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Wendkouni Yaméogo1 and Diakarya Barro 2
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In financial analysis, stochastic models are more and more used to estimate potential outcomes in a risky framework. +is paper
proposes an approach of modeling the dependence of losses on securities, and the potential loss of the portfolio is divided into
sectors each including two subsectors. +e Weibull model is used to describe the stochastic behavior of the default time while a
nested class of Archimedean copulas at three levels is used to model the maximum of the value at risk of the portfolio.

1. Introduction

Stochastic models are more and more used in financial
analysis, and they allow institutions to include uncertainties
in their estimates, which account for situations where
outcomes are risky. In particular, the copula functions are
used to capture the dependence of the price movement of
financial instruments. +e word “copulas” was first intro-
duced by Nelsen [1] in a pioneering work, under the well-
known theorem which bears his name and which clarifies
that for any n-dimensional distribution F � (F1, . . . , Fn)

with continuous marginal, there exists a unique copula CF

mapping Rn to [0, 1]n such that (x1, . . . , xn)T⟶
(F1(x1), . . . , Fn(xn))T with

F x1, . . . , xn( 􏼁 � CF F1 x1( 􏼁; . . . ; Fn xn( 􏼁( 􏼁. (1)

Archimedean copulas form a family of copulas used in
the construction of multivariate distributions involving one-
dimensional generator functions.

Well defined by Savu and Trede [2], the hierarchical
Archimedean copulas (HACs) offer more flexibility than
the classic Archimedean family. In financial modeling, the
HACs allow, at the first level, the modeling of the joint
dependence of firms including similar sectors. At the

second level, the Archimedean copulas, subcopulas of the
inners, can beused to combine the sectors. HACs therefore
make it possible to model the dependence between a large
number of assets in a flexible and intuitive way. Partic-
ularly, Gumbel copula, which belongs both to the
Archimedean class and the extremal one, is a suitable
model used in financial applications (according to Hofert
[3]), and it is easy to simulate in hierarchical version
(according to McNeil [4]).

+e HACs are used in the management of default risk.
+is default is triggered by a formal credit specified in the
contract.+is event can be the bankruptcy of the company, a
default, or the restructuring of its debt. For the evaluation of
these, products derived from credits of intensity models are
used. +e existing intensity models are constant intensity
(λt � λ) by pieces such as

λt � 􏽘

q

k�1
λk1 Tk− 1 < t ≤ Tk{ }. (2)

In this case, the default time follows the exponential
distribution with parameter λ intensity governed by an
extended CIR process. In the domain of quantitative finance,
large portfolio managersneed stochastics models
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whichcombine both nested Archimedean copulas and ex-
treme valueslaws.

In our study, we consider the valuation of credit de-
rivatives that the default intensity also called the hazard rate
is given by

hθ(x, k, λ) �
k

λ
x − θ
λ

􏼠 􏼡

k− 1

, (3)

that is, the default time follows Weibull’s law (with λ> 0 and
k≥ 1 ), whose law covers both a whole family of law.

+e major contribution of this paper is the study of the
dependence of losses of securities in a large portfolio and the
maximum of values at risk of the same portfolio. We show
that thhe default time of eachasset follows theWeibull law by
using a partially nested Archimedean copula at three levels.
+e rest of our paper is organized as follows. Section 2 is
devoted to the preliminaries of the study where the main
properties of both the classical and nested Archimedean
copulas and an overview ofWeibull negative distribution are
given. In Section 3, we study the portfolio losses and default
time modeling while Section 4 deals with the nested
Archimedean copulas and losses. In Section 5, sampling the
hightest values at risk is clarified.

2. Materials and Methods

In this section, we give important definitions and useful
properties on Archimedean copulas of extreme values and
the value at risk. +ese results are necessary for our ap-
proach. We refer the readers to Schonbucher [5], Capéraà
et al. [6], and Cherubini et al. [7] for the applications of
Archimedean copulas to different degrees of quantitative
finance, Savu and Trede [2] or Hofert and Scherer [8] for
hierarchical Archimedean copulas, Veysseyre [9] for details
on using Weibull law, and Tyrrell Rockafellar and Uryasev
[10] and Roncalli [11] for the value at risk.

2.1. An Overview of Archimedean and Extremal Copulas.
Archimedean copulas play an important role in practical
applications.

Definition 1. An n-dimensional copula C is an Archimedean
one if there exists a continuous, strictly decreasing, and
convex function φ: [0, 1]⟶ [0, +∞], completely mono-
tone on [0;∞], and (n − 2) times derivativable such as

(− 1)
k φ− 1
􏼐 􏼑

(k)
(t)≥ 0, for all k � 1, 2, . . . , n − 2, (4)

called the Archimedean generator function of C, such that,
for all (u1, . . . , un) ∈ [0, 1]n,

C u1, . . . , un( 􏼁 � φ φ− 1
u1( 􏼁 + · · · + φ− 1

un( 􏼁􏽨 􏽩, ui ∈ [0, 1]
n since 􏽘

n

i�1
φ ui( 􏼁≤φ(0), 0, else,􏼨 (5)

where the generalized inverse of the Archimedean generator
is given by φ− 1(y) � inf t ∈ [0, 1]: φ(t)≤y􏼈 􏼉. +e generator
must be chosen from class C2 (a C2 function has both a
continuous first derivative and a continuous second de-
rivative) so that φ(1) � 0,φ′(u)≤ 0 et φ″(u)> 0.

Even if Archimedean copulas simulate tails of distributions,
their use becomes restrictive for copulas of high-dimensional
analysis. Moreover, copula depends on only one parameter
which applies to all the steps. +e use of hierarchical copulas
allows to bypass the restrictions caused by Archimedean
copulas. +ere are partially nested Archimedean copulas and
fully nested Archimedean copulas. Here, we use partially nested
Archimedean copulas. For example, by coupling margins of the
extreme value theory (EVT) with the multivariate Gumbel
copula, we obtain the distribution of multidimensional extreme
value according to Sklar theorem.

G x1, . . . , xn( 􏼁 � exp − 􏽘
n

i�1
− lnG
∗

xi( 􏼁􏼂 􏼃
θ⎡⎣ ⎤⎦

(1/θ)

⎛⎝ ⎞⎠, (6)

where G∗ is a suitable normalized limit of law of maxima
such that

G
∗

xi( 􏼁 � lim
n⟶+∞

P
Mn− bn

an

≤ xi􏼢 􏼣, (7)

with (an)> 0 and (bn) ∈ R being normalizing coefficients
and Mn being the statistic of maxima. An extreme value
copula verifies the following max-stability relation:

C u
k
1, . . . , u

k
n􏼐 􏼑 � C

k
u1, . . . , un( 􏼁, (8)

for all ui ∈ [0, 1] for i � 1, . . . , n.

2.2. An Overview of Weibull Negative Distribution. In sto-
chastic analysis, the Weibull law is a continuous proba-
bilitydistribution within the extreme values family as well
as the Gumbel and the Frechet laws. With three param-
eters (for x> 0 ), this law is characterized as follows:
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fθ(x; k; λ) �
k

λ
x − θ
λ

􏼠 􏼡

k− 1

exp −
x − θ
λ

k

􏼠 􏼡􏼨 􏼩, the density function,

Fθ(x; k; λ) � 1 − exp −
x − θ
λ

k

􏼠 􏼡􏼨 􏼩, the distribution function,

Sθ(x; k; λ) � exp −
x − θ
λ

k

􏼠 􏼡, the survival distribution function,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where θ � min(x), k> 0 is the shape parameter, and λ> 0 is
the scale parameter.

We have below graphical representations of the func-
tions of density and distribution of Weibull law for same
values of parameters. Figure 1is taken from [12].

One of the uses of Weibull distribution is the extreme
value theory where the asymptotic behavior of distributions,

mainly for component-wise maxima of laws, is appropriately
normalized. Particularly, in one-dimensional extreme
framework, the well-known Fisher–Tippett–Gnedenko
theorem [13] shows that the three following distributions
can characterize these asymptotic behaviors:

Λ(x) � exp − exp(− x)􏼈 􏼉;∞< x<∞,Gumbel distribution,

Φθ(x) � exp − x
− θ

􏽮 􏽯; x> 0; θ> 0, Fréchet distribution,

Ψθ(x) � exp − (− x)
θ

􏼐 􏼑; x> 0, θ > 0,Weibull distribution.

(10)

+ese one-dimensional extreme values distributions can
be unified by the three real-valued parametricdistribution,
the so-called generalized extreme values (GEV) model,
defined by

GEV(μ,σ,ξ)(y) � exp − 1 + ξ
y − μ
σ

􏼒 􏼓􏼔 􏼕
(− 1/ξ)

+
􏼨 􏼩, if ξ ≠ 0,

(11)

where u+ � max(u, 0) and μ ∈ R􏼈 􏼉, σ > 0{ }, and ξ ∈ R{ } are,
respectively, the parameters of location.

Notice that instead of the generalized type of marginal, it
is not restrictive to consider any of the three types given by
the relation (10). Indeed, these three models are linked each
to other by the following functional transformations, even in
spatial context:

Y ∼ Φθ⇔lnY
θ ∼ Λ⇔

− 1
Y
∼ Ψθ⇔Z � μ(x) +

σ(x)

ξ(x)
Y
ξ(x)

− 1􏽨 􏽩 ∼ GEV(σ(x),μ(x),ξ(x)). (12)

2.3. An Overview of the Value at Risk. In actuarial and fi-
nancial sciences, the value at risk (VaR) quantifies nu-
merically the size of the loss for which there is a low
probability of being exceeded. It is characterized by the
confidence level, the time horizon chosen, and the distri-
bution of profit or loss.

Let X1, . . . , Xn be n random independent variables,
identically distributed with common distribution function F.
A simple way to study the behavior of extreme events is to
consider the random variable Mn � max(X1, . . . , Xn)

representing the largest observed loss out of the n observed
losses X1, . . . , Xn (we agree that the loss is a positive
number). So, for all realization x,

P Mn ≤x( 􏼁 � P ∩
n

i�1
Xi ≤ x􏼈 􏼉􏼒 􏼓 � F(x, . . . , x) � C F1(x), . . . , F1(x)( 􏼉.􏼈 (13)
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+e value at risk (VaR) is a risk measure mainly used to
measure the large portfolio market risk. We call value at risk
with a confidence level α ∈ ]0; 1[ the lower α -quantile:

VaR(X; α) � inf x, FX(x)≥ α􏼈 􏼉 � F
− 1
X (α), (14)

where F− 1
X is the right continuous inverse of FX.

Loyara and Barro [14] showed that the VaR is also in-
trinsically linked in its expression to this function, making it
possible to bridge the copula function with the VaR. More
generally, in multivariate studies, for a random vector X

satisfying the regularity conditions, one defines the multi-
dimensional VaR at probability level α by

VaRα(X) � E[X|X ∈zL(α)], (15)

where zL(α) is the boundary of the α − level set of Ft, the
univariate component of the vector.

+e three following sections provide the main results of
our study.

3. Portfolio Losses and Default Time Modeling

Note that in this study, the modeled portfolio contains assets
with credit risk. +ese companies are assigned to one of the

industry sectors according to a certain attribute. Sector is
further divided into two subsectors according to an attribute.
+e default times of these companies are denoted as τi and
are modeled using Weibull law for the parameter θ � 0. +e
default time is modeled as a downtime, with a distribution
function

F(t) � P(τ ≤ t) � 1 − S(t), (16)

where t≥ 0 and S(t) is a survival function used to calculate
the probability that a time default τ occurs beyond a certain
time interval t. +e hazard rate ht is defined by
h(k,λ)(t) � (f(t)/1 − F(t)).

h(k,λ)(t) �
k

λ
t

λ
􏼒 􏼓

k− 1
(17)

is increasing (k≥ 1). +e default time for an element i of the
portfolio is defined as the first time where the expression
exp(− 􏽒

t

0 hi(s)ds) falls below the stochastic trigger threshold
represented by the variable Ui.

τi � inf t: exp − 􏽚
t

0
hi(s)ds􏼨 􏼩≤Ui􏼨 􏼩 � S

− 1
Ui( 􏼁 � F

− 1 1 − Ui( 􏼁, (18)

where Ui is uniformly distributed over [0; 1]. In what
follows, by coupling Weibull marginal distribution with
Gumbel one which is also an extremal copula, we obtain
this result.

Proposition 1. Let C be a Gumbel copula which models the
dependence of the default times of the assets of a portfolio
distributed marginally by the Weibull law. $en, the asso-
ciated distribution function is
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Figure 1: Density function (a) and distribution function (b) of Weibull.
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F t1, . . . , tn( 􏼁 � exp − 􏽘
n

i�1
− ln 1 − exp −

ti

λi

􏼠 􏼡

ki⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭

θ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

1/θ

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, (19)

for all (t1, . . . , tn) ∈ Rn where θ is the parameter of Gumbel
copula (θ≥ 1), λi and ki are the parameters of Weibull law,
and n is the number of the elements of the portfolio.

Proof. According to the relation (1), for all (t1, . . . , tn) ∈ Rn,
it follows that

F t1, . . . , tn( 􏼁 � C F t1( 􏼁, . . . , F tn( 􏼁( 􏼁, (20)

where

C u1, . . . , un( 􏼁 � exp − 􏽘

n

1�i

− ln ui( 􏼁( 􏼁
θ⎡⎣ ⎤⎦

(1/θ)

⎛⎝ ⎞⎠. (21)

So, it follows that

F t1, . . . , tn( 􏼁 � exp − 􏽘
n

i�1
− ln 1 − exp −

ti

λi

􏼠 􏼡

ki⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭

θ
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

(1/θ)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠. (22)

While dealing with the distribution of losses of the
portfolio, notice that by defining an indicator function
Ii(t) � 1 τi < t{ } at time t and an individual loss L∗i , the cu-
mulative loss of the portfolio is linked such that

L
∗
(t) � 􏽘

n

i�1
L
∗
i Ii(t), (23)

where for i � 1, . . . , n,

L
∗
i � 1 − Rci( 􏼁Ai, (24)

where Ai is the nominal value of element i of the portfolio
and Rci is its recovery rate.

Note that for the distribution of portfolio losses, only the
copula function of τi is relevant. So, we have the following
proposition. □

Corollary 1. $e copula of losses is given, for all ui ∈ [0, 1]

for i � 1, . . . , n.

C u1, . . . , un( 􏼁 � exp − 􏽘
n

i�1
􏽥u
θ⎡⎣ ⎤⎦

(1/θ)

⎛⎝ ⎞⎠. (25)

where 􏽥ui � − ln(ui) with θ≥ 1.

Proof. With the aim to construct a class of Archimedean
copulas belonging to a given domain of attraction, Capéràa
et al. [6] have introduced, in bivariate context, the family of
Archimax copulas by combining the extreme values and
Archimedean copula families into a single class. A member
of this class with generator φ has the representation, for all
(u, v) ∈ [0, 1]2,

Cϕ,A(u, v) � ϕ− 1 min ϕ(0), (ϕ(u) + ϕ(v))A
ϕ(u)

ϕ(u) + ϕ(v)
􏼠 􏼡􏼢 􏼣􏼠 􏼡, (26)

where A is a Pickands dependence function mapping the
bivariate unit simplex S2 to [(1/2), 1], verifying:
max(t; 1 − t)≤A(t)≤ 1, with Sn being defined by Sn �

x ∈ Rn
+; ‖x‖1 � 􏽐

n
i�1 xi � 1􏼈 􏼉.

By noting that only Gumbel copula models the default
time, the parametric Archimedean generator is given by
φt(x) � − lnx. So, relation (1) allows to obtain

Cϕ,A(u, v) � ϕ− 1
(ϕ(u) + ϕ(v))A

ϕ(u)

ϕ(u) + ϕ(v)
􏼠 􏼡􏼢 􏼣􏼠 􏼡.

(27)

It comes that, in two dimensional study, one has the Gumbel
model:

C(u, v) � exp − 􏽘
n

i�1
[− ln(u)]

θ
+ [− ln(v)]

θ⎡⎣ ⎤⎦
(1/θ)

⎛⎝ ⎞⎠, (28)
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which gives by extending to n -dimensional cases:

C u1, . . . , un( 􏼁 � exp − 􏽘
n

i�1
− ln ui( 􏼁􏼂 􏼃

θ⎡⎣ ⎤⎦
(1/θ)

⎛⎝ ⎞⎠ � exp − 􏽘
n

i�1
􏽥u
θ⎡⎣ ⎤⎦

(1/θ)

⎛⎝ ⎞⎠, (29)

where 􏽥ui � − ln(ui) with θ≥ 1. □

4. Nested Archimedean Copulas and Losses

+e class of Archimedean copulas founded a wide range of
applications for a number of properties like their compu-
tational tractability and their flexibility to model depen-
dencies between random variables, their exchangeability due
to the analytic symmetry given by the generator, and the
quadrant dependence of the underlying multivariate ran-
dom vectors see [1] and [15]. However, in multivariate
analysis applied in portfolio management, for example, we
need nonexchangeable models. To face this drawback, some
authors use Laplace transforms to derive more flexible ex-
tension of this family of copulas by nesting of generators
allowing different degrees of positive dependence in bi-
variate margins. Denote an m-dimensional construction
defined interactively for all (u1, . . . , um) ∈ [0, 1]m by

Cψ u1, . . . , um( 􏼁 � ψ0 ψ− 1
0 u1( 􏼁 + ψ− 1

1 CΨ1 u1, . . . , um( 􏼁􏼐 􏼑􏽨 􏽩.

(30)

+e inverse ψ− 1
0 of the generator is completely mono-

tone, i.e., for all t ≥ 0 and ∀k≥ 0, (− 1)k(ψ− 1)(k)(t)≥ 0 (see
[8]).

We present a model based on nested Archimedean
copulas (NACs) able to capture hierarchically the structures
of dependence between losses in a credit portfolio. +e
dependence between the losses of all the companies in the
same subsector is described by an internal copula Cij of
generatorΦij, and the two subsectors of each sector are then
coupled via a copula Ci of generator Φi and the sectors are
then coupled via a copula C of generator Φ0. +e companies
in a credit portfolio have been classified according to an
attribute which is the sector of activity of the industry. Each
sector of activity is divided into two subsectors. It yields the
following result under the two following assumptions.

Hypothesis 1. Suppose the dependence between the losses of
all the companies in the same subsector is described by an

internal copula Cli with generator Φli; the subsectors are
then coupled via a copula Ci with generator Φl and the
sectors via a copula C with generator Φ0. Suppose that the
copulas Cli, Cl, and C are Gumbel copulas.

Hypothesis 2. Suppose the dependence between the losses of
all the companies in the same subsector is described by an
internal copula Cli with generator Φli; the subsectors are
then coupled via a copula Ci with generator Φl and the
sectors via a copula C with generator Φ0.

Proposition 2. Let us assume that the dependence between
the losses of all the companies in the same subsector is de-
scribed by an internal copula Cli with generator Φli; the
subsectors are then coupled via a copula Cl with generator Φl

and the sectors via a copula C with generator Φ0. $en, the
partially nested Archimedean copula C is

C(u) � Φ− 1
0 􏽘

s

k�1
Φ0 Φ

− 1
l 􏽘

2

i�1
Φl Φ

− 1
li 􏽘

dli

j�1
Φki u

li
j􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(31)

where u � (u11
1 , . . . , us2

ds2
), s is the number of business sectors,

and dli is the number of businesses in subsector i of sector l,
such that

􏽘

2

i�1
􏽘

s

l�1
dli � n, (32)

with n being the number of companies and dli being the
number of companies belonging to subsector i of sector l.

Proof. Let Cl and Cli be Archimedean copulas with gen-
erators Φl and Φli, respectively. One has

C1 u1( 􏼁 � Φ− 1
1 Φ1 C11 u1( 􏼁( 􏼁 +Φ1 C12 u1( 􏼁( 􏼁􏼂 􏼃. (33)

which gives

C1 u1( 􏼁 � Φ− 1
1 Φ1 Φ

− 1
11 Φ11 u

11
1􏼐 􏼑 + · · · +Φ11 u

11
d11

􏼐 􏼑􏼐 􏼑 + Φ1 Φ
− 1
12 Φ12 u

12
1􏼐 􏼑 + · · · +Φ12 u

12
d12

􏼐 􏼑􏼐 􏼑􏼐 􏽩􏼐 􏽯.􏽨􏽮 (34)

Furthermore, for the first sector, it follows that

C1 u1( 􏼁 � Φ− 1
1 􏽘

2

i�1
Φ1 Φ

− 1
1i 􏽘

d1i

j�1
Φ1i u

1i
j􏼐 􏼑􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (35)

which provides, for the second member,

C2 u2( 􏼁 � Φ− 1
2 􏽘

2

i�1
Φ2 Φ

− 1
2i 􏽘

d2i

j�1
Φ2i u

2i
j􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (36)
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So, more generally, for all l ∈ 1, 2, . . . , s{ },

Cl u
l1
1 , . . . , u

l2
dli

􏼐 􏼑􏼐 􏼑 � Φ− 1
l 􏽘

2

i�1
Φl Φ

− 1
li 􏽘

dli

j�1
Φli u

li
j􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠.

(37)

Furthermore, the copula C is given by

C u
11
1 , . . . , u

s2
ds2

􏼐 􏼑 � C C1, . . . , Cs( 􏼁 � Φ− 1
0 􏽘

s

l�1
Φ0 Cl( 􏼁⎛⎝ ⎞⎠,

(38)

which gives

C u
11
1 , . . . , u

s2
ds2

􏼐 􏼑 � Φ− 1
0 􏽘

s

l�1
Φ0 Φ

− 1
l 􏽘

2

i�1
Φl Φ

− 1
li 􏽘

dli

j�1
Φli u

li
j􏼐 􏼑􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠, (39)

where s is the number of companies sectors 􏽐
2
i�1 􏽐

s
l�1 dli � n,

while n represents the number of companies. □

Proposition 3. Suppose that the copulas Cli, Cl, and C are
Gumbel copulas. $en,

(i) $e dependence of losses on companies in the same
sector is given by

Cl u
l1
1 , . . . , u

l1
dl1

, u
l2
1 , . . . , u

l2
dl2

􏼐 􏼑 � exp − 􏽘
2

i�1
􏽘

dli

j�1
− ln u

li
j􏼐 􏼑􏽨 􏽩

θli⎛⎝ ⎞⎠

θl/θli( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θl( )⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (40)

(ii) $e dependence of losses on portfolio companies is
given by

C C1, . . . , Cs( 􏼁 � C u
11
1 , . . . , u

s2
ds2

􏼐 􏼑 � exp − 􏽘
s

l�1
− ln exp − 􏽘

2

i�1
􏽘

dli

j�1
− ln u

li
j􏼐 􏼑􏽨 􏽩

θli⎛⎝ ⎞⎠

θl/θli( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θl( )⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

θo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/θo( )⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (41)

$e parameters θ0, θl, and θli of copulas C, Cl, and Clj

satisfy the condition θ0 < θl < θli with l ∈ 1, . . . , s{ } and
i ∈ 1, 2{ }.

Proof

(i) Let Cli and Cl be Gumbel copulas of parameters θli and
θl, respectively; one has

Cli u
li
1 , . . . , u

li
dli

􏼐 􏼑 � exp − 􏽘

dli

j�1
− ln u

li
j􏼐 􏼑􏽨 􏽩

θli⎛⎝ ⎞⎠

1/θli⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(42)

+erefore, one has

Cl Cl1, Cl2( 􏼁 � Cl u
l1
1 , . . . , u

l1
dl1

, u
l2
1 , . . . , u

l2
dl2

􏼐 􏼑 � exp − 􏽘
2

i�1
􏽘

dli

j�1
− ln u

li
j􏼐 􏼑􏽨 􏽩

θli⎛⎝ ⎞⎠

θl/θli( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θl( )⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (43)

Finally, it follows that
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Cl u
l1
1 , . . . , u

l1
dl1

, u
l2
1 , . . . , u

l2
dl2

􏼐 􏼑 � exp − 􏽘
2

i�1
􏽘

dli

j�1
− ln u

li
j􏼐 􏼑􏽨 􏽩

θli⎛⎝ ⎞⎠

θl/θli( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θl( )⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (44)

(ii) Let Cli and Cl be Gumbel copulas of parameters θli

and θl, respectively; one has

C C1, . . . , Cs( 􏼁 � C u
11
1 , . . . , u

s2
ds2

􏼐 􏼑 � exp − 􏽘
s

l�1
− ln exp − 􏽘

2

i�1
􏽘

dli

j�1
− ln u

li
j􏼐 􏼑􏽨 􏽩

θli⎛⎝ ⎞⎠

θl/θli( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θl( )⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

θo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/θo( )⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (45)

+eparameters θ0, θl, and θli of copulasC, Cl, and Cli

satisfy the condition θ0 < θl < θli with l ∈ 1, . . . , s{ }

and i ∈ 1, 2{ } (see [15]). □

5. Sampling the Maximum Values at Risk in
a Portfolio

5.1. On theMaximum of the VaR in Each Subsector. Here we
determine the maximum of the value at risk in each
subsector.

Proposition 4. Suppose the dependence between the losses of
all the companies in the same subsector is described by a

Gumbel copula Cli of parameter θli and that the default times
are identically distributed by the law of Weibull. $en, the
maximum of value at risk in each subsector is given by

VaRmax
li (α) � λ − ln 1 − exp

ln(α)

d
1/θli( )

li

⎛⎜⎝ ⎞⎟⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

(1/k)

, (46)

where λ and k are the parameters of Weibull law and dli is the
number of elements in the subsector li.

Proof. According to the relation (1), one has

F t1, . . . , tn( 􏼁 � CF F1 t1( 􏼁, . . . , Fn tn( 􏼁( 􏼁, withFi ti( 􏼁 � 1 − exp −
ti

λ
􏼒 􏼓

k

􏼨 􏼩, (47)

where if (tli
1 , . . . , tli

dli
) � (t, . . . , t),

Fli t
li
1 , . . . , t

li
dli

􏼐 􏼑 � Cli F
li
1 t

li
1􏼐 􏼑, . . . , F

li
dli

t
li
dli

􏼐 􏼑􏼐 􏼑 � exp d
1/θli( )

li ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩􏼢 􏼣􏼠 􏼡. (48)

One has VaRmax
li (α) � F− 1

li (α), where

Fli t
li
1 , . . . , t

li
dli

􏼐 􏼑 � α. (49)

+at is,

exp d
1/θli( )

li ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩􏼢 􏼣􏼠 􏼡 � α. (50)

Equivalently, it follows that

d
1/θli( )

li ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩􏼢 􏼣 � ln(α). (51)

+us, it follows that

1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩 � exp
ln(α)

d
1/θli( )

li

⎛⎜⎝ ⎞⎟⎠, (52)

Finally, one has

t � − λkln 1 − exp
ln(α)

d
1/θli( )

li

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠

(1/k)

. (53)

So, one obtains easily

VaRmax
li (α) � λ − ln 1 − exp

ln(α)

d
1/θli( )

li

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/k)

, (54)
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which proved the result as disserted.
Figure 2 is a graphic representation of VaRmax

li where
some parameters are fixed.

+e graph shows that the maximum of the value at risk is
an increasing function of alpha for the parameters which are
fixed. With other parameters, we obtain the same
property. □

5.2. Computation of the Maximum Potential Loss in Each
Sector. In this subsection, we determine the maximum of
value at risk in each sector.

Proposition 5. Let us presume that the dependence between
the losses of all the companies in the same subsector is de-
scribed by a Gumbel copula Cli with parameter θli; the two
subsectors of each sector are then coupled via a copula Cl with
parameter θl. And if the default times are identically dis-
tributed byWeibull law, then the maximum of value at risk in
each sector is

VaRmax
l (α) � λ − ln 1 − exp ln(α) d

θl/θl1( )
l1 + d

θl/θl2( )
l2􏼒 􏼓

(− 1)/θl( )
􏼨 􏼩􏼢 􏼣􏼢 􏼣

(1/k)

, (55)

where λ and k (k≥ 1) are the parameters of Weibull dis-
tribution and dl1 and dl1 are, respectively, the number of
companies of subsectors l1 and l2.

Proof. According to the canonical parametric relation (1),
F(t1, . . . , tn) � C(F1(t1), . . . , Fn(tn)) with Fi(ti) � 1−

e− (ti/λ)k. So, it follows that

Cl u
l1
1 , . . . , u

l1
dl1

, u
l2
1 , . . . , u

l2
dl2

􏼐 􏼑 � exp − 􏽘
2

i�1
􏽘

dli

j�1
− ln u

li
j􏼐 􏼑􏽨 􏽩

θli⎛⎝ ⎞⎠

θl/θli( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θl( )⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (56)

Moreover, if (tl1
1 , . . . , tl1

dl1
, tl2

1 , . . . , tl2
dl2

) � (t, . . . , t), one
has

Fl t
l1
1 , . . . , t

l1
dl1

, t
l2
1 , . . . , t

l2
dl2

􏼐 􏼑 � exp − dl1 − ln 1 − exp −
1
λ

t􏼒 􏼓
k

􏼠 􏼡􏼠 􏼡􏼢 􏼣

θl1

⎛⎝ ⎞⎠

θl/θl1( )

+ dl2 − ln 1 − exp −
1
λ

t􏼒 􏼓
k

􏼠 􏼡􏼠 􏼡􏼢 􏼣

θl2

⎛⎝ ⎞⎠

θl/θl2( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θl( )

,

(57)

which is equivalent to

Fl t
l1
1 , . . . , t

l1
dl1

, t
l2
1 , . . . , t

l2
dl2

􏼐 􏼑 � exp − d
θl/θl1( )

l1 − ln 1 − exp −
1
λ

t􏼒 􏼓
k

􏼠 􏼡􏼨 􏼩􏼢 􏼣

θl

+ d
θl/θl2( )

l2 − ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩􏼠 􏼡􏼢 􏼣

θ⎧⎨

⎩

⎫⎬

⎭

1/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(58)
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which provides

VaRl(α) � F
− 1

(α), andFl t
l1
1 , . . . , t

l1
dl1

, . . . , t
l2
dl2

􏼐 􏼑 � α,

(59)

which means that

exp − d
θl/θl1( )

l1 − ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩􏼠 􏼡􏼢 􏼣

θl

+ d
θl/θl2( )

l2 − ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩􏼠 􏼡􏼢 􏼣

θl

⎛⎝ ⎞⎠

1/θl( )⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� α. (60)

+erefore, it follows that

− ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼨 􏼩􏼠 􏼡􏼢 􏼣

θl

�
[− ln(α)]

θl

d
θl/θl1( )

l1 + d
θl/θl2( )

l2

. (61)

From the above formula, one can have

t � − λkln 1 − exp
ln(α)

d
θl/θl1( )

l1 + d
θl/θl2( )

l2􏼒 􏼓
1/θl( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1/k)

,

(62)

and finally

VaRmax
l (α) � λ − ln 1 − exp ln(α) d

θl/θl1( )
l1 + d

θl/θl2( )
l2􏼒 􏼓

− 1/θl( )
􏼨 􏼩􏼢 􏼣􏼢 􏼣

(1/k)

. (63)

So, the result is proved. Figure 3 is a graphic repre-
sentation of VaRmax

l where some parameters are fixed.
+e graph shows that themaximumof the value at risk is an

increasing function of alpha for the parameters which are fixed.
With other parameters, we obtain the same property. □

5.3. On the Maximum of the VaR in the Portfolio. In
this section, we compute the maximum of value at risk
in the portfolio made up of securities belonging to
the different sectors and its variation as a function of λ
and k.

0

0.0 0.2 0.4 0.6
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V
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m
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Figure 2:Maximum of the value at risk as a function of confidence level α for dli � 20, θli � 8 for all l ∈ 1, . . . , s{ } and i ∈ 1, 2{ } in a subsector.
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Proposition 6. Suppose the dependence between the losses of
all the companies in the same subsector is described by a
Gumbel copula Cli with parameter θli; the two subsectors of
each sector are then coupled via a copula Cl with parameter θl

and the sectors are coupled via a copula C with parameter θ0.
And if the default times are identically distributed by Weibull
law, then the maximum potential loss of the portfolio is

VaRmax
(α) � λ − ln 1 − exp ln(α) 􏽘

s

l�1
d

θl/θl1( )
l1 + d

θl/θl2( )
l2􏼒 􏼓

θ0/θl( )
⎡⎣ ⎤⎦

− 1/θ0( )
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(1/k)

, (64)

where λ and k(k≥ 1) are the parameters of Weibull distri-
bution with dl1 and dl1 being, respectively, the number of
companies of subsectors l1 and l2.

Proof. Using the parametric form of Sklar theorem, it
follows that

F t
11
1 , . . . , t

s2
ds2

􏼐 􏼑 � C F
11
1 t

11
1􏼐 􏼑, . . . , F

s2
ds2

t
s2
ds2

􏼐 􏼑􏼐 􏼑. (65)

So, if (t111 , . . . , ts2
ds2

) � (t, . . . , t), one has

F t
11
1 , . . . , t

s2
ds2

􏼐 􏼑 � exp − 􏽘
s

l�1
− ln exp − d

θl/θl1􏼐 􏼑
l1

− ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼠 􏼡􏼢 􏼣􏼠 􏼡

θl

+ d
θl/θl2􏼐 􏼑

l2
− ln 1 − exp −

t

λ
􏼒 􏼓

k

􏼠 􏼡􏼢 􏼣􏼠 􏼡

θl

⎡⎣ ⎤⎦

1/θl( )
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠

θ0
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/θ0( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(66)

Since

F t
11
1 , . . . , t

s2
ds2

􏼐 􏼑 � α, (67)

equivalently, one has

􏽘

s

l�1
− ln exp − d

θl/θl1􏼐 􏼑
l1

− ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼠 􏼡􏼢 􏼣􏼠 􏼡

θl

+ d
θl/θl2􏼐 􏼑

l2
− ln 1 − exp −

t

λ
􏼒 􏼓

k

􏼠 􏼡􏼢 􏼣􏼠 􏼡

θl

⎡⎣ ⎤⎦

1/θl( )
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠

θ0
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/θ0( )

� − ln(α). (68)
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Figure 3: Maximum of the value at risk as a function of confidence level α for dli � 20, θl � 5, θl1 � 8, θl2 � 7, 5 for all l ∈ 1, . . . , s{ } and
i ∈ 1, 2{ } in a sector.
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It follows that

􏽘

s

l�1
− ln exp − d

θl/θl1􏼐 􏼑
l1

− ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼠 􏼡􏼢 􏼣􏼠 􏼡

θl

+ d
θl/θl2􏼐 􏼑

l2
− ln 1 − exp −

t

λ
􏼒 􏼓

k

􏼠 􏼡􏼢 􏼣􏼠 􏼡

θl

⎡⎣ ⎤⎦

1/θl( )
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠

θ0

� [− ln(α)]
θ0 .

(69)

Moreover, [􏽐
s
l�1 (dl 1(θl/θl1) + d

(θl/
l2 θl2

))(θ0/θl)][− ln(1−

exp(− (t/λ)k))]θ0 � [− ln(α)]θ0 . +erefore, it follows that

− ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼠 􏼡􏼨 􏼩􏼢 􏼣

θ0
� [− ln(α)]

θ0 􏽘

s

l�1
d

θl/θl1􏼐 􏼑
l1 + d

θl/θl2􏼐 􏼑
l2

⎛⎝ ⎞⎠

θ0/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 1

. (70)

We obtain

− ln 1 − exp −
t

λ
􏼒 􏼓

k

􏼠 􏼡􏼨 􏼩 � [− ln(α)] 􏽘
s

l�1
d

θl/θl1􏼐 􏼑
l1 + d

θl/θl2􏼐 􏼑
l2

⎛⎝ ⎞⎠

θ0/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 1/θ0( )

. (71)

It follows that

exp −
t

λ
􏼒 􏼓

k

􏼢 􏼣 � 1 − exp ln(α) 􏽘

s

l�1
d

θl/θl1􏼐 􏼑
l1 + d

θl/θl2􏼐 􏼑
l2

⎛⎝ ⎞⎠

θ0/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 1/θ0( )⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (72)

Finally, we have

t � λ − ln 1 − exp ln(α) 􏽘
s

l�1
d

θl/θl1􏼐 􏼑
l1 + d

θl/θl2􏼐 􏼑
l2

⎛⎝ ⎞⎠

θ0/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 1/θ0( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1/k)

. (73)

So,

VaRmax
(α) � λ − ln 1 − exp ln(α) 􏽘

s

l�1
d

θl/θl1􏼐 􏼑
l1 + d

θl/θl2􏼐 􏼑
l2

⎛⎝ ⎞⎠

θ0/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 1/θ0( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1/k)

. (74)
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+us, the result is proved as disserted.
VaRmax depends on λ, k and on correlations between

sectors, subsectors, and companies in the same sector. +e
following theorem is a key result of our study. □

Proposition 7. $e maximum potential loss of the portfolio
satisfies the following properties:

(i) VaRmax is an increasing function of λ.
(ii) It is an increasing function of k if

􏽘

s

l�1
d

θl/θl1􏼐 􏼑
l1 + d

θl/θl2􏼐 􏼑
l2

⎛⎝ ⎞⎠

θ0/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/θ0( )

≤
ln(α)

ln 1 − e
− 1

􏼐 􏼑
,

(75)

and decreasing otherwise.

Proof

(i) From the previous results, one can write that

VaRmax
(α) � λ − ln 1 − exp ln(α) 􏽘

s

l�1
d

θl/θl1􏼐 􏼑
l1 + d

θl/θl2􏼐 􏼑
l2

⎛⎝ ⎞⎠

θ0/θl( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

11/θ0( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1/k)

. (76)

So, we obtain easily

zV aR
max

(α)

zλ
� − ln 1 − exp ln(α) 􏽘

s

l�1
d

θl

θl1
l1 + d

θl

θl2
l2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

θ0
θl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
θ0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 4: Maximum of the value at risk as a function of confidence level α for dli � 20, θ1 � 5, θ2 � 6, θ3 � 7, θ11 � 8, θ12 � 7, 5, θ21 � 8,
θ22 � 9, θ31 � 8, 5, θ32 � 9, 5 for all l ∈ 1, . . . , s{ } and i ∈ 1, 2{ } in the portfolio made up of 3 sectors.
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(ii) Let us denote f(k) � x(1/k), a function f defined on
[1, +∞[ for x> 0. It is obvious that f is increasing in
k if 0< x≤ 1 and decreasing if x> 1. So, one obtains
the result as disserted.

Figure 4 is a graphic representation of VaRmax where
some parameters are fixed.

+e graph shows that maximum of the value at risk of the
portfolio is an increasing function of alpha for the pa-
rameters which are fixed. +is result is demonstrated and
generalized by the previous proposition. □

6. Conclusion

In this study, we contribute to the modeling of the dependence
of losses of a large portfolio. Mainly, using a negative Weibull-
distributed law and a family of nested Archimedean copulas,
we estimate the highest value of the VaR. +e use of the three-
level nested Archimedean copula with Gumbel’s copulas
provides interesting results on the maximum of value at risk of
the credit portfolio divided into subsectors and sectors when
the default time followsWeibull law. It has been shown that this
maximum of value at risk of the portfolio is an increasing
function of λ. But it is an increasing or decreasing of k

according to the conditions given by Proposition 7.
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