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Background. MicroRNAs (miRNAs) have been demonstrated to exhibit important regulatory roles in multiple malignancies,
including hepatocellular carcinoma (HCC). hsa-miR-497-5p was reported to involve in cancer progression and poor prognosis
in many kinds of tumors. However, the expression and its clinical significance of hsa-miR-497-5p in HCC remain unclear.
Methods. In the present study, we investigated the expression of hsa-miR-497-5p in HCC and analyzed the correction of clinical
features with prognosis. The expression levels of hsa-miR-497-5p and potential target genes were analyzed in HCC and adjacent
noncancerous tissues using The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. Real-
time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze hsa-miR-497-5p levels in 328
HCC tissues and 30 paired adjacent noncancer tissues. Overall survival (OS) and progression-free survival (PFS) of patients with
HCC were assessed using the Kaplan-Meier method and the log-rank test. Results. The hsa-miR-497-5p expression levels were
decreased, and its target genes ACTG1, CSNK1D, PPP1CC, and BIRC5 were upregulated in HCC tissues compared with normal
tissues. Lower levels of hsa-miR-497-5p expression and higher levels of the four target genes were significantly associated with
higher tumor diameter. Moreover, patients with lower hsa-miR-497-5p expression and higher target genes levels had shorter
OS. Conclusion. The expression levels of hsa-miR-497-5p may play an important regulatory role in HCC and are closely
correlated with HCC progression and poor prognosis in patients. The hsa-miR-497-5p may be a specific therapeutic target for
the treatment of HCC.

1. Introduction

Hepatocellular carcinoma (HCC), representing approxi-
mately 90% of total primary liver cancer, is the second most
frequent cause of cancer-associated deaths worldwide [1–3].

Several factors play essential roles during the progression of
HCC, including the tumor microenvironment and genetic
mutations [4–6]. Despite various treatment options, HCC is
of high incidence and mortality due to rapid proliferation,
cancer recurrence, and distant metastasis [7–10]. Thus,
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identification of novel treatment targets or useful biomarkers
is badly needed to improve the clinical treatment outcomes of
HCC.

MicroRNAs (miRNAs), a widespread small noncoding
endogenous RNA, can interact with target messenger RNA
(mRNA) to regulate target gene expression at the posttran-
scriptional level, influencing many important biological pro-
cesses such as cell proliferation, invasion, and tumorigenesis
[11–13]. Plenty of researches have shown that miRNA was
closely intertwined with HCC occurrence and progression
[14–16]. Furthermore, some studies suggest that miRNA
play roles as either oncogenes or tumor suppressors, which

can be used as predictive biomarkers or therapeutic targets
in clinical applications [17–20].

hsa-miR-497-5p is located in human chromosome 17
(17p13.1) and derived from the miR-15 family [21]. hsa-
miR-497-5p is widely distributed in the body, and its expres-
sion level is strongly associated with a poor prognosis and
tumor progression [22–24]. It is shown that overexpression
of hsa-miR-497-5p can regulate the expression of Smad3
and lead to cell cycle arrest in the G0/G1 phase [25–27].
Overexpression of miR-497-5p can reduce the content of
insulin receptors and induce insulin resistance in HFD-
MES rats [28–30]. Furthermore, the expression of miR-497-
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Figure 1: Cluster analysis of miRNA expression in HCC. Cluster analysis of miRNA expression in HCC was performed by MeV software
(version 4.7.1).
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5p is associated with the occurrence and development of
HCC. Zhang et al. reported that miR-497-5p was upregulated
in HCC samples, and the high expression of miR-497-5p
leads to the increase of tumor size and number. What is
more, silencing of miR-497-5p could suppress HCC cell pro-
liferation and migration [31]. On the contrary, Xu et al.
reported that miR-497-5p was downregulated in HCC clini-
cal samples and cell lines, and low expression of miR-497-
5p was associated with aggressive tumor characteristics as
well as patients’ prognosis in HCC patients [32]. Therefore,
it is still controversial whether miR-497-5p is an oncogene
or a tumor suppressor gene in HCC.

Here, we found that downregulation of miR-497-5p is
closely associated with tumorigenesis and poor prognosis in
HCC. The study is aimed at analyzing the expression of

miR-497-5p and its potential target genes as well as its effi-
cacy on overall survival (OS) and progression-free survival
(PFS) in patients with HCC by bioinformatics analysis and
reverse transcription quantitative polymerase chain reaction
(RT-qPCR) to discuss its potential clinical significance in this
disease.

2. Materials and Methods

2.1. Patients and Samples. Fresh HCC tumor tissue samples
and adjacent normal tissues were collected via surgical resec-
tion between August 2004 and September 2014. A total of
328 primary HCC samples were collected, including tumor
and adjacent nontumor liver tissues, 30 of which were paired
with adjacent normal tissues. This study has been approved
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Figure 2: The expression level of top 20 DEGs in HCC. The genes meet the criteria of fold change ðFCÞ ≥ 2 or ≤0.5 with p value < 1.0E-10.
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by the institutional research ethics committee of Shanghai
Tenth People’s Hospital (Approval No. SHSY-IEC-
2019K10). All the participants provided written informed
consent prior to investigation in the study.

2.2. Data Retrieval and Download. RNA expression data of
HCC patients in TCGA (https://cancergenome.nih.gov/)
and GEO (https://www.ncbi.nlm.nih.gov/gds/) databases
were chosen for analysis. The sequencing data of miRNA
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Figure 3: Six of the top 20 DEGs associated with the prognosis of HCC patients. Overall survival (OS) of the top 20 DEGs was evaluated by
the Kaplan-Meier curves, and differences between survival rates were examined using the log-rank test.
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expression of 372 HCC tissues and 50 normal tissues were
procured from TCGA. miRNA data from three original
GEO datasets (GSE36915, GSE97098, and GSE31383) were
downloaded. The expression of hsa-miR-497-5p in HCC tis-
sues and adjacent normal tissues was analyzed. The Cancer
Cell Line Encyclopedia (CCLE, https://portals. http://
broadinstitute.org/ccle) was used to verify the expression
and DNA methylation of miR-497-5p in tumor cell lines.

2.3. DEGs Screening and Survival Analysis. The DEGs
between HCC samples and noncancerous tissues were deter-
mined using the EdgeR software package [33]. Fold change
ðFCÞ ≥ 2 or ≤0.5 and p < 1:0E − 10 were chosen as elemen-
tary screening arguments for cluster analysis. Hierarchical
clustering was used to screen DEGs by the multiple experi-
ment viewer (MeV) 4.7.1 software program (http://www
.tm4.org). After that, we conducted a survival analysis, and
the analysis was performed using GraphPad Prism 8.0.1
(http://www.graphpad.com/) software.

2.4. RNA Isolation and Quantitative Reverse Transcriptase
PCR. Total RNA was isolated from HCC cell lines, tumor
samples, and normal tissue samples by the TRIzol reagent
(Invitrogen, Waltham, MA, USA), according to the manufac-
turer’s guide. Obtaining cDNA from total RNA by reverse
transcription and qRT-PCR of miR-497-5p was obtained
using the TaqManmiRNA qRT-PCR Kit (HaiGene, Haerbin,
China). Each sample shall be tested independently in at least
triplicate. U6 small nuclear RNA was used for an internal
control. The expression level of miR-497-5p and four poten-
tial target genes in each sample was calculated and expressed
as ΔCt value, and the 2−ΔΔCT method was applied to analyze
the relative hsa-miR-497-5p expression levels.

2.5. Cell Lines. Human liver cancer lines Huh7, Hep3B, and
HepG2 were purchased from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China) and cultured in
DMEM media (Invitrogen, Carlsbad, USA) and supple-
mented with 10% (v/v) fetal bovine serum (FBS), 100U/ml

penicillin, and 100mg/ml streptomycin. Cell lines were rou-
tinely tested for mycoplasma contamination and have been
authenticated with short-tandem repeat analysis. Cell culture
was conducted at 37°C in a humidified 5% CO2 incubator.

2.6. Cell Proliferation Assays. For the cell proliferation assays,
1,000 cells were seeded into 96-well plates to culture over-
night. Next, the CCK8 (10 l) reagent was then added to each
well, the absorbance (A) was measured at 450 nm after 1 h,
and the relative cell viability rate was calculated. All experi-
ments were performed in triplicate.

2.7. Bioinformatics Analysis. Hierarchical clustering was per-
formed using the multiple experiment viewer (MeV) 4.7.1
software programs (http://www.tm4.org/mev/). We used
online target gene prediction software DIANA-miRPath
(http://http://snf-515788.vm.okeanos.grnet.gr/), miRDB
(http://mirdb.org/miRDB/), miRTarBase (http://mirtarbase
.mbc.nctu.edu.tw/), and miRanda (http://www.microrna
.org) to forecast several potential target genes of hsa-miR-
497-5p. Subsequently, predicted target genes were subjected
to KEGG pathway online analysis. The expression levels of
four potential target genes in LIHC were obtained from
GEPIA (http://gepia.cancer-pku.cn/).

2.8. Statistical Analysis. Statistical analysis was performed by
GraphPad Prism (http://www.graphpad.com/) Software.
Overall survival (OS) and progression-free survival (PFS)
were evaluated by the Kaplan-Meier curves, and differences
between survival rates were examined using the log-rank test.
OS was calculated from the first day of diagnosis until the
time of last follow-up or death. PFS was assessed as the inter-
val from random assignment to the first documented disease
progression or death because of any cause.

3. Results

3.1. Cluster Analysis of miRNA Expression in HCC. A total of
2,166 miRNA-seq data of 372 patients with LIHC cancer
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Figure 4: The levels of miR-497-5p expression in HCC samples. (a) The top ten DEGs miRNAs were screened out using MEV4.7.1 software.
miR-497-5p (b), miR-139-5p (c), and miR-139-3p (d) were also highly expressed in tumor tissues compared with normal tissue. (e) The top
twenty DEGs were selected between HCC and control samples. (f) The expression level of miR-497-5p was significantly higher in HCC tissue
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tissues (cancer) and 50 cases of adjacent normal tissue (nor-
mal) were downloaded from TCGA. The genes meet the cri-
teria of fold change ðFCÞ ≥ 2 or≤0.5 and p value < 1.0E-10. 95
DEGs were selected between LIHC and control samples,
which were composed of 62 upregulated genes and 33 down-
regulated genes. The heat map for hierarchical clustering
analysis was acquired by using MEV4.7.1 software (Figure 1).

3.2. The Expression and Prognosis of DEGs in HCC. Accord-
ing to fold change, as indicated in Figure 2, the expression
level of miRNA in the top 20 DEGs (top 10 up- and downreg-
ulated genes) of LIHC tissues was compared with their corre-
sponding nontumor normal tissues.

In addition, there was a total of 372 LIHC samples with
complete overall survival (OS) information; six of the top
20 DEGs are associated with the prognosis of patients
(Figure 3).

Next, the raw data were extracted from the GEO database
(GEO accession no. GSE36915). In this present study, we
examined the expression levels of miRNAs in tumor tissues
and normal tissue from a group of 89 patients with HCC.
The top ten DEGs miRNAs were screened out using
MEV4.7.1 software (Figure 4(a)). As a result, we found that
three DEGs (hsa-miR-497-5p, hsa-miR-139-5p, and hsa-
miR-139-3p) were also as significant DEGs in the TCGA-
LIHC database. Moreover, the three DEGs were also highly
expressed in tumor tissues compared with normal tissue
(Figures 4(b)–4(d)).

To further identify the dependability of the miRNA genes,
the same analysis was used to verify the next dataset from the
NCBI GEO database (GEO accession no. GSE31383). The top
twenty DEGs were selected betweenHCC and control samples
(Figure 4(e)). Our results demonstrated that the expression
level of miR-497-5p was significantly higher (p = 1:1E − 10)
in HCC tissues compared with nontumor tissues (Figure 4(f)).

3.3. The Levels of miR-497-5p Expression in HCC Samples.
The levels of miR-497-5p expression were evaluated in
HCC samples (n = 328) contrasted with normal samples
(n = 30) by qRT-PCR. In HCC tissue samples, the results
indicated that the expression levels of miR-497-5p were sig-
nificantly downregulated contrasted with adjacent noncan-
cerous tissues (p = 1:3E − 4; FC, 0.36; Figure 5(a)).

To evaluate the miR-497-5p expression levels divided
between HCC and normal tissues, we detected the expression
in 30 pairs of tumor tissues and adjacent nonneoplastic liver
tissues using qRT-PCR. In particular, the present results indi-
cated a significantly lower miR-497-5p in human HCC spec-
imens compared with adjacent noncancerous specimens
(p = 3:2E − 6; FC, 0.16; Figure 5(b)).

Subsequently, further analysis of the Pearson correlation
between miR-497-5p in HCC tumor tissues in contrast with
adjacent normal tissues was negatively correlated (r = −0:44;
Figure 5(c)).

3.4. Association between miR-497-5p Expression and Clinical
Features with HCC Prognosis. To further identify the prog-
nostic significance of miR-497-5p expression in HCC,
GraphPad software was used to assess the association of
miR-497-5p expression between progress-free survival
(PFS) and overall survival (OS). The results show that lower
miR-497-5p expression was significantly correlated with
poor PFS (Figure 5(d)) and OS (Figure 5(e)). Hence, miR-
497-5p levels were dramatically related to an increased prob-
ability of PFS and OS in patients with HCC.

Our results further indicated that tumor diameter was
significantly correlated with decreased duration of PFS
(Figure 5(f)) and OS (Figure 5(g)) of patients with HCC.
Survival analysis revealed that miR-497-5p levels and
tumor diameter were also found to be concerned with
PFS and OS. It was observed that patients with low
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Figure 5: Association between miR-497-5p expression and clinical features with HCC prognosis. (a) The expression levels of miR-497-5p
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miR-497-5p levels and large tumor diameter (≥5 cm) were
associated with shorter PFS and OS than those with high
miR-497-5p expression and small tumor diameter
(Figures 5(h) and 5(i)).

3.5. Expression and Biological Role of miR-497-5p in HCC In
Vitro. To explore the expression and biological role of miR-
497-5p expression in HCC in vitro, we performed DNA
methylation analysis of miR-497-5p in cancer cell lines from
the Cancer Cell Line Encyclopedia (CCLE) dataset and found
that DNA methylation analysis of miR-497-5p was low in
most tumor cell lines (Figure 6(a)) and liver cancer cell lines
(Figure 6(b)). Expression levels of miR-497-5p in liver cancer
cell lines Huh7, Hep3B, and HepG2 were significantly lower
than that in normal liver cell line LO2 from GEO dataset
GSE71108 (Figure 6(c)).

To investigate the biological role of miR-497-5p in HCC
cells, we performed gain-of-function studies using miR-497-
5p overexpressed plasmid in Huh7, Hep3B, and HepG2 cells
(Figure 6(d)). As shown in Figure 6(e), overexpression of
miR-497-5p significantly inhibited the growth rate of Huh7,
Hep3B, and HepG2 cells transfected with the miR-497-5p
overexpressed plasmid compared with the negative control-
transfected cells.

3.6. Association between miR-497-5p Target Gene Expression
and Their Clinical Features with HCC Prognosis. Next, we
searched for potential target genes of miR-497-5p using four
publicly available target gene prediction databases including
DIANA-miRPath, miRDB, miRTarBase, and miRanda to
predict the potential target genes of miR-497-5p.

The result showed that there were 125 commonly pre-
dicted target genes in at least 3 prediction results. Subse-
quently, predicted target genes were subjected to KEGG
pathway analysis, and the results revealed some important
cancer and stem-related pathways including the HIPPO sig-

naling pathway, TGFb signaling pathway, and Wnt signaling
pathway (Figure 7(a)), in which 4 genes (ACTG1, CSNK1D,
PPP1CC, and BIRC5) were clustered in the HIPPO signaling
pathway. Moreover, the mRNA expression levels of ACTG1,
CSNK1D, PPP1CC, and BIRC5 were significantly lower in
the miR-497-5p overexpression group when compared to the
control group (Figure 7(b)), which suggested that ACTG1,
CSNK1D, PPP1CC, and BIRC5 were regulated by miR-497-
5p and were negatively correlated with miR-497-5p.

Next, we analyzed the expression levels of ACTG1,
CSNK1D, PPP1CC, and BIRC5 in HCC tissue samples in
normal liver (n = 160) and liver cancer (n = 369) samples
from the GEPIA dataset. ACTG1, CSNK1D, PPP1CC, and
BIRC5 levels were upregulated in HCC tissues (p < 0:01)
(Figure 7(c)) when compared with normal liver tissue. More-
over, our results showed that ACTG1, CSNK1D, PPP1CC,
and BIRC5 expression was negatively correlated with miR-
497-5p expression in HCC tumor biopsies (n = 364, r = −
0:32, -0.29, -0.24, and -0.33, respectively, p < 0:001;
Figure 7(d)).

We then evaluated the prognostic value of ACTG1,
CSNK1D, PPP1CC, and BIRC5 expression for patients with
HCC. The OS in HCC patients with a low expression of
ACTG1, CSNK1D, PPP1CC, or BIRC5 was prolonged rela-
tive to patients with high expression of ACTG1, CSNK1D,
PPP1CC, or BIRC5 (Figure 7(e)). Our results indicated that
ACTG1, CSNK1D, PPP1CC, and BIRC5 expression was pos-
itively correlated with lower OS in HCC patients.

4. Discussion

HCC is the fifth most common form of cancer type in the
world [33–36]. The traditional treatment strategy for HCC
is radical resection, but the rate of recurrence is very high,
and the 5-year survival rate is low [37–41]. Thus, the
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Figure 6: Expression and biological role of miR-497-5p in HCC in vitro. (a) DNA methylation of miR-497-5p in cancer cell lines from the
Cancer Cell Line Encyclopedia (CCLE) dataset. (b) DNA methylation of miR-497-5p in 28 liver cancer cell lines from CCLE dataset. (c)
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shown are the means ± SD of three independent experiments. (e) Huh7, Hep3B, and HepG2 cell counts in 96-well plate after transfection
with negative control or miR-497-5p overexpression plasmids at the indicated day. Statistical analyses were performed with one-way
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Figure 7: Association between miR-497-5p target gene expression and their clinical features with HCC prognosis. (a) miR-497-5p target
prediction using online target gene prediction programs DIANA-miRPath, miRDB, miRTarBase, and miRanda for KEGG analysis of
common predicted target genes. (b) qRT-PCR was used to measure the mRNA level of four predicted target genes ACTG1, CSNK1D,
PPP1CC, and BIRC5 in Huh7, Hep3B, and HepG2 cells after transfection with negative control or miR-497-5p overexpression plasmids.
(c) Expression levels of ACTG1, CSNK1D, PPP1CC, and BIRC5 in normal liver (n = 160) and liver cancer (n = 369) samples from the
GEPIA dataset. (d) Correlation of miR-497-5p expression levels with target genes ACTG1, CSNK1D, PPP1CC, and BIRC5 in liver cancer
samples (n = 369) from the TCGA dataset. (e) Kaplan-Meier survival analysis to evaluate the prognostic value of ACTG1, CSNK1D,
PPP1CC, and BIRC5 expression for OS of HCC patients from the TCGA dataset. Statistical analyses were performed with one-way
ANOVA (∗p < 0:05 and ∗∗p < 0:01).
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prognosis of HCC is still unsatisfactory. Over the past years,
due to the combination of the application of molecular biol-
ogy techniques and tumor histological examination, great
progress has been made in the disease [42–46]. miRNAs are
considered an ideal biomarker compared with other bio-
markers, miRNAs with sufficient sensitivity in clinical diag-
nosis and treatment [47–50].

Up to now, many studies have demonstrated that miRNA
expression profiles in HCC and nontumor tissues are signif-
icantly different [51–54]. Certain miRNAs such as miR-21,
miR-221, and miR-222 are frequently overexpressed in
HCC [55–62]. These miRNAs have been demonstrated to
promote oncogenesis by negatively regulating important
tumor-suppressive protein-coding genes in HCC [63–67].
On the other hand, miRNAs such as miR-122, miR-125b,
miR-139, miR-101, and let-7 are recurrently downregulated
in HCC [68–72]. These miRNAs exert tumor-suppressive
effects by repressing oncogenes in HCC [73–75]. miRNA
deregulation is an early event that can be detected in prema-
lignant liver dysplastic nodules and can further accumulate
during liver carcinogenesis [76–79].

Interestingly, additional studies showed the existence of a
large number of stable miRNAs in human serum/plasma,
which laid the foundation for studying the role of serum/-
plasma microRNAs in the diagnosis and prognosis of HCC
[80–83]. Differential expression of several serum microRNAs,
including miR-16, miR122, miR-21, miR-223, miR-25, miR-
375, and let-7f, in patients with HCC, patients with hepatitis
B, and healthy individuals was reported recently [84–87].

The aberrant expression of miR-497-5p plays an essential
role in tumorigenesis. miR-497-5p has been proven to be
downregulated in NSCLC, gastric cancer, colorectal cancer,
ovarian cancer, renal cell carcinoma, and melanoma [88–
95]. Furthermore, in vitro and in vivo studies revealed that
miR-497-5p overexpression suppressed HCC cell prolifera-
tion, colony formation, and metastasis [96]. Thus, for a more
comprehensive understanding of the clinical value of miR-
497-5p in HCC, we use bioinformatics and qRT-PCR assays
to investigate the expression level of miR-497-5p in HCC tis-
sues, as well as its association with overall survival and
progress-free survival.

In our present study, the raw datasets from the GEO
database and TCGA database were used to analyze miR-
497-5p expression in HCC patients. The results demon-
strated that the miR-497-5p expression level was significantly
downregulated in HCC compared with adjacent normal tis-
sues. A further correlation study showed that HCC with
low miR-497-5p expression was significantly correlated with
shorter OS and poor prognosis. In addition, we used quanti-
tative real-time PCR to detect the expression of hsa-miR-
497-5p in HCC biopsies and paracancerous tissues. This
finding is consistent with our previous analysis data; the
expression level of miR-497-5p in HCC was significantly
downregulated contrasted with adjacent noncancerous tis-
sues. Moreover, low expression of hsa-miR-497-5p corre-
lated with poor clinicopathologic features, such as shorter
OS and PFS. Furthermore, the correlation between hsa-
miR-497-5p expression and clinical characters shows hsa-
miR-497-5p expression downregulation and positive associa-

tion with tumor diameter and negative association with OS
and PFS. Our conclusions are consistent with previous stud-
ies; hsa-miR-497-5p is considered a tumor suppressor, which
can inhibit the proliferation and invasion of tumor cells in
HCC and NSCLC [97–99]. These results elucidated that the
role of hsa-miR-497-5p exerts tumor-suppressive effects on
clinical HCC samples.

In summary, our present study clarified the clinical and
prognostic significance of hsa-miR-497-5p in HCC. The
expression of hsa-miR-497-5p not only plays a significant
role in the development and progression of HCC but also
may serve as a potential diagnostic biomarker for HCC
patients. The results also implied that hsa-miR-497-5p may
be a promising and specific therapeutic target inductor of
overexpression; cellular levels of miR-497-5p may be a new
clinical therapeutic strategy for the treatment of HCC.
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