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Zero controllability criterion for positive linear discrete systems with multiple delays in both states and inputs is obtained and
proved. An example is given to support our main result.

1. Introduction and Preliminaries

$roughout this paper, we use the following notation: N is
the set of nonnegative integers, N∗ is the set of positive
integers, σm

n � n, n + 1, . . . , m{ } is the finite subset of N with
n≤m, Rn is the set of real vectors with n components, Rn

+ is
the set of vectors in Rn with nonnegative components, Rn×m

is the set of real matrices of size n × m, In is the identity
matrix in Rn×n, and Rn×m

+ is the set of real matrices with
nonnegative entries.

Positive systems are a wide class of systems in which state
variables are constrained to be positive or at least non-
negative for all time whenever the initial conditions and
inputs are nonnegative [1, 2]. $e mathematical theory of
positive linear systems is based on the theory of nonnegative
matrices developed by Perron and Frobenius, see, e.g., [3, 4].
Since positive systems are not defined on linear spaces but
on cones, then many concepts of linear systems cannot be
directly generalized to linear positive systems without
reformulation. One such property is the notion of con-
trollability of linear positive systems.

Controllability is one of the fundamental concepts in the
mathematical control theory. A positive system is control-
lable if it is possible to transfer it from an arbitrary non-
negative initial state to an arbitrary nonnegative final state
using only certain admissible nonnegative controls. Since
late 1980s, controllability of discrete positive linear systems

without delays has been a subject of much research [5–9]. In
particular, Coxson and Shapiro in [6] showed that the
discrete linear positive system is controllable if and only if it
is reachable (controllability from zero initial conditions) and
zero controllable (controllability to zero final state). $e
reachability of positive linear discrete systems with multiple
delays in both state and control is addressed in [10]. On zero
controllability of positive linear discrete systems with delay,
the authors of [11] show that the following system with a
single state delay

xi+1 � A0xi + A1xi−1 + Bui, i ∈ N, (1)

is zero controllable if and only if the matrix A �
A0 A1
In 0􏼠 􏼡

is nilpotent. In this paper, we will extend the result of zero
controllability in [11] to the more general case, namely,
positive discrete systems with multiple time delays both in
state and in input. For this, we consider the general discrete
linear time delay systems:

xi+1 � 􏽘

p

j�0
Ajxi−j + 􏽘

q

j�0
Bjui−j, i ∈ N, (2)

where xi ∈ Rn is the state, ui ∈ Rm is the input,
Aj ∈ Rn×n(j ∈ σp

0 ), Bj ∈ Rn×m(j ∈ σq
0), and p and q are the

nonnegative integer maximal values of delays on state and
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input, respectively. $e initial conditions for (2) are given
arbitrarily by x−j ∈ Rn for j ∈ σp

0 and u−j ∈ Rm for j ∈ σq
1.

Definition 1 (positivity). System (2) is said to be positive if
the state xi ∈ Rn

+, i ∈ N, for any initial states
x−j ∈ Rn

+(j ∈ σp
0 ), for any initial inputs u−j ∈ Rm

+ (j ∈ σq
1),

and all inputs ui ∈ Rm
+ , i ∈ N.

Lemma 1 (see [10]). System (2) is positive if and only if
Aj ∈ Rn×n

+ (j ∈ σp
0 ) and Bj ∈ Rn×m

+ (j ∈ σq
0).

In all the sequels in this paper, we assume that system (2)
is positive.

Definition 2 (zero controllability). System (2) is said to be
zero controllable if any initial state sequence x−j ∈ Rn

+

(j ∈ σp
0 ) and any initial input sequence u−j ∈ Rm

+ (j ∈ σq
1),

there exist a positive integer N and an input sequence
ui ∈ Rm

+ (i ∈ σN−1
0 ) such that the state of the system is driven

from x−j to 0, that is, xN � 0.
$e paper is organized as follows. In Section 2, we give

and prove the criterion of the zero controllability of the
general system (2) which is the main result of this paper. A
numerical example is given in Section 3. Finally, the con-
clusion is provided in Section 4.

2. Main Result

In this section, we give the proof of the main result of this
paper, which is accomplished in $eorem 1.

Lemma 2 (see [12, 13]). 1e general solution to (2) is given by

xi � Gix0 + 􏽘

p

j�1
􏽘

p−j+1

k�1
Gi−kAk−1+jx−j + 􏽘

q

j�1
􏽘

q−j+1

k�1
Gi−kBk−1+ju−j

+ 􏽘
i−1

j�0
􏽘

q

k�0
Gi−1−j−kBkuj, i ∈ N,

(3)

where the transition matrix Gi ∈ Rn×n(i ∈ N) is determined
by the recurrence relation

Gi �

In, for i � 0,

􏽘

p

k�0
AkGi−1−k, for i ∈ N∗,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

with the assumption

Gi � 0, for i< 0. (5)

Lemma 3. 1e transition matrix Gi also satisfies the fol-
lowing equation:

Gi � 􏽘

p

k�0
Gi−1−kAk, for i ∈ N∗. (6)

Proof. See Appendix A.

$en, for any i ∈ N, we pose H0
i � Gi, and hence, for all

i ∈ N∗, we pose

H
j
i � 􏽘

p−j+1

k�1
H

0
i−kAk−1+j, j ∈ σp

0 ,

L
j

i � 􏽘

q−j+1

k�1
H

0
i−kBk−1+j, j ∈ σq

1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

with

H
j

i � 0, for j ∈ σp
1 and i≤ 0,

L
j

i � 0, for j ∈ σq
1 and i≤ 0.

(8)

Moreover, for i ∈ N, we put

Ki � 􏽘

q

k�0
H

0
i−kBk, (9)

with Ki � 0 for i< 0.
Clearly by (7) and (9), solution (3) is given by the fol-

lowing new formula:

xi � 􏽘

p

j�0
H

j

i x−j + 􏽘

q

j�1
L

j

i u−j + 􏽘
i−1

j�0
Ki−1−juj, i ∈ N. (10)

□

Theorem 1. System (2) is zero controllable if and only if the
matrix

A �

A0 A1 · · · · · · Ap B1 · · · · · · · · · Bq

In 0 · · · · · · 0 0 · · · · · · · · · 0

0 ⋱ ⋱ ⋮ ⋮ ⋮

⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮

0 · · · 0 In 0 0 · · · · · · · · · 0

0 · · · · · · · · · 0 0 · · · · · · · · · 0

⋮ ⋮ Im ⋱ ⋮

⋮ ⋮ 0 ⋱ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 · · · · · · · · · 0 0 · · · 0 Im 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

is nilpotent.
We introduce the following useful two lemmas that will

aid us in the proof of our main result.

Lemma 4. For all i ∈ N, we have

H
j
i+1 � H

j+1
i + H

0
i Aj, j ∈ σp−1

0 ,

H
p
i+1 � H

0
i Ap,

⎧⎪⎨

⎪⎩
(12)

L
j
i+1 � L

j+1
i + H

0
i Bj, j ∈ σq−1

1 ,

L
q

i+1 � H
0
i Bq.

⎧⎪⎨

⎪⎩
(13)

Proof. See Appendix B.
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Without loss of generality, we assume that p≥ q. Indeed,
if p< q, we can set Aj � 0 for j ∈ σq

p+1, and then we come
back to p � q case. □

Lemma 5. For all i≥p, we have

A
i

�

H
0
i H

1
i · · · H

p
i L

1
i · · · L

q
i

H
0
i−1 H

1
i−1 · · · H

p
i−1 L

1
i−1 · · · L

q
i−1

⋮ ⋮ ⋮ ⋮ ⋮

H
0
i−p H

1
i−p · · · H

p
i−p L

1
i−p · · · L

q
i−p

0 · · · · · · 0 0 · · · 0

⋮ ⋮ ⋮ ⋮

0 · · · · · · 0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Proof. See Appendix C. □

Remark 1. Since H0
p−p � H0

0 � In, then Ap ≠ 0.
Now, we prove our main result.

Proof of 1eorem 1 (sufficiency). Since A is nilpotent, then
there exists a positive integer N such that AN+p � 0. Hence,
by Lemma 5, we have Hi

N � 0 for i ∈ σp
0 and L

j
N � 0 for

j ∈ σq
1. $us, system (2) is zero controllable.

(Necessity). Since system (2) is zero controllable, there
exists a positive integer N such that H

j
N � 0 for i ∈ σp

0 and
L

j
N � 0 for j ∈ σq

1. According to Lemma 4, we get that
H

j

N+k � 0 and L
j

N+k � 0 for k ∈ σp
0 . $us, by Lemma 5, we

have AN+p � 0.$is implies that A is nilpotent. $e theorem
is proved. □

Remark 2. If one diagonal element of the matrix A0 is
nonzero, system (2) is nonzero controllable.

3. Example

Consider system (2) with p � q � 2 and matrices

A0 �

0 0 0

0 0 0

1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A1 �

0 0 0

0 0 0

1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A2 �

0 0 0

2 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B1 �

0

1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B2 �

0

0

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(15)

By calculation, we get that matrix A �

A0 A1 A2 B1 B2
I3 0 0 0 0
0 I3 0 0 0
0 0 0 0 0
0 0 0 I1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is nilpotent with index k � 6, that is,

Ak− 1 ≠ 0 and Ak � 0. $us, by $eorem 1, system (2) is zero
controllable.

4. Conclusion

In this paper, we have investigated the zero controllability of
discrete linear positive systems with delays. Necessary and
sufficient conditions have been established for the zero
controllability discrete linear positive systems with multiple
delays in both state variables and input signals. A numerical
example is presented to explore the proposed theory.
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Appendix

A. Proof of Lemma 3

Proof. First, for i � 1, we have G1 � A0 � 􏽐
p

k�0 G−kAk and
(6) holds. Secondly, suppose that (6) holds for k ∈ σi

1. We
prove that it holds for k � i + 1.

For i ∈ σp
1 , we have

Gi+1 � 􏽘

i

k�0
AkGi−k � 􏽘

i−1

k�0
AkGi−k + Ai � 􏽘

i−1

k�0
Ak 􏽘

p

j�0
Gi−k−1−jAj

⎛⎝ ⎞⎠ + Ai

� 􏽘
i−1

k�0
Ak 􏽘

i−k−1

j�0
Gi−k−1−jAj

⎛⎝ ⎞⎠ + Ai � 􏽘
i−1

j�0
􏽘

i−j−1

k�0
AkGi−j−1−k

⎛⎝ ⎞⎠Aj + Ai

� 􏽘
i−1

j�0
Gi−jAj + Ai � 􏽘

i

j�0
Gi−jAj � 􏽘

p

j�0
Gi−jAj.

(A.1)

For i≥p + 1, we have

Gi+1 � 􏽘

p

k�0
AkGi−k � 􏽘

p

k�0
Ak 􏽘

p

j�0
Gi−k−1−jAj

⎛⎝ ⎞⎠

� 􏽘

p

j�0
􏽘

p

k�0
AkGi−j−1−k

⎛⎝ ⎞⎠Aj � 􏽘

p

j�0
Gi−jAj.

(A.2)

$us, (6) is satisfied in step i + 1. Hence, (6) holds for any
i ∈ N∗. □

B. Proof of Lemma 4

Proof. Let i ∈ N. For j ∈ σp−1
0 , we have

H
j
i+1 − H

j+1
i � 􏽘

p−j+1

k�1
H

0
i+1−kAk−1+j − 􏽘

p−j

k�1
H

0
i−kAk+j

� 􏽘

p−j

k�0
H

0
i−kAk+j − 􏽘

p−j

k�1
H

0
i−kAk+j

� H
0
i Aj,

(B.1)

and, for j � p, we have

H
p

i+1 � 􏽘
1

k�1
H

0
i+1−kAk−1+p � H

0
i Ap. (B.2)

Similarly, we prove that (13) holds. □

C. Proof of Lemma 5

Proof. We introduce a new state variable 􏽥xi ∈ Rn(p+1)+mq for
i ∈ N by

􏽥xi �

xi

xi−1

⋮

xi−p

ui−1

⋮

ui−q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.1)

It is easy to verify that

􏽥xi+1 � A􏽥xi + Bui, i ∈ N,

􏽥x0 ∈ R
n(p+1)+mq

,

⎧⎨

⎩ (C.2)

where A is defined in (11) and

B �

B0

0

⋮

0

Im

0

⋮

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.3)

Let ui � 0 for i ∈ N. $en, the solution of system (C.2) is
given by

􏽥xi � A
i
􏽥x0, i ∈ N. (C.4)

On the other hand, from (10), for all i≥p, we have
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􏽥xi �

xi

xi−1

⋮

xi−p

0

⋮

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (C.5)

Hence, by identification between (C.4) and (C.5), we get
that (14) holds. □
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