0.2 0.2027100355 0.2027100242 0.2027100354 1.14×10− 8 1.77×10− 10

0.4 0.4227932187 0.4227870882 0.4227928212 6.13×10− 6 3.97×10− 7

0.6 0.6841368083 0.6838787657 0.6840991598 2.58×10− 4 3.76×10− 5

0.8 1.029638557 1.025675296 1.028610569 3.96×10− 3 1.03×10− 3

1 1.557407725 1.520634920 1.542504409 3.68×10− 2 1.49×10− 2

Table 4: Numerical result of Example 3.

(x, t) uE u7,R u9,R n � 7, e(u) n � 9, e(u)

(0, 0) 0 0 0 0 0
(0.2, 0.1) 0.3333333334 0.33333248 0.3333332992 8.53×10− 7 3.41× 10− 8

(0.4, 0.2) 0.5714285714 0.57105408 0.5713686528 3.74×10− 4 5.9×10− 5

(0.6, 0.3) 0.75 0.73740288 0.7454650368 1.26×10− 2 4.53×10− 3

(0.8, 0.4) 0.8888888889 0.73975808 0.7934451712 1.49×10− 1 9.54×10− 2

Table 5: Numerical result of Example 4.

(x, t) uE u6,R u10,R n � 6, e(u) n � 10, e(u)

(0.1, 0) 0.1 0.1 0.1 0 0
(0.3, 0.2) 0.2940199733 0.2940199733 0.2940199734 3.33×10− 11 5.24×10− 11

(0.5, 0.4) 0.4605304970 0.4605304889 0.4605304970 8.11× 10− 9 1.29×10− 12

(0.7, 0.6) 0.5777349304 0.5777346400 0.5777349304 2.9×10− 7 3.36×10− 11

(0.9, 0.8) 0.6270360384 0.6270323200 0.6270360383 3.72×10− 6 1.16×10− 10

Table 6: Numerical result of Example 5.

(x, t) uE u7,R u10,R n � 7, e(u) n � 10, e(u)

(0.1, 0) 0.9048374180 0.9048374180 0.9048374180 0 0
(0.3, 0.2) 0.9048374180 0.9048374187 0.9048374187 2.34×10− 11 2.47×10− 11

(0.5, 0.4) 0.9048374180 0.9048374079 0.9048374182 1.03×10− 8 3.13×10− 11

(0.7, 0.6) 0.9048374180 0.9048371964 0.9048374184 2.21× 10− 7 2.38×10− 11

(0.9, 0.8) 0.9048374180 0.9048355630 0.9048374173 1.85×10− 6 9.49×10− 10
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Table 8: Numerical result of Example 7.

(x, t) uE u7,R u10,R n � 7, e(u) n � 10, e(u)

(0, 0.3) 1.349858808 1.349858805 1.349858807 2.11× 10− 9 4.23×10− 10

(0.2, 0.4) 1.822118800 1.822118780 1.822118801 2.06×10− 8 1.55×10− 10

(0.4, 0.5) 2.459603111 2.459602959 2.459603111 1.52×10− 7 6.81× 10− 10

(0.6, 0.6) 3.320116923 3.320116109 3.320116923 8.14×10− 7 1.14×10− 9

(0.8, 0.7) 4.481689070 4.481685621 4.481689068 3.45×10− 6 1.37×10− 9

(x, t) vE v7,R v10,R n � 7, e(v) n � 10, e(v)

(0, 0.3) 0.7408182207 0.7408182191 0.7408182206 1.59×10− 9 1.92×10− 11

(0.2, 0.4) 0.8187307531 0.8187307340 0.8187307530 1.91× 10− 8 1.32×10− 10

(0.4, 0.5) 0.9048374180 0.9048372814 0.9048374184 1.37×10− 7 2.19×10− 10

(0.6, 0.6) 1 0.9999992884 1 7.11× 10− 7 6.62×10− 11

(0.8, 0.7) 1.105170918 1.105167967 1.105170919 2.95×10− 6 4.99×10− 10

Table 9: Numerical result of Example 8.

(x, t) uE u7,R u9,R n � 7, e(u) n � 9, e(u)

(0.1, 0.1) 0 0 0 3.5×10− 11 3.5×10− 11

(0.2, 0.3) − 0.1001667500 − 0.1001667505 − 0.1001667502 4.17×10− 10 1.73×10− 10

(0.3, 0.5) − 0.2013360025 − 0.2013360265 − 0.2013360026 2.4×10− 8 8.6×10− 11

(0.4, 0.7) − 0.3045202934 − 0.3045207633 − 0.3045202961 4.7×10− 7 2.88×10− 9

(0.5, 0.9) − 0.4107523258 − 0.4107567262 − 0.4107523679 4.4×10− 6 4.1× 10− 8

(x, t) vE v7,R v9,R n � 7, e(v) n � 9, e(v)

(0.1, 0.1) 1 1 1 4.76×10− 11 4.76×10− 11

(0.2, 0.3) 1.005004168 1.005004166 1.005004168 1.18×10− 9 4.67×10− 10

(0.3, 0.5) 1.020066756 1.020066655 1.020066756 1.01× 10− 7 8.15×10− 10

(0.4, 0.7) 1.045338514 1.045337006 1.045338506 1.51× 10− 6 7.99×10− 9

(0.5, 0.9) 1.081072372 1.081060784 1.081072265 1.16×10− 5 1.05×10− 7

Table 7: Numerical result of Example 6.

(x, t) uE u7,R u10,R n � 7, e(u) n � 10, e(u)

(0, 0.1) 2.105170918 2.105170918 2.105170918 7.54×10− 11 7.57×10− 11

(0.2, 0.3) 2.648721271 2.648721267 2.648721270 2.57×10− 9 5.14×10− 10

(0.4, 0.5) 3.459603111 3.459602959 3.459603111 1.52×10− 7 6.81× 10− 10

(0.6, 0.7) 4.669296668 4.669293844 4.669296666 2.82×10− 6 2.09×10− 9

(0.8, 0.9) 6.473947392 6.473921020 6.473947370 2.64×10− 5 2.06×10− 8

(x, t) vE v7,R v10,R n � 7, e(v) n � 10, e(v)

(0, 0.1) − 0.951625820e − 1 − 0.951625819e − 1 − 0.951625819e − 1 3.57×10− 11 3.59×10− 11

(0.2, 0.3) − 0.951625820e − 1 − 0.951625840e − 1 − 0.951625822e − 1 2.01× 10− 9 8.46×10− 11

(0.4, 0.5) − 0.951625820e − 1 − 0.951627186e − 1 − 0.951625816e − 1 1.37×10− 7 2.19×10− 10

(0.6, 0.7) − 0.951625820e − 1 − 0.951649979e − 1 − 0.951625810e − 1 2.42×10− 6 6.6×10− 10

(0.8, 0.9) − 0.951625820e − 1 − 0.951841642e − 1 − 0.951625658e − 1 2.16×10− 5 1.62×10− 8

International Journal of Differential Equations 13



According to the operations of differential transforma-
tion given in Table 1 for equation (82), we obtain the fol-
lowing recurrent relation:

Γ(α(k + 1) + 1)

Γ(αk + 1)
W

α
k+1(x) −

z

zx
Vk(x) + Vk(x) + Wk(x) � 0,

Γ(β(k + 1) + 1)

Γ(βk + 1)
V

β
k+1(x) −

z

zx
Wk(x) + Vk(x) + Wk(x) � 0,

(84)

and from initial conditions (83), we write
W

α
0(x) � sinhx,

V
β
0(x) � cosh x.

(85)

Substituting the above equations in equation (84), we
drive the following results:

W
α
1(x) � −

cosh x

Γ(α + 1)
,W

α
2(x) �

sinhx

Γ(2α + 1)
,W

α
3(x)

� −
cosh x

Γ(3α + 1)
, . . . ,

V
β
1(x) � −

sinhx

Γ(β + 1)
,V

β
2(x) �

coshx

Γ(2β + 1)
,V

β
3(x)

� −
sinhx

Γ(3β + 1)
, . . . .

(86)

Hence, the solutions in the series form are as follows:

􏽥wn(x, t) � 􏽘
∞

k�0
W

α
k(x)t

αk
� W

α
0(x) + W

α
1(x)t

α
+ W

α
2(x)t

2α
+ W

α
3(x)t

3α
+ · · ·

� sinhx +
(− 1)t

α

Γ(α + 1)
cosh x +

(− 1)
2
t
2α

Γ(2α + 1)
sinhx +

(− 1)
3
t
3α

Γ(3α + 1)
cosh x + · · · ,

􏽥vn(x, t) � 􏽘
∞

k�0
V

β
k(x)t

βk
� V

β
0(x) + V

β
1(x)t

β
+ V

β
2(x)t

2β
+ V

β
3(x)t

3β
+ · · ·

� cosh x +
(− 1)t

β

Γ(β + 1)
sinhx +

(− 1)
2
t
2β

Γ(2β + 1)
coshx +

(− 1)
3
t
3β

Γ(3β + 1)
sinhx + · · · .

(87)

which for α � β � 1 converges efficiently to the exact
solutions w(x, t) � sinh(x − t) and v(x, t) � cosh(x − t).

Results for Examples 1–8 are reported in Figures 1–8 and
Tables 2–9, respectively. In these tables, the terms wE, vE,
wn,R, vn,R, and e(w), e(v) stand for exact solution, nth order
approximate solution of RDTM, and their absolute error,
respectively.

6. Conclusions

In this work, the convergence of the reduced differential
transform method (RDTM) for solving the linear and
nonlinear ordinary, partial, fractional differential equa-
tions, and their systems is discussed. )e main strength of
the RDTM is its fast convergence, and under the as-
sumption of )eorem 1, the method is convergent to the
exact solution of the problem. )e sufficient condition for
convergence of the method and an error estimate has been
addressed. For the efficiency of the RDTM, the form of the
initial approximation is very important. We note that the
RDTM solutions computed via a simple algorithm and
without involving the perturbation, linearization, or dis-
cretization provide a solution in both numerical and an-
alytical manner. RDTM can be applied in most of the
biological, physical, engineering, etc. models as an alter-
native for obtaining reliable and fastest convergence and

useful approximations. )us, it can be concluded that the
RDTM is a simple and powerful tool for solving functional
equations.
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