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Uncovering hidden mixture dependencies among variables has been investigated in the literature using mixture R-vine copula
models.&ey provide considerable flexibility for modeling multivariate data. As the dimensions increase, the number of themodel
parameters that need to be estimated is increased dramatically, which comes along with massive computational times and efforts.
&is situation becomes even much more complex and complicated in the regular vine copula mixture models. Incorporating the
truncation method with a mixture of regular vine models will reduce the computation difficulty for the mixture-based models. In
this paper, the tree-by-tree estimation mixture model is joined with the truncation method to reduce computational time and the
number of parameters that need to be estimated in the mixture vine copula models. A simulation study and real data applications
illustrated the performance of the method. In addition, the real data applications show the effect of the mixture components on the
truncation level.

1. Introduction

Copula is a statistical tool used to model dependencies’
structures among variables independently from their mar-
gins. Several forms of copula functions exist, which can deal
with a wide range of dependency shapes ranging from in-
dependent to non-Gaussian distribution. Elliptical copulas
are most commonly used multivariate models, due to their
ease of computation. Archimedes copula is another famous
class of copula functions. &ese families are able to control a
wide class of dependency structures including heavy tails.
For example, the Clayton copula function can capture a
lower tail dependence, while the Gumbel copula is an upper
tail function. Formore copula families, interested readers are
referred to Nelsen [1] and Joe [2].

Copula has received interesting attention in many ap-
plications. For example, Bárdossy [3], Kazianka and Pilz [4]
(geostatistic), and Patton [5] (a review of copula models in
economics area) [6] used a copula-based multivariate model
to analyse the drought in the Northeast Brazil. As each
copula family is corresponding to a specific shape of

dependency, the copula imposes the same dependence
structure type among all variables, which may have different
shapes of dependency. Assuming the same relationship
among all variables may not be the case for most of the real
life datasets. Gaussian and t-student copulas are the most
commonly used families in high-dimensions’ cases, while
other families are almost restricted to bivariate cases. Pa-
rameters restriction and limited type of the multivariate
copula are two main reasons for leading the copula-based
model to be inappropriate for modeling high-dimensions’
datasets that exhibit multiple dependency types among
variables. Even though mixture copula models show sig-
nificant results comparing to noncopula mixture models
(see, for example, [7, 8]), they still suffer from the same
limitations as copula-based models. &erefore, pair copula
or regular vine copula model has been established in the
literature to address the drawbacks of copula models. Pair
copulas are hierarchical models, which model only two
variables at a time using bivariate copula functions (pair
copula). In vine copula models, the type of bivariate copula
does not necessarily need to be identical for all pair of
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variables. &erefore, multivariate distribution is still valid
even if, for each pair of variables, we determine the copula
that best fits the data [9, 10]. &is forms the main strength of
the vine copula models as the dependence shapes may vary
from one pair of variables to another. Since 2009, vine copula
models have received raising interests in the literature (see,
for example, [11–16]).

Although the individual choice for the best fit bivariate
copula is one of the main strengths of vine copula models,
identifying the type of each bivariate copula can be a very
difficult challenge. For this reason, the mixture model has
been incorporated with the copula model as a solution for
the identification problem of copula models. Mixture
models are commonly used to uncover the complex de-
pendency pattern among variables. &e Gaussian mixture is
one of the most widely used methods in literature. For
example, Yuan et al. [17] introduced the Gaussian mixture
regression model for quality prediction in multiphase/
multimode processes. Madenova and Madani [18] applied
Gaussian mixture model-based clustering for partitioning
the Fe ore deposit into the geometallurgical clusters with
similar properties. &e traditional model, such as t-student
and Gaussian mixture models assume that all the mixture
components follow the same parametric distribution form,
which is almost not the case in the real applications. &e
fitting Gaussian mixture model for non-Gaussian data, may
result in a poor modeling [19]. In addition, mixture copula
models suffer from the same limitation of the copula model
in high-dimensional cases. Unlike these models, the mixture
vine copula does not require all the mixture components to
follow the form. Mixture pair-copula models are one of the
main solutions for identifying the best fit bivariate copula
types for each copula term. Reducing the misspecification of
pair-copula types and uncovering complex hidden depen-
dency among variables are the two main advantages of the
mixture pair-copula models (see, for example, [19–22]).
Unfortunately, besides the identification problem, R-vine
copula models also suffer from the dramatic increase of the
number of the model parameters in high-dimension. For
n-dimension R-vine copula, one need to estimate
((n∗ (n − 1))/2), which becomes huge for large datasets.
&e mixture regular vine copula even increases the diffi-
culties of the pair-copula models, which can be discussed in
two points. First, estimating the mixture components for
each pair of variables is not straightforward. Second, the
number of the parameters to be estimated increases dra-
matically with the number of the mixture components and
the dimension. To overcome the complexity of the model’s
parameter estimation and, hence, the model complexity, the
truncation vine copula was first introduced by Brechmann
et al. [23] and Brechmann and Joe [24]. By the truncation
method, all the bivariate copulas at the higher level (at the
truncated level) are replaced by independent copulas. Hence,
the parameters at these levels do not need to be estimated
which result in reducing the computation complexity of the
model significantly.

In mixture vine-copula models, Roy and Parui [19] have
used fixed truncation levels (at the second tree) based on
fixed types of mixture pair-copula components. However,

the truncation levels should be estimated as fixing the
truncation levels may result in losing some important in-
formation among the variables. &at is, after the truncation
level, all the pair of variables must (almost) show inde-
pendence structures; otherwise, the model should not be
truncated. In the mixture vine copula models, the mixture
components affect the truncation levels. &is can be shown
in the real data application in Section 6. Hence, in truncation
models, the modelers try to (hopefully) reduce the estimated
tree in the model. Hence, they need to estimate the optimal
tree where the model should be truncated. For the mixture
models, to the best of my knowledge, estimating the trun-
cation levels using statistical selection methods has not been
investigated yet in the literature, which is the main aim of
this work.

&e rest of the paper is structured as follows: Section 2
briefly discusses the theoretical background of the copula
and pair copula. Section 3 introduced the R-vine copula
mixture model and the expectation maximization algorithm
(EM), which is the algorithm used to estimate the model
parameters. A truncation method is introduced in Section 4.
&e truncation method with the R-vine copula mixture
model is illustrated with a simulation and real data appli-
cations in Sections 5 and 6, respectively.

2. Theoretical Background

&e aim of this section is to provide a general summary of
the theoretical background of copula and pair-copula
models. For more details, the interested readers are referred
to the given references.

Copula is a multivariate function that couples the
margins distribution to their one-dimension standard
uniform margin [1].

Definition 1 (see [25]). Copula is a multivariate distribution
function with standard uniform margins, such that

C: [0, 1]
n⟶ [0, 1], n≥ 2. (1)

Theorem 1. Let F be a n-dimensional distribution function
with marginal distribution F1, . . . , Fn. !en, there exists
n-dimensional copula function C such that,
∀x1, . . . , xn ∈ Rn,

F x1, . . . , xn( 􏼁 � C F1 x1( 􏼁, . . . , Fn xn( 􏼁( 􏼁. (2)

If Fn are continuous, then C is unique.

One main advantage of copula models is that the
modelers are able to model the margins independently from
the dependency structures, which is captured via the copula
function. Another advantage is the ability of copula families
to deal with a wide range of dependency forms including
non-Gaussian, Gaussian, and heavy tails. However, the
copula function imposes the same type of dependency
shapes among all the variables, even in the high-dimensions’
cases regardless of the strengths of the type of these de-
pendencies. &is forms one main limitation of the copula
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models. In addition, identifying the form of the copula
function that best fits the data is not an easy step as each
copula function associates with a specific shape of depen-
dency. &erefore, most copula models are limited to a bi-
variate case. &e multivariate copula is almost limited to
Gaussian and t-student. However, these families are inad-
equate to deal with nonelliptical dependency.

In 2009, Aas et al. [9] established a much more prom-
ising method, based on the work of Bedford and Cooke [26],
Bedford and Cooke [27], Joe [28], and Kurowicka and Cooke
[29], to address the problem of copula models in high di-
mensions. &eir method is known as vine copula, pair-
copula construction (PCC), and regular vine (R-vine)
copula. &e PCC method builds a multivariate model using
only bivariate copula (pair copula). &erefore, only two
variables are modeled at a time. Hence, &e PCC-based
model provides even much more model flexibility and ca-
pability than the copula-based model.

Definition 2 (tree, see [26]). T � N, E{ } is a tree (an acyclic
graph) with N nodes and E edges (connect each pairs of N ).

&e degree of the node is the total number of edges
connected to this node.

Definition 3 (vine and regular vine, see Ch. 4 in [29]). V is a
vine on n elements if

(i) V � (T1, T2, . . . , Tn−1), where T1 indicates the first
tree of the vine and so on.

(ii) T1 is a connected tree with its nodes
N1 � 1, 2, . . . , n{ } and edges E1.

(iii) For j � 2, 3, . . . , n − 1, Tj is a connected tree with
nodes Nj � Ej−1 and edges set Ej.
In addition, V becomes a regular vine on n elements
if

(iv) For j � 2, . . . , n − 1, if l � l1, l2􏼈 􏼉 and m � m1, m2􏼈 􏼉

inTj are two nodes connected by an edge inTj, then
exactly one of lj is equal to mj, j � 1 and 2. &is
condition is known as the proximity condition.
Under the proximity condition, two nodes in tree
(Tj+1) are only connected by an edge if they were
sharing a common node in the previous tree (Tj).

Kurowicka and Cooke [29] defined the D- and
C-vine models as follows:
If every node at the first tree of a regular vine is
connected at maximum with two nodes, then the
regular vine is called D-vine.
If at each tree Tj of a regular vine, there is one
particular node that is connected to all other nodes,
then the regular vine is called a C-vine. At the first
tree, this node is called a root node.

Definition 4 (regular vine (R-vine) specification, see
[27]). (F,V,B) is a regular vine copula (R-vine copula)
specification if

F � (F1, F2, . . . , Fn) is a vector of continuous invert-
ible distribution functions
V is an n−dimensional regular vine (R-vine)
B � Be|i � 1, 2, . . . , n − 1; e ∈ Ei􏼈 􏼉 is a set of the bi-
variate copula

Let x � (x1, . . . , xn) be a vector of random variables, e �

l, m{ } be an edge, i � 1, . . . , n, and De be a conditioning set of
the edge e. Bedford and Cooke [27] defined a regular vine
dependence as follows:

Definition 5 (regular vine (R-vine) dependence). A joint
distribution function F on x is said to realize an regular vine
copula specification (F,V,B) or exhibit regular vine de-
pendence if for each e ∈ Ei, the bivariate copula of XCel and
XCem given XDe is a member of the bivariate copula
Be(XDe). &e marginal distribution of Xi is Fi, for
i � 1, 2, . . . , n.

&e bivariate copula of XCel and XCem given XDe is a
conditional bivariate copula is assumed to be independent of
conditioning variables (see, [9, 30]).

Theorem 2 (see [31]). Let (F,V,B) be an n-dimensional
regular vine specification. !en, there is a unique distribution
function F that realizes (F,V,B). Its density is

f(1,2,...,n)(x) � 􏽙
n

j�1
fj xj􏼐 􏼑 􏽙

n−1

i�1
􏽙
e∈Ei

cCel,Cem |De
FCel|De

xCel
|xDe

􏼐 􏼑, FCem|De
xCem

|xDe
􏼐 􏼑􏼐 􏼑, (3)

where x � (x1, x2, . . . , xn), e � l, m{ }, xDe denotes condi-
tioning variables in a conditioning set De, i.e.,
xDe

� xi|i ∈ De􏼈 􏼉, and fi is the density of Fi, i � 1, 2, . . . , n.
Moreover, cCel,Cem|De

stands for the density function of bi-
variate copulas between edge e � l, m{ }.

Continuing to the last theorem, let e ∈ Ei, e � l, m{ },
l � l1, l2􏼈 􏼉, and m � m1, m2􏼈 􏼉 be the edge that joined Cel and
Cem. Joe [28] showed that the conditional marginal distri-
bution, FCel |De

(xCel
|xDe

) and FCem|De
(xCem

|xDe
), can be ob-

tained as follows:
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FCel|De
xCel

|xDe
􏼐 􏼑 �

zCCl|Dl
FCl,l1|Dl

xCl,l1
|xDl

􏼒 􏼓, FCl,l2|Dl
xCl,l2

|xDl
􏼒 􏼓􏼒 􏼓

zFCl,l2|Dl
xCl,l2

|xDl
􏼒 􏼓

≕ h FCl,l1|Dl
xCl,l1

|xDl
􏼒 􏼓, FCl,l2|Dl

xCl,l2
|xDl

􏼒 􏼓􏼒 􏼓,

(4)

where FCel |De
(xCel

|xDe
) and FCem|De

(xCem
|xDe

) are then called
transformed variables (see, [9] and [31]).

Both PCC and copula models share the same identifi-
cation problem, which is even much more harder in PCC
than copula models. Furthermore, for n-dimensional R-vine
copula, there are ((n∗ (n − 1))/2) parameters to be esti-
mated, which becomes huge for high-dimensions’ datasets.
&is number is, however, very large for mixture models. For
example, for mixture models, one needs to estimate (for
single parameters) (2K − 1)((n · (n − 1))/2), where K is the
number of the mixture components. However, the possible
estimated parameters of mixture PCC models is
(3K − 1)((n · (n − 1))/2). Hence, the number of model
parameters strongly depends on the number and the type of
the mixture components. For example, for the 31-dimen-
sional dataset and for 2 mixture components, one needs to
estimate 2790 parameters. &is number highly increases
with the dimensions and the number of the mixture com-
ponents. &erefore, model reduction is necessary to reduce
the model complexity of the mixture PCC models. &is can
be achieved by only modeling a limited number of vine trees
instead of the full models, where the higher-order trees are
set to independent copulas (see, [31]).

3. Mixture R-Vine Models and EM Algorithm

Mixture models facilitate modeling complex hidden cor-
relations among variables by fitting a sum of weighted
densities’ functions to the underlying problem. A finite
mixture pair-copula construction combines the benefits of
both the mixture and the vine copula models, in order to
provide huge flexibility and modeling capabilities for
modeling high-dimensions’ datasets. By doing so, the
mixture pair-copula models allow fitting different mixture

bivariate copulas for each pair of variables. &at is, mixture
vine copulas may be defined as a building block of the
mixture pair copulas.

3.1. Finite Mixture Model. Let X1 and X2 be two univariate
random variables, with N observations and continuous
cdfsF1 and F2, respectively. &en, their probability integral
transformation can be given by U1 � F(X1) and
U2 � F2(X2), respectively. Assume further that the inter-
esting part is in modeling the dependencies’ structure be-
tween two random variables, X1 and X2, using mixture
bivariate copulas. Hence, the density of the mixture bivariate
copulas, which model the bivariate dependence structures
between X1 and X2, is given by

c u1, u2|Θ( 􏼁 � 􏽘
K

k�1
πkck u1, u2|θk( 􏼁, (5)

where πk is an unknown parameter (known as a mixture
coefficient or weights) of the k th (k � 1, . . . , K) component
which satisfies the following:

0< πk < 1
􏽐

K
k�1 πk � 1

Θ is the set of all model parameters, while θk is the vector
of all the parameters of the k th component. In mixture
models, expectation maximization algorithm (EM algo-
rithm) is a commonly used method to estimate the model
parameters. Further details of this method will be introduced
in the next section.

3.2. EM Algorithm. &e expectation maximization algo-
rithm (EM) [32] is an estimation method with two steps, the
so-called expectation step (E-step) and the maximization
step (M-step). Suppose that a bivariate data sample
x � ((x11, x21), . . . , (x1n, x2n)) of size N, (n � 1, . . . , N), is
available. Suppose further that the data is converted to the
uniform distribution using the empirical cumulative dis-
tribution function. &en, the pseudosample of the copula is
given by u � ((u11, u21), . . . , (u1n, u2n)). &en, the log-
pseudo likelihood function of Θ is given as follows:

l(Θ) � log 􏽙
N

n�1
􏽘

K

k�1
πkck u1n, u2n|θk( 􏼁

⎧⎨

⎩

⎫⎬

⎭ � 􏽘
N

n�1
log 􏽘

K

k�1
πkck u1n, u2n|θk( 􏼁, (6)

whereΘ is the set of all model parameters, while θk is the set
of all the parameters of the k th component. Based on the idea
of the EM method, the observed data u is treated as in-
complete information, and hence, the EM algorithm in-
troduces latent variables zn � (zn1, zn2, . . . , znk) where
znk � 1 if the n th observation is drawn from the k th com-
ponent and znk � 0 otherwise. In other words, znk indicates
from which mixture component each observation was

drawn.&ese latent variables are assumed to be independent
and unconditionally distributed from the multinomial dis-
tribution such that

zn ∼ MK 1; π1, . . . , πk( 􏼁. (7)

Consequently, we now have the complete data:

uc
� un, zn( 􏼁. (8)
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&en, the complete-data log likelihood function, ℓc(Θ),
is given as follows:

ℓc(Θ) � 􏽘
N

n�1
􏽘

K

k�1
znklog πk + 􏽘

N

n�1
􏽘

K

k�1
znklogkck u1n, u2n|θk( 􏼁.

(9)

&e EM algorithm starts with initial values of the un-
known parameters Θ(0), and the two steps (E and M) are

repeated until convergence (ℓ(Θ)(m+1) − ℓ(Θ)(m)) is smaller
than a prespecified tolerance.

E-step: calculate the conditional expectation of the
complete data log likelihood, ℓc(Θ) in equation (9),
given the observed data and using the current estimate
of the parameter (Θ).
Suppose that we are at iteration m + 1. &en, the
conditional expectation of znk is calculated as follows:

􏽢znk � E znk| − u1,u2( 􏼁,Θ(m)
􏽨 􏽩 � P znk � 1| u1, u2( 􏼁,Θ(m)

􏽨 􏽩 �
π(m)

k ck u1n, u2n|θ(m)
k􏼐 􏼑

􏽐
K
s�1 π

(m)
s cs u1n, u2n|θ(m)

s􏼐 􏼑
. (10)

M-step: maximize the complete data log likelihood,
ℓc(Θ) (from E-step), with respect to (Θ) in order to
produce a new estimate of the model parameters
(Θ(n+1)). In this step, estimation of each component
parameter is computed independently, i.e.,
π(m+1)
1 , . . . , π(m+1)

k and θ(m+1)
1 , . . . , θ(m+1)

k .
&e new estimate of π(m+1)

k can be obtained as follows:

􏽢π(m+1)
k �

􏽐
N
n�1 􏽢z

(m)
nk

N
, (11)

while the updated of θ(m+1)
k can be obtained by max-

imizing the following equation using the numerical
maximization method:

􏽢θ
(m+1)

k � max
θ

􏽘

N

n�1
􏽘

K

k�1

􏽢z
(m)
nk log ck u1n, u2n|θ(m)

k􏼐 􏼑. (12)

4. Truncation R-Vine Copula Mixture Model

&e flexibility of pair-copula models reduces as the di-
mensions increase. Truncating R-vine models is one main
solution that plays a key role to address this problem of pair-
copula models. Truncating R-vine refers to replacing all the
pair copula in higher-order tress to independent copulas.
&e main idea of the truncation R-vine copula mixture
model can be presented in the following example.

Example 1 (truncation R-vine copula mixture
model). Considering 7-dimensional mixture R-vinemodels,
with twomixture components of single parameters’ bivariate
copulas, as shown in Figure 1.

In this example, a mixture of two bivariate single pa-
rameter copulas is fitted to each pairs.&erefore, there are 63
parameters to be estimated for the full models. Assume that
this model is truncated at tree 3 (k � 3). Hence, we will have
a 3-truncated R-vine copula mixture model. By doing so, the
conditional mixture bivariate copulas at trees 4, 5, and 6 are
set to independent copulas. Hence, in this case, only 45
parameters need to be estimated instead of 63 as with the full
model.&at is because, in 3-truncated R-vine copulamixture
model, there are only 15 edges, while there are 21 edges for

the full R-vine copula mixture model. For very high-di-
mensions’ datasets with a large number of mixture com-
ponents (say 5), the truncations at the first trees will be very
reasonable.

4.1.Methodology. Brechmann et al. [23] developed the most
widely used truncation method, which truncated the R-vine
models sequentially, using different goodness model fit,
including Akaike information criteria (AIC) of Akaike [33]
and Bayesian information criteria (BIC) of Schwarz et al.
[34]. In this section, the sequential truncation method of the
Brechmann et al. [23] (Algorithm 1) (also see, Algorithm 7 in
[35]) is incorporating with R-vine copula mixture models
using well-known selection criteria. In this paper, the AIC,
BIC, and consistent Akaike information criteria (CAIC) of
Bozdogan [36] are employed. &e formulas of these criteria
are given as follows:

AIC � −2 ln L(􏽢θ) + 2P,

BIC � −2 ln L(􏽢θ) + P(ln(N)),

CAIC � −2 ln L(􏽢θ) + P(ln(N) + 1),

(13)

where 􏽢θ is the estimation values of the parameters, N is the
number of observation of the modeled variables, and P is the
number of the model parameters.

&e truncation of R-vine copula mixture models can be
summarized in the following steps:

(1) Select specific number of trees, say the first two trees
(2) Compute the selection criteria of the model
(3) Add a new tree to the previous model, in order to

obtain a new model
(4) Compute the selection criteria for the new model
(5) If the new model shows the poor contribution to the

previous model, based on the values of the selection
criteria, then truncate the R-vine copula mixture
model at the previous model

(6) If the new model shows the significant contribution
to the previous model, then iterate Steps 3 : 6.
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For example, consider the R-vine copula mixture model
shown in Example 1. At the first step, a small model (only the
first two trees) is constructed (firstmodel).&en, themixture of
two components of bivariate copulas is fitted to each pair of
variables of this model. &en, the model parameters are esti-
mated. After that, and at the second step, BIC1 is computed,
where BIC1 refers to the BIC of the firstmodel.&en, a new tree
is added to the model. Now, the model is constructed using
only three trees (second model). After that, BIC2 is computed

for the second model. If BIC1 <BIC2, then the model is
truncated at the second tree, and the first model is returned.
Otherwise, a new model is constructed by adding a new tree,
and the steps are iterated until the optimal truncated level is
reached.

As mentioned above, the truncation process with mixture
dependencies is complex and not straightforward as it is af-
fected by the combination of the bivariate copulas. For ex-
ample, one type of mixture bivariate copulas may cause the

2 6 7 1

5

4 3
26 67 71

15

14 43 Tree 1

26 67 71 14

15

43
27|6 61|7 74|1 13|4

75
|1

Tree 2

27|6 61|7 75|1 74|1 13|4
21|67 65|71 54|71 73|14

Tree 3

21|67 65|71 54|71 73|14
25|671 64|571 53|714

Tree 4

25|671 64|571 53|714
24|6571 63|5714

Tree 5

24|6571 63|5714
23|65714

Tree 5

Figure 1: 7-dimensional R-vine copula mixture model, 6 trees, 21 edges, and 63 parameters.

Input: R-vine tree structures.
copula data for n variables.
R-vine dimension: n.
R-vine trees: t � 0, . . . , n − 2.

Output: Truncated R-vine copula mixture model at level t, or the full R-vine copula mixture model, if there is no possible truncation.
for t � 0, . . . , n − 2 do
Constructed mixture model Mt+1 by considering the tree t + 1 and fitting mixture bivariate copula for each pair of variables.
Compute BIC for the mixture models Mt (first model) and mixture model Mt+1 (second model).
if BIC1 < BIC2 then
Truncated R-vine copula mixture at level t.

end if
end for

ALGORITHM 1: Sequential truncation of the R-vine copula mixture model.
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model to be truncated at one level, while the same model may
be truncated at different levels when fitting different mixture
components. &is potential result is illustrated in Section 6.

5. Simulation Study

To illustrate the performance of the sequential mixture
truncation method, a simulated data is generated from two-
component R-vine copula mixture model with only two
levels (see Figure 2). After that, the true model, three levels,
and full two-component 5-dimensional mixture R-vine
models are fitted to the data, respectively. &en, the AIC,
BIC, and CAIC are computed for each model. Since the test
aims to show the performance of the truncationmethod, and
for a comparison reason, the result of all the fitted R-vine
copula mixture models is reported.

Before reporting the final results, the idea of the sim-
ulation study is represented in much more detail using a
graph representation. Consider 5-dimensional, two com-
ponents, and R-vine copula mixture model. Figures 2–4
present 3 different R-vine copula mixture models. &ese
models are full R-vine copula mixture model, 3-levels, and 2-
levels truncated R-vine copula mixture models, respectively.
&e main difference between these models is the number of
trees to be modeled. For example, for the full R-vine copula
mixture models, there are 4 trees, and one needs to estimate
the whole model. However, in the case of the truncation
models, the conditional mixture bivariate copulas at levels 2
and 3 are replaced by independent copulas (􏽑c). Hence,
instead of modeling the whole model, one only needs to
estimate the mixture bivariate copulas up to the truncation
levels. For very large datasets, say 100 dimensions, this will
result in a very huge reduction of the model complexity and
the parameters that need to be estimated.

Tables 1–3 summarise the information of three fitted
models. &e summary includes the mixture type of the
bivariate copulas (at each pair) and mixture weights, while
Tables 4–6 report the result of the three models.

From Tables 4 and 5, the estimation values of the model
parameters at the first trees of all the models are very close to
the true values. Hence, the dependencies’ structures are
described well, and the performance of the EM algorithm is
satisfied. In addition, for the 3-levels truncated model, the
corresponding parameters of the mixture bivariate copulas
at trees 3 and 4 are very close to the independent boundary of
each bivariate copula. For example, at tree 3 of 3-levels
truncated mixture R-vine models, the parameters of Frank
and Gaussian copulas are −0.5 and 0.091, respectively. In
addition, the corresponding Kendall’s tau value of these
copulas is −0.040 and 0.061, which are very small, indicating
that the corresponding variables are almost independent.
Again, this illustrates the performance of the EM algorithm
to accurately estimate the model’s parameters.

After estimating the model parameters and testing the
model performance, the three model selection criteria are
computed for each model, in order to illustrate the ability of
the truncation method to select the most optimal truncation
level of the mixture R-vine models. &e values of the se-
lection criteria are shown in Table 7.

From Table 7, the truncated R-vine copula mixture
model at level 2 shows the best model fits, while the full
model shows the worst model fits. In addition, all the se-
lection criteria selected the true model (the model from
where the simulated data has been generated). Comparing
the selectionmethods’ values of the truncation R-vine copula
mixture model with the 3-levels truncated model, one can
clearly see that the model is truncated correctly. &at is, let
AIC1, BIC1, and CAIC1 correspond to the 2-levels truncated
R-vine copula mixture model and AIC2, BIC2, and CAIC2
are corresponding to the 3-levels truncated model. &en,
from the table, AIC1 < AIC2, BIC1 < BIC2, and CAIC1 <
CAIC2. &e same result holds when comparing the true
model with the full one. &erefore, the result can be
interpreted as evidence of the ability of the truncation
method to select the most optimal truncation level of the R-
vine copula mixture model. Hence, the performance of the
truncation method with R-vine copula mixture is illustrated.

6. Real Data Applications

&is section aims to demonstrate the performance of the se-
quential truncation method of R-vine copula mixture models
when applied to real datasets. For this reason, two high-di-
mensional real datasets are tested, namely, Vowel and Iono-
sphere datasets, which were obtained from the repository [37].
&ey consist of 990 and 351 observations, respectively. As the
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Пc Пc Tree 3

35|12 34|12
Пc Tree 4

Figure 2: 2-levels truncated R-vine copula mixture model. 5-di-
mensional, 4 trees, 7 edges (nonindependent mixture of bivariate
copulas and 3 edges (independent bivariate copulas)), and 21
parameters.
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Figure 4: 3-levels truncated R-vine copulamixturemodel. 5-dimensional, 4 trees, 9 edges (nonindependentmixture of bivariate copulas and
one edge (independent bivariate copulas)), and 27 parameters.
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Table 1: Summary of the two-component full R-vine copula mixture model.

Edge w Type (1st) θ (τ) Type (2nd) θ (τ)

1st tree
2, 5 0.2 C 3 (0.6) Rot.C90 −4 (−0.67)

1, 4 0.3 F 4 (0.39) G 3 (0.67)
1, 3 0.8 J 5 (0.68) F −6 (−0.51)

1, 2 0.3 F 7 (0.56) Sur.G −5 (−0.8)
2nd tree

1, 5; 2 0.6 G 5 (0.8) Ga 0.5 (0.33)
2, 4; 1 0.7 F 4 (0.39) J 3 (0.52)
2, 3; 1 0.7 Ga 0.3 (0.19) G 3 (0.67)

3rd tree
3, 5; 1, 2 0.5 F 0.6 (0.07) Ga 0.8 (0.59)
3, 4; 2, 1 0.3 Ga 0.5 (0.33) Ga 0.4 (0.26)

4th tree
4, 5; 3, 1, 2 0.7 G 3 (0.67) C 1.9 (0.49)

Table 2: Summary of 3-levels truncated R-vine copula mixture models.

Edge w Type (1st) θ (τ) Type (2nd) θ (τ)

1st tree
2, 5 0.2 C 3 (0.6) Rot.C90 −4 (−0.67)

1, 4 0.3 F 4 (0.39) G 3 (0.67)
1, 3 0.8 J 5 (0.68) F −6 (−0.51)
1, 2 0.3 F 7 (0.56) Sur.G −5 (−0.8)

2nd tree
1, 5; 2 0.6 G 5 (0.8) Ga 0.5 (0.33)
2, 4; 1 0.7 F 4 (0.39) J 3 (0.52)
2, 3; 1 0.7 Ga 0.3 (0.19) G 3 (0.67)

3rd tree
3, 5; 1, 2 0.5 F 0.6 (0.07) Ga 0.8 (0.59)
3, 4; 2, 1 0.3 Ga 0.5 (0.33) Ga 0.4 (0.26)

4th tree
4, 5; 3, 1, 2 — 􏽑c 0 (0) — —

Table 3: Summary of 2-levels truncated R-vine copula mixture models.

Edge w Type (1st) θ (τ) Type (2nd) θ (τ)

1st tree
2, 5 0.2 C 3 (0.6) Rot.C90 −4 (−0.67)

1, 4 0.3 F 4 (0.39) G 3 (0.67)
1, 3 0.8 J 5 (0.68) F −6 (−0.51)

1, 2 0.3 F 7 (0.56) Sur.G −5 (−0.8)

2nd tree
1, 5; 2 0.6 G 5 (0.8) Ga 0.5 (0.33)
2, 4; 1 0.7 F 4 (0.39) J 3 (0.52)
2, 3; 1 0.7 Ga 0.3 (0.19) G 3 (0.67)

3rd tree
3, 5; 1, 2 — 􏽑c 0 (0) — —
3, 4; 2, 1 — 􏽑c 0 (0) — —

4th tree
4, 5; 3, 1, 2 — 􏽑c 0 (0) — —
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Table 4: Summary of the two-component full R-vine copula mixture model.

Edge w (SD) Type (1st) θ (τ) (SD) Type (2nd) θ (τ) (SD)
1st tree

2, 5 0.202 (0.015) C 3.082 (0.605) (0.356) Rot.C90 −4.032 (−0.668) (0.039)
1, 4 0.301 (0.063) F 4.056 (0.390) (0.594) G 3.004 (0.666) (0.464)
1, 3 0.802 (0.014) J 5.005 (0.677) (0.183) F −6.109 (−0.517) (0.436)
1, 2 0.301 (0.014) F 7.085 (0.565) (0.575) Sur.G −5.006 (−0.8) (0.154)

2nd tree
1, 5; 2 0.600 (0.030) G 4.999 (0.799) (0.309) Ga 0.497 (0.332) (0.039)
2, 4; 1 0.688 (0.062) F 4.151 (0.398) (0.474) J 2.912 (0.500) (0.464)
2, 3; 1 0.689 (0.064) Ga 0.295 (0.191) (0.042) G 3.006 (0.661) (0.436)

3rd tree
3, 5; 1, 2 0.592 (0.238) F −0.501 (−0.040) (2.169) Ga 0.091 (0.061) (0.209)
3, 4; 2, 1 0.338 (0.244) Ga 0.086 (0.058) (0.180) Ga −0.076 (−0.051) (0.166)

4th tree
4, 5; 3, 1, 2 0.518 (0.148) G 0.985 (0.005) (0.142) C 0.031 (0.014) (0.098)

Table 5: Summary of 3-levels truncated R-vine copula mixture model.

Edge w (SD) Type (1st) θ (τ) (SD) Type (2nd) θ (τ) (SD)
1st tree

2, 5 0.202 (0.015) C 3.082 (0.605) (0.356) Rot.C90 −4.032 (−0.668) (0.039)
1, 4 0.301 (0.063) F 4.056 (0.390) (0.594) G 3.004 (0.666) (0.464)
1, 3 0.802 (0.014) J 5.005 (0.677) (0.183) F −6.109 (−0.517) (0.436)
1, 2 0.301 (0.014) F 7.085 (0.565) (0.575) Sur.G −5.006 (−0.8) (0.154)

2nd tree
1, 5; 2 0.600 (0.030) G 4.999 (0.799) (0.309) Ga 0.497 (0.332) (0.039)
2, 4; 1 0.688 (0.062) F 4.151 (0.398) (0.474) J 2.912 (0.500) (0.464)
2, 3; 1 0.689 (0.064) Ga 0.295 (0.191) (0.042) G 3.006 (0.661) (0.436)

3rd tree
3, 5; 1, 2 0.592 (0.238) F −0.501 (−0.040) (2.169) Ga 0.091 (0.061) (0.209)
3, 4; 2, 1 0.338 (0.244) Ga 0.086 (0.058) (0.180) Ga −0.076 (−0.051) (0.166)

4th tree
4, 5; 3, 1, 2 — 􏽑c 0 (0) — —

Table 6: Summary of 2-levels truncated R-vine copula mixture models.

Edge w (SD) Type (1st) θ (τ) (SD) Type (2nd) θ (τ) (SD)
1st tree

2, 5 0.202 (0.015) C 3.082 (0.605) (0.356) Rot.C90 −4.032 (−0.668) (0.039)
1, 4 0.301 (0.063) F 4.056 (0.390) (0.594) G 3.004 (0.666) (0.464)
1, 3 0.802 (0.014) J 5.005 (0.677) (0.183) F −6.109 (−0.517) (0.436)
1, 2 0.301 (0.014) F 7.085 (0.565) (0.575) Sur.G −5.006 (−0.8) (0.154)

2nd tree
1, 5; 2 0.600 (0.030) G 4.999 (0.799) (0.309) Ga 0.497 (0.332) (0.039)
2, 4; 1 0.688 (0.062) F 4.151 (0.398) (0.474) J 2.912 (0.500) (0.464)
2, 3; 1 0.689 (0.064) Ga 0.295 (0.191) (0.042) G 3.006 (0.661) (0.436)

3rd tree
3, 5; 1, 2 — 􏽑c 0 (0) — —
3, 4; 2, 1 — 􏽑c 0 (0) — —

4th tree
4, 5; 3, 1, 2 — 􏽑c 0 (0) — —
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aim of this paper is to incorporate the truncation method with
R-vine copulamixturemodels, the focus will be on fixedR-vine
copula mixture models, in order to avoid extra complexity and
model computation. For each dataset, different fixed R-vine
copula mixture models are used.

Before illustrating the performance of the truncation
method on the R-vine copula mixture models, full infor-
mation of the fitted mixture bivariate copulas for each
dataset of each model is given in Table 8, where Gaussian
(Ga), Rotated Clayton 90 degree (Rot.C (90)), Rotated
Gumbel 90 degree (Rot.G (90)), Frank (F), Rotated Joe 180
degree, Rotated Gumbel 180 degree (Rot.G (180)), and
Rotated Joe 270 degree (Rot.J (270)) stand for the fitted
bivariate copulas and their short names.

&e dimensions of these datasets are 10 and 32, re-
spectively. Hence, there are two different full R-vine copula
mixture models, one with 10-dimensional, 9 trees, and 45
edges, while the second one is 32-dimensional R-vine copula
mixture with 31 trees and 496 edges. For these models, and
unlike nonmixture R-vine model, the number of the pa-
rameters to be estimated strongly depends on the type and
the number of the mixture components. For example, for 4-
mixture components of single parameter bivariate copulas,

the second model will contain 3, 472 parameters. One can
imagine how much the significant reduction of the model
complexity will be obtained if the truncation level can be
reached at the first levels. Another important point, as
mentioned above, is the influences of the mixture compo-
nents on the truncation levels. &ese two points are illus-
trated in Tables 9 and 10.

From Tables 9 and 10, the two main points, mentioned
above, are illustrated. First, from Table 9, the truncation level
is strongly influenced by the type of the mixture compo-
nents. For first and second mixture models, there is no
possible truncation level, while the third mixture model is
truncated at level 7. Hence, the truncation level should not
be fixed and need to be estimated, in order to avoid ignoring
any possible information. Furthermore, for the third mix-
ture model, and by truncation method, there are 27 pa-
rameters that not need to be estimated in comparison with
the full model (third model without the truncation level).
For the second dataset, both mixture models are truncated at
the third levels. &erefore, there are only 609 parameters to
be estimated out of 3, 472, which provides a very significant
reduction of the model computation complexity and effort,
which illustrates the second point mentioned above.

Table 7: Selection criteria values of the traditional, fixed, and new proposed models.

Simulated dataset with 1500 observations
Model AIC BIC CAIC
Truncated MRVM at level 2 −9103.53 −8991.952 −8970.952
Truncated MRVM at level 3 −9095.752 −8953.039 −8926.179
Full MRVM −9090.656 −8932.162 −8902.332

Table 8: Selection criteria values of the second scenario of the simulation study.

Model No. of mixture components Component type
Vowel Dataset
1 3 Ga, Rot.C (90), and Rot.G (90)
2 4 F, Ga, Rot.C (90), and Rot.G (90)
3 5 C, Rot.C (90), Rot.G (90), G, and Rot.J (180)
Ionosphere Dataset
1 4 C, Rot.J (90), Rot.G (180), and Rot.C (180)
2 4 C, Rot.J (270), G, and F

Table 9: Selection criteria values of the second scenario of the simulation study.

Vowel dataset
Model Criteria T1 T2 T3 T4 T5 T6 T7 T8 T9

1
AIC −2251.271 −2627.365 −2893.095 −3175.234 −3347.374 −3571.632 −3680.863 −3731.910 −3754.592
BIC −2119.033 −2367.787 −2550.256 −2729.543 −2808.627 −2974.112 −3053.956 −3080.515 −3093.401
CAIC −2092.033 −2314.787 −2480.256 −2638.543 −2698.627 −2852.112 −2925.956 −2947.515 −2958.401

2
AIC −2248.314 −2636.790 −2913.117 −3212.841 −3429.796 −3683.609 −3787.775 −3850.875 −3883.757
BIC −2101.383 −2333.132 −2521.301 −2713.275 −2827.378 −3022.419 −3087.403 −3106.424 −3124.613
CAIC −2071.383 −2271.132 −2441.301 −2611.275 −2704.378 −2887.419 −2944.403 −2954.424 −2969.613

3
AIC −2195.317 −2567.953 −2783.818 −3035.184 −3259.367 −3471.338 −3529.098 −3564.625 −3572.847
BIC −2063.079 −2283.886 −2343.025 −2471.948 −2607.973 −2746.478 −2760.159 −2736.913 −2730.442
CAIC −2036.079 −2225.886 −2253.025 −2356.948 −2474.973 −2598.478 −2603.159 −2567.913 −2558.442
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7. Conclusion

Modeling only two variables at a time using (mixture) bi-
variate copulas is one of the main benefits of (mixture) pair-
copula models. However, this flexibility is reduced with the
dimensions, due to the large number of the model pa-
rameters to be estimated. In this paper, the truncation
method was incorporated with mixture R-vine models.
Estimating the truncation levels for the mixture R-vine
model is not a straightforward approach as the effect of the
mixture components on the result of the models. &e
performance of the truncation method with the EM algo-
rithm was illustrated. &e simulation study showed the
ability of the model to accurately estimate the truncation
level and the model parameters. &e real data study showed
the significant reduction of the model computation. In
addition, from the real study, the effect of the mixture
components on the truncation level was illustrated.

&e remaining questions are how would estimating the
mixture components, for each pair of variables, affect the
optimal truncation level? In addition, how could ordering
the variables, based on the mixture components, provide a
new way to estimate the mixture components of each pair of
variables and how would it affect the truncation level? &ese
questions are left as future works.
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