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To understand patterns of variation in species biomass in terms of species traits and environmental variables a one-to-one approach
might not be sufficient, and a multitrait multienvironment approach will be necessary. A multitrait multienvironment approach
is proposed, based on a mixed model for species biomass. In the model, environmental variables are species-dependent random
terms, whereas traits are fixed terms, and trait-environment relationships are fixed interaction terms. In this approach, identifying
the important trait-environment relationship becomes a model selection problem. Because of the mix of fixed and random terms,
we propose a novel tiered forward selection approach for this. In the first tier, the random factors are selected; in the second, the
fixed effects; in the final tier, nonsignificant terms are removed using a modified Akaike information criterion. We complement
this tiered selection with an alternative selection method, namely, type II maximum likelihood. A mesocosm experiment on early
community assembly in wetlands with three two-level environmental factors is analyzed by the new approach. The results are
compared with the fourth corner problem and the linear trait-environment method. Traits related to germination and seedling
establishment are selected as being most important in the community assembly in these wetland mesocosms.

1. Introduction

Understanding the processes that drive community assembly
has been and still is a major challenge in community ecology
[1, 2]. Many studies have already shown the importance of
environmental factors in controlling and shaping species
composition [2, 3].

The use of species-traits instead of species identity in
community ecology research has many advantages as the
latter reflect a species adaptation to its environment [4].
Hence, a trait-based approach not only allows a comparison
of the same process in different vegetation types (e.g., [5–
7] but also gives insight into the mechanisms responsible
for such patterns [8] and allows predictions about possible
future changes.

In the last decade, plant trait data have become more
easily available, especially in Western Europe (LEDA,
BIOLFLOR, etc.). This has further strengthened the growing
interest of ecologists to study the responses of plant
functional traits to environmental conditions [9, 10].

Despite this increasing interest, our knowledge of plant
community assembly is still hampered as the quantification
of the effect of plant traits on community assembly stays
a real statistical challenge [11]. Most studies on trait-
environment relationship, especially model-based ones, are
limited to single species. Knowledge about the effect of
traits on plant community assembly stays limited. Empirical
evidence is limited as most of the studies are observational
and correlative [12, 13]. Therefore, there is an immense
need for randomized multispecies experiments that study
trait-environmental links and for statistical methods that can
link the experimental environmental factors to traits in such
multispecies studies. This paper proposes such methods and
applies them to a factorial three-year mesocosm study of
plant communities with three environmental factors, each on
two levels. The experimental measurements are the biomass
per species in each of the three years.

The linkage between the traits and the environment is
expressed differently in different statistical models. It is a
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Pearson’s correlation in the fourth corner problem [11] and
an interaction term in the mixed model approach, as we
will show in this paper. Environment-trait relationships are
usually very complex due to the high number of interacting
environmental variables and traits. To understand patterns of
variation in species density, a multivariate approach will be
necessary as a one-to-one approach might not be sufficient.
This way, selecting important trait-environment interactions
becomes a model selection problem in mixed models.

Mixed models are extremely flexible and form a compu-
tationally attractive tool to model complex and large datasets.
Their potential applications in ecology are numerous. The
resulting flexibility and model complexity make model
selection even more vital [14]. In mixed models, model
selection not only includes selecting the best mean structure
but also the most optimal variance-covariance structure [15,
16]. Despite the fact that mixed models have been available
for a few decades, there is surprisingly little literature
available concerning model specification, that is, “which set
of candidate models should be considered?” “How to select a
model?” and “What is the best model to use?” These are the
critical questions in making valid inference from data. This
also includes the variable selection problem in mixed model
analysis.

One of the goals of model selection is a trade-off between
model complexity and accuracy. Depending on the modeling
objective, different procedures to select an optimal model
subject to a particular criterion are available. However, it is
important to adopt a model selection procedure that reflects
the ultimate objective of the modeling process [17]. Model
selection is often done through sequential testing either step-
up (forward) or step-down (backward) regression methods
[18]. For simple problems, the outcomes of model selection
using these two approaches might happen to be similar;
however, in more complex situations, with many candidate
models, the results of the two approaches may be quite
different. Yet, selecting the best model from all possible
models with different fixed and random effect factors is
computationally forbidding as the number of models grows
exponentially with the number of factors.

This paper develops a novel model selection method
called “tiered forward selection.” The method uses a mod-
ified Akaike information criterion. In the first tier, the
random factors are selected; in the second, the fixed effects;
in the final tier, nonsignificant terms are removed. In
our case study, the random factors are the environmental
factors, while the fixed effects are related to traits and trait-
environment interactions. We complement this tiered selec-
tion with an alternative one-shot method, namely, type II
maximum likelihood (type II ML) Jamil and ter Braak [19].

The paper is structured as follows. After a short
description of the mesocosm example data and association
data screening, the linear mixed model, the tiered forward
selection, and Type-II ML are presented. Next, we describe
two simple existing methods for detecting trait-environment
relationships that are not based on mixed models. These
methods, the fourth corner method and the linear trait-
environment method (LTE), use permutation for determin-
ing statistical significance. After presenting the results, we

discuss statistical issues and shortly interpret the results in
biological terms.

2. Material and Methods

Data. Data are from an outdoor mesocosm experiment
investigating early community assembly from a pool of
floodplain species covering a wetness gradient. The meso-
cosm experiment was constructed with 80 PVC-containers
(W× L×H : 111× 91× 61 cm), comprising of a 25 cm
drainage layer (Argex clay aggregate, Argex NV, Zwijndrecht,
Belgium) covered with a geotextile boundary and then 25 cm
soil. The soil consisted of a homogenised mixture of fen peat
and alluvial clay (3 : 1 v/v).

Experimental treatments were (i) waterlogging (with and
without waterlogging, w/nw), (ii) canopy presence (with
and without canopy, c/nc) at initial inoculation, and (iii)
mowing (with and without summer mowing, m/nm) for a
full-factorial design (2× 2× 2) with 10 replicates.

We selected 34 plant species that occur frequently in
floodplains of temperate Europe and represent the entire
moisture gradient from mesic meadows to reed beds and
swamps (see Table 5 for species list). Seeds were sown in
all mesocosms at a rate of approximately 1000 seeds
species−1 m−2 on May 15, 2006. The seeding rate was similar
to seed production on wet meadows [20]. The canopy (c/nc)
consisted of Poa pratensis, Lolium perenne, and Alopecurus
pratensis. These grasses were used as matrix vegetation in
the canopy treatment but were also part of the species pool
introduced to all containers. They were pregrown for 6 weeks
and cut at 10 cm height when the other seeds were added.
This grass species mixture ensured the persistence of a grass
canopy in both dry and wet conditions. In other mesocosms,
soil was kept bare until the sowing date. Waterlogging (w/nw)
was maintained at 5 cm below soil surface. Nonwaterlogged
soils were allowed to drain freely. Mowing (m/nm) involved
annual mowing of vegetation to 2 cm in June-July.

A more detailed description of the experimental setup
can be found in Kotowski et al. [3]. Aboveground plant
biomass was harvested in August of 2006, 2007, and 2008.
The harvest was sorted to species level with the exception of
Poa, Lolium, and Alopecurus, which were grouped together.
Dry mass was determined after 72 h of drying at 70◦C.

Traits were either measured (for details see [3]) or
extracted from several plant trait databases: BiolFlor [26],
CloPla [22], and LEDA [23]. Where a database contained
several entries per species-trait combination, the following
aggregation scheme was used. For categorical traits, we
discerned two cases: (1) entries to different trait-attributes
are likely (e.g., a species can have several clonal growth
organs) and (2) species have only one possible entry per trait
(traits: HEM, STA, DUR, and SEX). In the first case (traits:
AB0, AB2, GR2, BE0, BE1, GRS, BES, LAT2, and LAT3) the
number of entries per trait-attribute was expressed relatively.
For the trait “clonal growth organs” this would for exam-
ple, look like “no clonal growth organs” [1, 0, 0, 0, 0], and
“aboveground runners” [0, 1, 0, 0, 0], “aboveground plant
parts”/“belowground runners” [0, 0, 1, 1, 0]. In case more
than one entry per species-trait combination is found in



International Journal of Ecology 3

T
a

bl
e

1:
Tr

ai
ts

u
se

d
fo

r
an

al
ys

is
w

it
h

co
de

an
d

de
sc

ri
pt

io
n

an
d

th
e

da
ta

so
u

rc
e

(K
ot

ow
sk

ie
t

al
.[

3]
,B

io
lF

lo
r

[2
1]

,C
lo

P
la

[2
2]

,a
n

d
L

E
D

A
[2

3]
).

G
er

m
in

at
io

n
tr

ai
ts

So
u

rc
e

Z
1

SW
Se

ed
w

ei
gh

t
(m

g)
K

ot
ow

sk
ie

t
al

.[
3]

Z
2

G
P

To
ta

lg
er

m
in

at
io

n
pe

rc
en

ta
ge

in
fu

ll
lig

h
t

(%
)

K
ot

ow
sk

ie
t

al
.[

3]
Z

3
T

50
T

im
e

of
50

%
ge

rm
in

at
io

n
in

lig
h

t
(d

ay
s)

K
ot

ow
sk

ie
t

al
.[

3]
Z

4
W

G
R

W
et

ge
rm

in
at

io
n

ra
ti

o
(g

er
m

in
at

io
n

in
w

et
m

es
oc

os
m

s/
ge

rm
in

at
io

n
in

dr
y

m
es

oc
os

m
s)

K
ot

ow
sk

ie
t

al
.[

3]
Z

5
D

G
R

D
ar

k
ge

rm
in

at
io

n
ra

ti
o

(d
ar

k
ge

rm
in

at
io

n
/l

ig
h

t
ge

rm
in

at
io

n
)

K
ot

ow
sk

ie
t

al
.[

3]
Se

ed
in

g
tr

ai
ts

Z
6

H
7

A
ve

ra
ge

h
ei

gh
t

of
se

ed
lin

gs
at

th
e

7t
h

da
y

fr
om

ge
rm

in
at

io
n

(m
m

)
K

ot
ow

sk
ie

t
al

.[
3]

Z
7

LW
R

7
M

ea
n

le
af

w
ei

gh
t

ra
ti

o
at

th
e

7t
h

da
y

(
le

av
es

an
d

co
ty

le
do

n
s)

K
ot

ow
sk

ie
t

al
.[

3]

Z
8

LA
R

7
M

ea
n

le
af

ar
ea

ra
ti

o,
th

at
is

,m
ea

n
qu

ot
ie

n
t

of
th

e
to

ta
ll

ea
fa

re
a

p
er

pl
an

t
an

d
th

e
to

ta
lw

ei
gh

t
p

er
pl

an
t

at
th

e
7t

h
da

y
(m

m
2

m
g−

1
)

K
ot

ow
sk

ie
t

al
.[

3]

Z
9

A
G

R
M

ea
n

ac
tu

al
gr

ow
th

ra
te

of
se

ed
lin

gs
be

tw
ee

n
th

e
7t

h
an

d
22

n
d

da
ys

(m
g

da
y−

1
)

K
ot

ow
sk

ie
t

al
.[

3]
Z

10
R

G
R

M
ea

n
re

la
ti

ve
gr

ow
th

ra
te

of
se

ed
lin

gs
be

tw
ee

n
th

e
7t

h
an

d
22

n
d

da
ys

K
ot

ow
sk

ie
t

al
.[

3]
Z

11
LW

R
M

ea
n

le
af

w
ei

gh
t

ra
ti

o;
in

cr
ea

se
be

tw
ee

n
th

e
7t

h
an

d
22

n
d

da
ys

K
ot

ow
sk

ie
t

al
.[

3]
Z

12
LA

7
M

ea
n

le
af

ar
ea

of
se

ed
lin

gs
at

th
e

7t
h

da
y

(m
m

2
)

K
ot

ow
sk

ie
t

al
.[

3]
A

du
lt

tr
ai

ts

Z
13

C
H

C
an

op
y

h
ei

gh
t

(m
ax

im
u

m
va

lu
e)

(m
)

LE
D

A
(R

ot
h

m
al

er
on

ly
)

Z
14

LD
M

C
Le

af
dr

y
m

at
te

r
co

n
te

n
t

(m
g

g−
1
)

L
E

D
A

Z
15

SL
A

Sp
ec

ifi
c

le
af

ar
ea

(a
du

lt
pl

an
ts

on
ly

)
(m

m
2

m
g−

1
)

LE
D

A
Z

16
H

E
M

Le
af

di
st

ri
bu

ti
on

al
on

g
st

em
(h

em
ir

os
et

te
s)

B
io

lfl
or

Z
17

ST
A

Fl
ow

er
in

g
st

ar
t

(1
:J

an
u

ar
y–

A
pr

il;
2:

M
ay

-J
u

n
e;

3:
Ju

ly
–S

ep
te

m
be

r)
B

io
lfl

or
Z

18
D

U
R

Fl
ow

er
in

g
du

ra
ti

on
(1

:s
h

or
t

(1
-2

m
on

th
s)

;2
:m

ed
iu

m
(3

-4
m

on
th

s)
;3

:l
on

g
(>

4
m

on
th

s)
)

B
io

lfl
or

Z
19

SE
X

R
ep

ro
du

ct
iv

e
ty

pe
(s

ex
u

al
)

B
io

lfl
or

Z
20

A
B

0
B

u
dB

an
k

ve
rt

ic
al

di
st

ri
bu

ti
on

—
ab

ov
eg

ro
u

n
d:

0
(0

bu
ds

)
C

lo
P

la
Z

21
A

B
2

B
u

dB
an

k
ve

rt
ic

al
di

st
ri

bu
ti

on
—

ab
ov

eg
ro

u
n

d:
2

(>
10

bu
ds

)
C

lo
P

la
Z

22
G

R
2

B
u

dB
an

k
ve

rt
ic

al
di

st
ri

bu
ti

on
—

gr
ou

n
dl

ev
el

:2
(>

10
bu

ds
)

C
lo

P
la

Z
23

B
E

0
B

u
dB

an
k

ve
rt

ic
al

di
st

ri
bu

ti
on

—
be

lo
w

gr
ou

n
d:

0
(0

bu
ds

)
C

lo
P

la
Z

24
B

E
1

B
u

dB
an

k
ve

rt
ic

al
di

st
ri

bu
ti

on
—

be
lo

w
gr

ou
n

d:
1

(1
–1

0
bu

ds
)

C
lo

P
la

Z
25

G
R

S
B

u
dB

an
k

se
as

on
al

it
y—

gr
ou

n
d

le
ve

l-
se

as
on

al
C

lo
P

la
Z

26
B

E
S

B
u

dB
an

k
se

as
on

al
it

y—
be

lo
w

gr
ou

n
d:

se
as

on
al

C
lo

P
la

Z
27

LA
T

2
L

at
er

al
sp

re
ad

(2
:0

.0
1–

0.
25

m
ye

ar
−1

)
C

lo
P

la
Z

28
LA

T
3

La
te

ra
ls

pr
ea

d
(3

:>
0.

25
m

ye
ar
−1

)
C

lo
P

la



4 International Journal of Ecology

Table 2: Results of analysis from different methods using species biomass, species traits and environmental variables. The sign (+/−)
represents the positive or negative significant Pearson’s correlation/coefficients between the environmental variable and the species trait.
For ease of interpretation, only significant relationships are shown.

One-to-one mixed model Linear trait-environment Fourth corner method Multivariate mixed model Type-II ML

c w cw c w cw c w cw c w cw c w cw

SW − − + − + + − + − +

T50 + − −
WGR + + − + +

DGR − − − + − +

H7 − − + − − + − − + − −
LWR7 + + − +

AGR − − − + + − −
LA7 − − +

SLA −
HEM + +

STA + + −
DUR − + − −
BE0 + + + + +

BE1 −
GRS + − + + − + −
BES −

a database, these values are weighted by the number of
entries per trait-attribute and expressed relatively to the total
number of entries for that trait. For numerical traits (traits:
CH, LDMC, and SLA), the median value of all possible
entries was used. A description of the different traits can be
found in Table 1.

Data Screening. Prior to analysis, trait data was screened
for zero-variance predictors and for multicollinearity among
predictors. Predictors with a single unique value (also known
as “zero variance predictors”) and near zero-variance predic-
tors (for details see [27]) can cause numerical problems and
lead to misinterpretation. Both near zero-variance and zero-
variance predictors were removed from the dataset. Predictor
detection was performed using the caret package for R [28].
Multicollinearity among predictors is a problem in mixed
models. From each pair of trait predictors with correlation
greater than 0.80, one predictor was removed using the
“find Correlation” function in the caret package in R [28].
This function removes the predictor that has highest mean
pairwise correlation with the other predictors.

Trait predictors were checked for normality by making
histograms. Predictors departing from normality (WGR,
H7, AGR, and LA7) were log-transformed (Table 1). Once
the final set of predictors was determined, predictors were
centered and scaled using their mean and standard devia-
tions [27]. Species with small average biomass (<0.1) were
removed from the analysis, and 23 species remain. Species
biomass was log-transformed (log(y + 0.01)).

The three experimental factors are indicated by c, w,
and m, and the levels of each are coded numerically as −1
(nc/nw/nm) and 1 (c/w/m) without loss of generality. In this

coding, c, w, and m are orthogonal and also orthogonal to
the interactions cw, cm, and wm.

2.1. Linear Mixed Models for Trait-Environment Relations

2.1.1. Single Trait-Environment Relationships. The model for
yi j , the species biomass for the jth species in the ith site
(mesocosm) is

yi j = αj + βjXi + γsite
i + εi j , i = 1, . . . ,n, j = 1, . . . , m,

(1)

where Xi is a known environmental factor, γsite
i is the site

effect, and εi j is the error term. This model is of interest
for our case study as each of the factors in the mesocosm
experiment was coded as if it were quantitative, with the
levels of the factors coded as −1 and +1. See [29] in case X
is a multilevel factor. We assume that the intercept αj and
slope βj for the jth species depend on the known value Zj of
a particular trait [29]:(

αj

βj

)
∼ N

((
a0 + a1Zj

b0 + b1Zj

)
,

(
σ2
α ρσασβ

ρσασβ σ2
β

) )
, (2)

and also assume γsite
i ∼ N(0, σ2

γ ) and εi j ∼ N(0, σ2). This is
a random intercept and random slope model, where trait is
a predictor for the random intercept and slope. Inserting αj ,
βj and γsite

i in (1) gives

yi j = a0 + a1Zj + b0Xi + b1ZjXi + γsite
i + εαj + ε

β
j Xi + ε

i j
, (3)

where b1 represents the trait-environment interaction. The
above model is fitted for each combination of trait and envi-
ronmental variable. To test the trait-environment interaction
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Table 3: Results of the multitrait and multienvironment analysis
using tiered forward model selection in mixed models. The fol-
lowing treatments c: canopy, w: water logging, and cw: interaction
c×w were always in the model as a fixed effect and random effects.

Year 1 Year 2 Year 3 All

(Intercept) −2.66 −2.24 −1.67 −2.20

c −3.28 −1.97 −1.27 −2.17

w 0.45NS −0.06NS 0.28NS 0.22

cw −0.78 −1.02 −0.45NS −0.75

SW 0.58 0.34 0.11

c : SW 0.86

w : SW −0.59 −1.24 −0.72

WGR −0.11NS −0.12

w : WGR 0.88 0.46

H7 0.83 0.56 0.63 0.77

c : H7 −1.53 −1.49 −1.16 −1.47

w : H7 −0.75 −0.90

cw : H7 0.60 0.63

LWR7 −0.51 0.08NS −0.28

w:LWR7 0.66 1.09 0.67

AGR 0.67 0.47

c : AGR −1.26 −1.38

SLA −0.45 −0.13

w : SLA −0.44 −0.29

HEM 0.36

BE0 −0.26NS 0.38 0.08

w : BE0 0.87 0.56

c : BE0 0.99

NS is for nonsignificant.

Table 4: Trait-environment interactions from Type-II that were not
common to other methods.

Type-II ML

c w cw

GP +

RGR −
LWR −
CH +

LDMC − +

AB0 +

AB2 +

GR2 + +

LAT2 −
LAT3 + −

(with null hypothesis: b1 = 0), we fit the model without this
term:

yi j = a0 + a1Zj + b0Xi + γsite
i + εαj + ε

β
j Xi + ε

i j
, (4)

and then compare the two models by an analysis of variance
resulting in a P value for the likelihood ratio (LR) test of

model with trait-environment interaction term against the
null model without this term.

2.1.2. Multiple Trait-Environment Relationship. In commu-
nity assembly, traits and environmental variables should
not be considered in isolation as they influence and often
coordinate each other. The development of a multivariate
framework, in which multiple traits can be linked to multiple
environmental variables is needed [30]. In this section, we
show how to link environmental variables and species traits
in a multivariate framework. We use a multitrait and multi-
environment version of the mixed model to select the species
traits, environments, and trait-environment interactions that
significantly contribute to the species biomass distribution
model. Equation (1) for a one-to-one model can readily
be extended to cover multi-trait and multi-environmental
variables:

yi j = a0 + a1Z1 j + · · · + akZk j + b01X1i + b11Z1 jX1i + · · ·
+ bkpZk jXpi + εαj

+ ε
β1
j Xi1 + · · · + ε

βp
j Xip + γsite

i + ε
i j

,

(5)

where Greek letters are used for random terms. Environ-
mental variables enter the model both as fixed terms and as
random terms, and traits enter as fixed terms. In this for-
mulation, the selection of the best traits and environmental
factors is a model selection problem

Tiered Forward Models Selection. When the number of fixed
effects and random effects is large, it is computationally
very expensive and time-consuming to compute all possible
candidate models [31] due to the presence of random terms
and variance-covariance structure [17, 32]. Furthermore
the number of candidate models increases exponentially
with increased number of fixed effects and random effects
[33]. Different protocols for model selection have been
developed, in particular stepup (forward) [34] and top-
down (backward) protocols [35]. Most stepwise functions
take a start model and according to some criteria iteratively
add or delete a predictor at each step, to get to the best
parsimonious regression model. Backward selection starts
from the model with all possible terms included and is only
feasible if that model can be fitted. In our case, the number
of environmental variables should be less than the number of
sites and the number of traits should be less than the number
of species. In our data, the former holds true, but the latter
does not. Here, we develop an approach called tiered forward
selection. The analysis was done for the three years separately
and for the combined data of all three years.

Model Selection Criteria. Different Information criteria, such
as AIC [36], AICC [37], CAIC [38], and BIC [39], can be
used for model selection in linear mixed model [40].
Generally, these information criteria are a function of the
likelihood for a given model and a penalty term based on
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Table 5: Species selected for the experiments. F: Ellenberg moisture indicator [24]. SM: mass of 1000 seeds (amount introduced to each
mesocosm); names follow Tutin et al. 2001.

Mesic habitat species F SM (g) Wetland species F SM (g)

Achillea millefolium 4 0.17 Carex ovalis 7 0.49

Daucus carota 4 0.87 Cirsium oleraceum 7 1.90

Galium verum 4 0.54 Eupatorium cannabinum 7 0.22

Leucanthemum vulgare 4 0.43 Geum rivale 7 1.21

Angelica sylvestris 5 2.46 Cirsium palustre 8 1.11

Centaurea jacea 5 2.33 Epilobium hirsutum 8 0.11

Heracleum sphondylium 5 7.35 Filipendula ulmaria 8 0.60

Leontodon autumnalis 5 0.80 Lythrum salicaria 8 0.06

Lolium perenne 5 0.90 Myosotis palustris 8 0.28

Plantago lanceolata 5 2.63 Phalaris arundinacea 8 1.02

Poa pratensis 5 0.31 Senecio aquaticus 8 0.24

Prunella vulgaris 5 0.86 Valeriana officinalis 8 0.72

Rumex acetosa 5 0.81 Carex acuta 9 0.90

Alopecurus pratensis 6 0.71 Lychnis flos-cuculi 9 0.16

Ranunculus acris 6 1.79 Lycopus europaeus 9 0.27

Urtica dioica 6 0.16 Peucedanum palustre 9 1.35

Veronica longifolia 6 0.07 Typha latifolia 10 0.04

See [24, 25].

the number of parameters in the model. The general form of
information criterion (IC) is

IC = −2 log LL + Penalty factor, (6)

where log LL is the log likelihood derived from fitting the
mixed model to the data using either ML or REML.

The use of these criteria is somewhat arbitrary, and
no formal inference can be made based on these values.
Comparison of the values of the criteria for a set of candidate
models simply indicates if a superior model exist within
the given candidate models [40]. For an extensive review
and discussion on the theoretical aspects of model selection
criteria and procedures see [41] and [17]. The most widely
used information criterion is

AIC = −2 log LL + 2× parn. (7)

We use the variant SigAIC defined as

SigAIC = −2 log LL + 3.84× parn, (8)

where parn is the number of parameter estimates. The vari-
ant, SigAIC, which multiplies df by χ2

1(0.05) = 3.84 instead of
by 2 [42], guarantees that the addition of a single parameter
to a model will result in a lower SigAIC value if and only if
that parameter is significant at the 5% level as judged by the
LR test.

Phase Tier I: Selection of Environmental Variance Components.
The start or null model is the model with crossed random
effects for species and sites. In the R package lme4 [43], it
can be represented as

start.model <- lmer( y ∼1 +
(1|sp)+(1|site), data),

where y represents the vectorized response data, while sp
and site indicate species and sites, respectively. REML is the
default estimation method. In each consecutive step, the
environmental predictor for which the species-dependent
random effect term increases the log-likelihood most is
added. This means that all models with one extra term have
to be fitted each step, and the best term is retained for the
next step. For example, for “w”:

lmer( y0 ∼1+(1+w|sp)+(1|site),data).
In lme4, such model can be fitted as an update of the start

model with the statement:

update(start.model,.∼. + (1 + w|sp) +
(1|site) - (1|sp), data).

To generate all models needed in this tier, we used
the statement

update(start.model,as.formula
(paste(". ∼.+(1+",block[j],"|sp) +
(1|site)-(1|sp)"))).

Here, block is a vector of the candidate predictors, that
is, the environmental factors. All models, after fitting the
predictors in the block, are arranged in the the order of the
predictive criterion. The best candidate model is compared
with the null model. If the best candidate model is statisti-
cally significant, it becomes the null model for the next step.
This process is repeated until the increase in log-likelihood is
no longer statistically significant as judged by LR test.
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After this tier, the selected predictors are added as fixed
effect. Thus, environmental variables in the model are now
the component of both fixed terms and random terms.

Tier II: Selection of Fixed Trait Effects. In our case study, the
start model for the next phase has a specification:

start.model<-lmer(y∼c + w + cw +
(1+c+w+cw|sp) + (1|site),method =
‘‘ML’’, data).

Now traits and trait-environment interactions can be
added as fixed effects to the model. It is important to note
that REML is the default estimation method for mixed
models. Generally REML estimates of variance components
are preferred to ML estimates. However, in REML it is not
legitimate to compare models with different sets of fixed
effects as the contrast used to develop the restricted maxi-
mum likelihood depends on the fixed effect design matrix
[44]. Therefore, the ML estimation method is used in this
tier.

Given a starting model and a set (here block) of variables
to evaluate, the starting model is updated by adding every
single trait variable and trait-environment interaction. To
evaluate the importance of a trait, the current model is
updated with the statement:

update(start.model,.∼.+ Z + c:Z).

A generic way to update the current model with any
single trait is

update(start.model,as.formula(paste(".
∼.+ ",block1[j],"+",block2[j]))).

Here, block1 is for trait main effects and block2 for the
trait-environment interaction. Models fitted in this way are
then ordered based on the chosen predictive criterion, here
SigAIC, after which the best fitting model is retained for
the next step. The procedure continues until the addition
of new traits, and trait-environment interactions do not
significantly improve the model.

Next, the same procedure is repeated for the three-way
interaction, but keeping the marginal effect of a trait variable
and its two-way interaction:

update(start.model,as.formula(paste(".
∼. + ", block1[j],"+", block2[j], "+",
block3[j],"+", block4[j]))).

Block1 is for trait main effects, block2 and block3 for
two-way interactions, and block4 for three-way interaction.
This structure ensures the marginality principle [21] which
entails a model can include an interaction term (high-order
term) only if it includes the main effects (and all lower-
order terms) that compose the interaction. The condition
requires that a mixed model with an interaction, say X : Z,
must also include the main effects X and Z. In general, we
neither test nor interpret the main effects of explanatory
variables that are also included in an interaction. The
procedure continues until addition of new predictors does
not significantly improve the model.

Tier III: Removal of Nonsignificant Interaction Terms. In
this tier nonsignificant interaction terms are sequentially
removed. An example statement in this tier is

update(start.model, as.formula(paste(".
∼. - ", block1[j]))).

The final model was obtained by sequential removal
of nonsignificant interaction terms. Now we refit the final
model using REML estimation, this is needed to obtain
unbiased estimates of the covariance parameters. As the ML
estimation leads to biased covariance parameter estimates.
This can result in smaller estimated standard errors for the
estimates of fixed effects in the model. The REML estimate
for the fixed effects is not identical to its ML version and
differs more from ML as the number of fixed effects in the
model increases.

2.2. Model Selection by Type-II Maximum Likelihood. When a
system is described by a statistical model, model complexity
leads to a very large computing time and poor estimation,
especially if the number of predictors is large relative to data
size. As an alternative to and improvement over stepwise
methods, shrinkage methods have been proposed. One of
these is the relevance vector machine (RVM) which has
gained popularity within the Bayesian framework [45–
47]. RVM introduces a Gaussian prior to the regression
coefficients, with one variance component for each predic-
tor. The variance component or hyperparameter controls
the degree of sparseness. These parameters are commonly
adjusted by cross validation. In Bayesian framework, the
hyperparameters are estimated by using empirical Bayes or,
equivalently, Type-II maximum likelihood [48].

The Type-II maximum likelihood shrinks the coefficients
to zero and readily sets some of the coefficients to zero,
namely, if their variance component is estimated to be zero
Jamil and ter Braak [19]. These zero variance coefficients
are equivalent to pruning the corresponding predictors from
the model. Hence, this method readily helps in pruning
predictors from the model and does variable selection and
model estimation. A prototype statement in lme4 in linear
regression is Jamil and ter Braak [19]

lmer(y ∼ (0 + x1 | v) + (0 + x2 | v),
data, REML = FALSE),

where y is the response and x1 and x2 predictors, v is
an all ones N-vector, and train is a data frame containing
these vectors. In our multi-trait-multi-environment context
a prototype statement is

lmer(y ∼ (0 + z1:x1 | v)+(0 + z1:
x2|v)+(0 + z2: x1 | v)+(0 +z2: x2|v)
+(1+x1+x2|sp)+ (1|site), data, REML =
FALSE),

where x1 and x2 indicate two environmental factors, z1
and z2 two traits, and z1 : x1 and related term indicate the
vector that is the product of the corresponding trait and
environmental factor.
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2.3. Fourth Corner Method. The fourth corner method,
developed by Legendre et al. [49] and extended in Dray
and Legendre [11], is the oldest integrated trait-environment
method. The species data in this method must be nonnega-
tive and can thus be presence-absence data, abundance data,
or species biomass. The fourth corner statistic measures the
link between trait and environment via the species data table
with a weighted Pearson’s correlation coefficient between
trait and environmental variable, each vectorized as in the
mixed model approach [26]. The weights are the species
data {yi j} (presence-absence, abundance, or biomass). The
significance of the trait-environment relationship is tested by
a permutation test. Dray and Legendre [11] offer different
permutation scenarios. We used the combined approach
implemented in the combine. 4th corner function in the ade4
package in R. It combines the P values of two fourth corner
models, namely, Model 2 (site permutation) and model 4
(species permutation), as proposed by Dray and Legendre
[11] by taking their maximum [50]. This method controls
the type I error [51].

2.4. The Linear Trait-Environment Method (LTE). The linear
trait-environment (LTE) starts with a two-step analysis
Cormont et al. [51]. In the first step, regressions per species
biomass to each environmental variable give a species-
specific regression coefficient:

yik = ak + bkXi + εik, (9)

where ak and bk are intercept and slope of kth species. In
the second step, these regression coefficients are correlated
to each trait:

bk = c + dZk + δk, (10)

where c and d are the intercept and slope for trait Z, and δk
is a species-specific error term with mean 0. LTE integrates
both steps in a single model. LTE achieves this integration
based on a linear model with main effects for the trait and
environmental variable and their interaction. The interaction
between a trait and an environmental variable in this model
captures the trait-environment relationship, in particular the
trait-dependent effect of environment on species biomass.
The significance of this interaction is tested by a permutation
test with the same permutation strategy as in the fourth
corner problem [51].

Summary of Data Analysis Strategy. We applied the different
methods that link functional traits to the experimental
environmental factors to data on 23 floodplain species
in a factorial mesocosm experiment with three two-level
factors (c, w, and m for canopy, waterlogging, and mowing).
We estimated the one-to-one interactions for each trait-
environment combination by mixed models, the fourth
corner method [11, 49] and the linear trait-environment
method [51]. Then, we applied the tiered forward selection
method to select the traits and environmental variables
that significantly contribute to the explanation of species
biomass. The environmental variables were c, w, m, and

their first-order interactions. Furthermore, we performed
Type-II maximum likelihood analysis (Type-II ML) to select
trait-environment interactions. The analysis has been carried
out on the three-year mean log-transformed biomass, unless
stated explicitly otherwise.

3. Results

In this study, we explored different methods that link the
species traits to the environmental factors in the mesocosm
experiment. Table 2 summarizes the results of the one-to-
one analyses by mixed models, the fourth corner method
and the linear trait-environment method, and the multitrait-
to-multienvironment analyses by mixed models and Type-
II maximum likelihood. Only significant trait-environment
interactions obtained from these analyses are reported
together with the sign of the relationship. The factor mowing
is excluded from Table 2 as its variance component in the
mixed model approach was very small, smaller than that of
the interaction “cw” between the other two factors, canopy
“c” and waterlogging “w.” Mowing thus has a similar effect
on all species. The sign of coefficient for trait-environment
interactions is almost consistent between different methods.
Mixed model search for trait-environment combinations
(interactions) predicts the response of species to the environ-
mental variables and traits variables.

Type-II ML also identifies the trait-environment inter-
actions which are also identified by other methods, but
the selection is optimistic. It encountered too many trait-
environment interactions, and many of them were not
common to other methods as Type-II ML is very tolerant in
allowing predictors to stay in the model Jamil and ter Braak
[19]. In case of correlated predictors, Type-II ML prunes the
weaker of the two.

H7 and SW appeared important traits that are consis-
tently significant with canopy or/and waterlogging for all
methods (Table 2). Plants with small seedlings performed
best when waterlogging or canopy acted as a sole stress factor.
When both factors interacted, large seedlings with heavy
seeds had an advantage. Although less consistent across
methods, DGR and AGR seem important as well. Species
with a later flowering onset (STA) and a seasonal budbank
(GRS) were significantly linked to waterlogging in all models,
except for the multivariate mixed model. Type-II ML gave
many more trait-environment interactions than other meth-
ods (Tables 2 and 4).The coefficients estimated by Type-II
ML are plotted in Figure 1. The length of bar is proportional
to magnitude of coefficient, and direction of bar indicates the
sign of coefficient.

Table 3 summarizes the results of the tiered forward
model selection in mixed models using SigAIC. The analysis
was done for each year and by combining the data for all
three years. All significant traits, except BE0, are germination
and seedling establishment traits. Canopy captures more
interactions with traits in first and second years of germina-
tion and establishment as compared to waterlogging.

We used three methods to relate each single trait to
each single environmental factor. Two of the methods use an
explicit linear model for the data (the linear mixed model and
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Figure 1: Estimated effects of trait-environment interaction using Type-II ML.

LTE), whereas the third method uses the data are weights.
Also, two of the methods use statistical significance testing
by a Monte Carlo permutation strategy (LTE and the fourth
corner method), whereas the mixed model uses LR testing.
Overall, the results produced by the different methods that
were investigated are concordant regarding the key trait-
environment relationships.

What effects do these theoretical similarities and dis-
similarities have on the results? The numbers of one-to-one
relationships found (Table 2) were 17 in the mixed model,
11 in LTE, and 16 in the fourth corner method. The mixed
model disagreed in its significance judgment in 14 cases (out
of the 48 shown in Table 2) with LTE and in 15 cases with the
fourth corner method. LTE and the fourth corner disagreed
in 13 cases. The methods, thus, are about equally dissimilar
among one another. The multi-trait multi-environment
mixed model yielded 8 significant interactions, so fewer than
the one-to-one methods. This is to be expected if one trait
can replace another because of their mutual correlation.
In our data, traits show some, but no high correlation.
Apparently the other aspect of a multivariate model, namely,
that is it can reduce the error variance and thereby can find
more significant effects, is less important.

4. Discussion

4.1. Statistical. For analysis of trait-environment relation-
ships, here we presented and compared multivariate methods
that combine three matrices (i) species biomass× sites/plots,
(ii) sites × environmental variables, and (iii) species × traits.

The relationship between species traits and the envi-
ronment is generally assessed indirectly using a two-step
approach. Species biomass is first linked to environmental
conditions, and species responses to environmental variation
are then related to the biological and/or physiological traits of
species. In such analyses, the relationship between the envi-
ronment and the species traits is thus assessed indirectly. The
fourth corner method [11] calculates a weighted Pearson’s
correlation between the trait and the environmental variable
by using all species-site combinations as cases, the measure

of abundance as a weight and by assigning to each case
the trait and the environmental value of the combination.
This generates two matrices: species-trait, and species-
environment, weighted by abundances and then analyzed
simultaneously. It sacrifices some information at the species
level, as zero abundance implies zero weight. The later
approach may also be called direct functional analysis. Direct
assessment of the traits-environment relationships requires a
statistical method that takes into account simultaneously the
information stored in three matrices to link species traits and
environmental conditions through species responses.

This paper developed a novel multi-trait and multi-
environmental variable model selection method called tiered
forward selection. Here in the first tier, the random factors
are selected; in the second, the fixed effects are selected; in the
final tier, nonsignificant terms are removed based on a pre-
dictive modified Akaike information criterion. Here, random
factors are the environmental variables, while the fixed effects
are related to traits and trait-environment interactions. This
is a direct functional approach which retains all the available
information and provides guidelines for choosing key envi-
ronmental variables, species trait, and also trait-environment
interactions. Further, we compared the performance of
mixed model with the fourth corner method, the linear
trait-environment method (LTE) and the one-shot method,
namely, Type-II maximum likelihood (Type-II ML).

Mixed model approach can be applied to assess how
single species respond to environmental gradient and also to
understand patterns of variation in species biomass. Fourth
corner method provides trait environment relationships at
the species level, and Fourth corner testing procedure [11]
evaluates the statistical significance of the trait environment
relationships. The role of the species data is thus rather
different from that in mixed model and in LTE. In particular,
absences or zeroes, therefore, do not carry any information
in the analysis. The method works well for data stemming
from unimodal response models [11].

The linear trait-environment (LTE) method Cormont
et al. [52] was developed as an alternative to the fourth
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corner method to account for negative species data values.
The method is linear and as such is more closely related
to the liner mixed model than the fourth corner method.
However, just like the fourth corner method, LTE has no
variance components. The statistical analysis thus proceeds
by advanced permutation testing. LTE estimates the param-
eters by least square. In contrast to LTE, linear mixed model
(LMM) estimates the fixed effects by generalized least square
estimation and their significance can be test by paramet-
ric bootstrap. The multi-trait multi environment method
resulted in less number of significant trait-environment
interactions. The fourth corner method tests the significance
of trait-environment relationship by a permutation test.
Dray and Legendre [11] offer different permutation scenarios
but do not faithfully controlled the type I error ter Braak et al.
[53]. The interaction between a trait and an environmental
variable in LTE captures the trait-environment relationship.
The significance of this interaction is tested by a Monte Carlo
permutation test as in the fourth corner problem. The LTE
differs from the fourth corner method by using multivariate
linear regression [51].

In this study, we considered trait-environment relation-
ships. In hindsight, perhaps the most important reason that
it is difficult to quantify this relationship is that traits are
measured on species and environmental variables on sites.
So how can these be related? They can only be related via
the sites × species data. So, there is a third entity involved,
which complicates the issue. Statisticians are often keen to
distinguish interactions from correlations. Two variables are
correlated when a change in one variable is likely to be
associated with a change in the other. By contrast, interaction
involves a third variable and considers the effects of the
variables on this third variable. Two variables are said to
interact when the one variable modifies the effect of the
other on the third variable. In terms of regression modeling,
the third variable is the response variable, the other two are
predictor variables, and the interaction might be represented
by the product of the predictor variables.

Is the trait-environment relationship now best expressed
as a correlation as in the fourth corner problem (and LTE) or
as an interaction as in the LMM model? The fourth corner
problem is able to express the relationship as a correlation
by taking the individual organism as the statistical unit:
the cases are the individual organisms. This trick gives the
third variable (the sites× species data) another role; the
elements become weights. This is the logical approach
when individuals are (randomly) sampled rather than
sites. However, in the practice of much ecological research,
primarily sites are sampled and then individuals within sites.
The sampling process is thus hierarchical, and hierarchical
statistical models are thus a natural way to model it.
We took this hierarchical approach. By giving the third
variable the role of response variable, the trait-environment
relationship becomes naturally an interaction. In contrast
with the fourth corner problem, this approach does not
ignore the information that some species are absent at a
site. The advantage of the mixed is that it has the potential
of predictive use: which species from a species pool are
expected to occur under specified environmental conditions

when we only know the trait values of the species in the
pool. Of course, at the current stage, we are still ignoring
any competition and successional processes that must also
be important in community assembly, but that does not
necessarily invalidate the prediction. It makes it less precise.

4.2. Biological Interpretation. A major objective of this study
was to compare the effects of competition from canopy
and waterlogging on assembly processes in a floodplain
and how plant functional traits are related to the successful
establishment of species. Both wetness (waterlogging) and
light availability during initial community assembly (canopy
presence) affected species germination in our experiment,
but only few species were directly eliminated at this stage
(one under oxic and three under dark conditions) [3].
Clearly, canopy presence was a much stronger filtering factor.
Especially in the first year it almost totally disabled establish-
ment, which is probably due to high light attenuation [3].
However, more severe root competition could possibly also
play a role. Waterlogging is a major constraint on growth and
establishment of plant species in wetlands [54]. Only species
that are adapted to this environment can occur and thrive.
It is relevant to understand which specific combination of
traits makes the germination and establishment of plants
resilient to waterlogging and which species traits showed the
greatest tolerance to waterlogged conditions. The knowledge
of which traits determine species seedling and germination
might help for conservation planning [55].

Species able to establish successfully within the grass
canopy showed high seed weight, combined with a small
individual size and a relatively low actual growth rate.
These traits are related to a stress-tolerant strategy, allowing
plants to minimize resource requirements and survive in
suboptimal conditions. Apparently even the largest seedlings
had difficulties in reaching layers with sufficient light. This
confirms that large seed size may contribute to seedling
establishment in shade through various mechanisms [56].
Large seeds with a large nutrient stock are often thought
to be advantageous in dense canopies as seedlings should
possess enough resources to reach layers with higher light
availability [57]. However, a significant fraction of resources
in a large seed may remain in storage instead of being used
for immediate seedling development [58, 59], a strategy char-
acteristic for stress-tolerant species. When germinating on
bare ground, seedlings of different species compete with each
other for light. Yet, the intensity of this competition is much
higher in the nonwaterlogged treatment. Traits responsi-
ble for rapid establishment and outcompeting neighbours
appear more important here than those responsible for
shade tolerance [60, 61]. A combination of fast growth and
large-sized seedlings is prerequisite for success under dry
conditions without imposed light stress. In waterlogged soils,
specific leaf area (SLA) decreased as waterlogging induces an
increased allocation to roots [54]. The ability to germinate
in wet conditions is a main determinant of community
assembly. This is in accordance with the habitat filter theory
which states that the number of species in the local species
pool is reduced by habitat constraints.
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Hence, all traits (except one) that were selected by the
tiered forward model selection describe germination and
seedling establishment. This stresses the importance of both
two stages as major bottle necks for species recruitment
[52, 62] and how they may largely determine patterns of
biological diversity [57, 63]. Moreover, because of their small
stature, seedlings can be subject to a totally different light
regime and soil resource availability than adult plants, even
in the same site.

In conclusion, we have demonstrated different meth-
ods that link environmental factors (e.g., waterlogging
and canopy) to species traits during early assembly process
in a wetland mesocosm. Our results clearly stress how the
choice of a particular statistical method to analyse the trait-
environment link will have consequences for the ecological
interpretation of this link. Of the studied methods, the
multitrait multienvironmental mixed model is clearly best
suited for predictive usage.
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