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Non-self-adjoint operators have many applications, including quantum and heat equations. On the other hand, the study of these
types of operators is more difficult than that of self-adjoint operators. In this paper, our aim is to study the resolvent and the
spectral properties of a class of non-self-adjoint differential operators. So we consider a special non-self-adjoint elliptic differential
operator (Au)(x) acting on Hilbert space and first investigate the spectral properties of space H1 � L2(Ω)1. (en, as the ap-
plication of this new result, the resolvent of the considered operator in ℓ-dimensional space Hilbert Hℓ � L2(Ω)ℓ is obtained
utilizing some analytic techniques and diagonalizable way.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary
zΩ (i.e., zΩ ∈ C∞). We introduce the weighted Sobolev
space H1 � W2

2,β(Ω)ℓ as the space of complex value func-
tions u (x) defined on Ω with the finite norm:

|u|+ � 􏽘
n

i�1
􏽚
Ω
ρ2β(x)

zu

zxi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

Cℓ
dx + 􏽚

Ω
|u(x)|

2
Cℓdx⎛⎝ ⎞⎠

1/2

. (1)

We denote by �H1 the closure of C∞0 (Ω)ℓ in H with
respect to the above norm, i.e., �H is the closure of C∞0 (Ω) in
H1 � W2

2,β(Ω)ℓ. (e notion C∞0 (Ω) stands for the space of
infinitely differentiable functions with compact support in
Ω. In this paper, we investigate the spectral properties. In
particular, we estimate the resolvent of a non-self-adjoint
elliptic differential operator of type

(Au)(x) � − 􏽘
n

i,j�1

z

zxj

ρ2β(x)αij(x)q(x)
z

zxi

u(x)􏼠 􏼡 (2)

acting on Hilbert space Hℓ � L2(Ω)ℓ with Dirichlet-type
boundary conditions. Here, ρ(x) ∈ C1(0, 1) is a positive
function that satisfies the following conditions:

c1x
α
(1 − x)

β ≤ ρ2(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M,

ρ2􏼐 􏼑′(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Mx
(α/2)− 1+ε1(1 − x)

(β/2)− 1+ε2 ,
(3)

where α, β≥ 0, ε1 � 0 if α≠ 1and ε1 > 0 if α � 1,and ε2 � 0if
β≠ 1and ε2 > 0if β � 1., αij(x) � αji(x)(i, j � 1, . . . , n),

αij(x) ∈ C2(Ω)(i, j � 1, . . . , n) and the functions αij(x)

satisfy the uniformly elliptic condition, i.e., there exists c> 0
such that

c|s|
2 ≤ 􏽘

n

i,j�1
αij(x), sisj s � s1, . . . , sn( 􏼁( 􏼁 ∈ Cn

, x ∈ Ω.

(4)

Furthermore, suppose that q(x) ∈ C2(Ω;EndCℓ) such
that for each x ∈ (Ω), the matrix function q (x) has nonzero
simple eigenvalues μj(x) ∈ C2(Ω)(1≤ j≤ ℓ) arranged in the
complex plane in the following way:

μ1(x), . . . , μℓ(x) ∈ C\Φ, (5)

where Φ � z ∈ C: |argz|≤φ􏼈 􏼉,φ ∈ (0, π) is a closed angle
with zero vertex (i.e., the eigenvalues μj(x) of q(x) lie on the
complex plane and outside of the closed angle Φ). For a
closed extension of operator A with respect to space H �
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W2
2,β(Ω)ℓ above, we need to extend its domain to the closed

domain

D(A) � u ∈ H
0
ℓ ∩W

2
2,loc(0, 1)

ℓ
:

z

zxj

􏽘

n

i,j�1
ρ2βαi,jq

z

zxi

u􏼠 􏼡 ∈ Hℓ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(6)

(see [1, 2]), where the local space W2
2,loe(Ω)ℓ is the functions

u(x) x∈Ω in this form W2
2,loc(Ω) � u(x):{

􏽐
2
i�0􏽒

J
|u(i)(x)|2dx<∞,J isanopensubsetofΩ}. Here, and in

the sequel, the value of the function arg z∈(− π,π] and ‖A‖

denotes the norm of the bounded operator A: H⟶H.
To get a feeling for the history of the subject under study,

refer to our earlier papers [3–5]. Indeed, this paper was
written in continuing on our earlier papers. (is study is
sufficiently more general than our earlier papers; here, we
obtain the resolvent estimate of operator A, which satisfies
the special and general conditions.

2. TheResolvent Estimate ofDegenerate Elliptic
Differential Operators on H in Some
Special Cases

Theorem 1. Let A in (2), i.e., assume that operator A is
acting on Hilbert space H� L2 (Ω) with Dirichlet-type
boundary conditions, and the sector Ω be defined as in Section
1. Let the complex function q (x) satisfy the following
conditions:

q(x) ∈ C1
(Ω),

q(x) ∈ CΦ, (∀x ∈ Ω),

(7)

arg q x1( 􏼁q
− 1

x2( 􏼁􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
π
8

, ∀x1, x2 ∈ Ω( 􏼁. (8)

(en, for sufficiently large modulus λ ∈ Φ, the inverse
operator (A − λI)− 1 exists and is continuous in H, and the
following estimates are valid:

(A − λI)
− 1����

����≤MΦ|λ|
− 1 λ ∈ Φ, |λ|>CΦ( 􏼁, (9)

ρβ
z

zxi

(A − λI)
− 1

��������

��������
≤MΦ′|λ|

− (1/2) λ ∈ Φ, |λ|>CΦ( 􏼁,

for i � 1, . . . , n,

(10)

where MΦ,CΦ > 0 are sufficiently large numbers depending
on S (Φ set is defined in the previous sections).(e symbol ‖.‖

stands for the norm of a bounded arbitrary operator T in H.

Proof. Here, to establish (eorem 1, we will first prove the
assertion of (eorem 1 together with estimate (9). So, as in
Section 1 for a closed extension of operator A (for more
explanation, see chapter 6 in [3]), we need to extend its
domain to the closed set

D(A) � u ∈ H
0
ℓ ∩W

2
2,loc(0, 1)

ℓ
:

z

zxj

􏽘

n

i,j�1
ρ2βαi,jq

z

zxi

u􏼠 􏼡 ∈ Hℓ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(11)

Let operator A now satisfy (7), (8). (en, there exists a
complex number Z ∈ C (notice that we can take Z� eiy, for a
fix real Υ ∈ (− π, π]) such that |Z � eiΥ| � 1, and so

c′ ≤Re Zq(x)􏼈 􏼉,

c′|λ|≤ − Re Zλ{ }, c′ > 0(∀x ∈ Ω, λ ∈ Φ).
(12)

In view of the uniformly elliptic condition, we have

c|s|
2

� c 􏽘
n

i�1
si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ 􏽘

n

i,j�1
αij(x)sisj,

c> 0, s � s1, . . . , sn( 􏼁 ∈ Cn
, x ∈ Ω( 􏼁,

(13)

and take si � (zy/zxi) which implies that
c 􏽐

n
i�1 |(zy/zxi)(x)|2 ≤ 􏽐

n
i,j�1 αij(x)(zy/zxi) (x)(zy/zxi)

(x). From this, and according to c′ ≤Re Zq(x)􏼈 􏼉 in (10), we
then multiply these two positive relations with each other,
implying that

c1 􏽘

n

i�1

zy

zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ReZq(x) 􏽘
n

i,j�1
αij(x)

zy

zxi

(x)
zy

zx j
(x)

fory ∈ D(A).

(14)

Multiplying both sides of the latter relation by the
positive term ρ2α(x) and then integrating both sides, we will
have

c1 􏽘

n

i�1
􏽚
Ω
ρ2β

zy

zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx

≤ReZq(x) 􏽘
n

i,j�1
􏽚
Ω
ρ2β(x)αij(x)q(x)

zy

zxi

(x)
zy

zx j
(x).

(15)

Now by applying the integration by parts and using
Dirichlet-type condition, then the right sides of the latter
relation without multiple ReZ become

􏽘

n

i,j�1
􏽚
Ω
ρ2β(x)αij(x)q(x)

zy

zxi

(x)
zy

zx j
(x)dx

� − 􏽘
n

i,j�1
􏽚
Ω
ρ2β(x)αij(x)q(x)

zy

zxi

(x)y(x)dx

� −
zy

zx j
􏽘

n

i,j�1
ρ2β(x)αij(x)q(x)

zy

zxi

(x)y(x)⎛⎝ ⎞⎠ �(Ay,y).

(16)

Hence,
(Ay)(x) � − (zy/zxj) 􏽐

n
i,j�1 ρ

2β(x)αij(x)q(x)(zy/zxi)(x)
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Here, the symbol (,) denotes the inner product in H.
Notice that the above equality in (16) is obtained by the

well-known theorem of the m-sectorial operators which are
closed by extending its domain to the closed domain in H.
(ese operators are associated with the closed sectorial
bilinear forms that are densely defined in H (for more ex-
planation of the well-known(eorem 1, see chapter 6 in [2]).
(is is why we extend the domain of operator A to the closed
domain in space H above. (erefore,

c1 􏽘

n

i�1
􏽚
Ω
ρ2β(x)

zy

zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx≤ReZ(Ay, y). (17)

From (10), we have c′|λ|≤ − Re Zλ{ }, c′ > 0,∀λ ∈ Φ.

Multiply this inequality by 􏽒Ω|y(x)|2dx � (y, y) � ‖y‖2 > 0.
It follows that

c′|λ|􏽚
Ω

|y(x)|
2dt≤ − Re Zλ{ }(y, y). (18)

From this and the above inequality, we will have

c1 􏽘

n

i�1
􏽚
Ω
ρ2β(x)
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zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx + c′|λ|􏽚
Ω

|y(x)|
2dx

≤ReZ(Ay, y) − Zλ(y, y)

� Re Z((A − λI)y, y)􏼈 􏼉

≤ ‖Z‖‖y‖‖(A − λI)y‖

� ‖y‖‖(A − λI)y‖′,

(19)

i.e.,

c1 􏽘

n

i�1
􏽚
Ω
ρ2β(x)

zy

zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx + c′|λ|􏽚
Ω

|y(x)|
2dx≤ ‖y‖‖(A − λI)y‖.

(20)

Since c1 􏽐
n
i�1 􏽒Ωρ

2β(x)|(zy/zxi)(x)|2dx is positive, we
will have either

c′|λ|‖y(x)‖
2

� |λ|􏽚
Ω

zy

zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx≤ ‖y‖‖(A − λI)y‖, (21)

or

|λ|‖y(x)‖≤MΦ‖(A − λI)y‖. (22)

(is inequality ensures that the operator (A − λI) is one
to one, which implies that ker (A − λI) � 0. (erefore, the
inverse operator (A − λI)− 1 exists, and its continuity follows
from the proof of estimate (9) of(eorem 1. To prove (9), we
set v � (A − λI)− 1f, f ∈ H in (19), implying that

|λ|􏽚
Ω

(A − λI)
− 1

f
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dx

≤MΦ (A − λI)
− 1

f
����

���� (A − λI)(A − λI)
− 1

f
����

����.

(23)

Since (A − λI)(A − λI)− 1f � I(f) � f, then

|λ|􏽚
Ω

(A − λI)
− 1

f
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dx≤MΦ (A − λI)

− 1
f

����
����|f|, (24)

so

|λ| (A − λI)
− 1

f
����

����≤MΦ (A − λI)
− 1

f
����

����|f|, (25)

which implies that |λ|‖(A − λI)− 1(f)‖≤MΦ|f|. Since λ≠ 0,
then ‖(A − λI)− 1f‖≤MΦ|λ|− 1|f|; i.e., ‖(A − λI)− 1‖≤
MΦ|λ|− 1. (is estimate completes the proof of the assertion
of (eorem 1 together with estimate (9). Now, we start to
prove estimate (10) of(eorem 1. As in the above argument,
we drop the positive term c′|λ|􏽒Ω|y(x)|2 dx from

c1 􏽘

n

i�1
􏽚
Ω
ρ2β(x)

zy

zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx + c′|λ|􏽚
Ω

|y(x)|
2dx≤ ‖y‖‖(A − λI)y‖.

(26)

It follows that

c1 􏽘

n

i�1
􏽚
Ω
ρ2β(x)

zy

zxi

(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx≤ ‖y‖‖(A − λI)y‖. (27)

Equivalently

c1 ρβ
z

zxi

(A − λI)
− 1

f

��������

��������

2

‖y‖‖(A − λI)y‖. (28)

Set (A − λI)− 1f, f ∈ Hin the latter relation, and pro-
ceeding by similar calculation as in the proof of estimate (9),
we then obtain

c1 ρβ
z

zxi

(A − λI)
− 1

f

��������

��������

2

≤ (A − λI)
− 1

f
����

���� (A − λI)(A − λI)
− 1

f
����

����.

(29)

Since (A − λI)(A − λI)− 1f � I(f) � f, then

c1 ρβ
z

zxi

(A − λI)
− 1

f

��������

��������

2

≤ (A − λI)
− 1����

����‖f‖
2
. (30)

Consequently, by (9), this implies that

c1 ρβ
z

zxi

(A − λI)
− 1

f

��������

��������

2

≤MΦ′‖λ‖
− 1

‖λ‖
− 1

‖f‖
2
. (31)

To this end, we will have

ρβ
z

zxi

(A − λI)
− 1

��������

��������
≤MΦ′‖λ‖

− (1/2)
. (32)

(us, here, the proof of estimate (10) is finished; i.e., this
completes the proof of (eorem 1.

Now let condition (8) not hold. (en we will have the
following statement. □

3. The Resolvent Estimate of Some Classes of
Degenerate Elliptic Differential
Operators on H

In this section, we will derive a new general theorem by
dropping the assumption (8) from (eorem 1 in Section 2.

Theorem 2. As in Section 1, let Φ be some closed sector with
vertex at 0 in the complex plane (for more explanation, see
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[3]), and let the complex function q (x) satisfy the following
equations:

q(x) ∈ C1
(Ω),

q(x) ∈ CΦ; (∀x ∈ Ω ).
(33)

(en, for sufficiently large modulus λ ∈ Φ, the inverse
operator (A − λI)− 1 exists and is continuous in H, and the
following estimates hold:

(A − λI)
− 1

f
����

����≤MΦ′‖λ‖
− 1

, λ ∈ Φ, |λ|>CΦ( 􏼁, (34)

where MΦ′,CΦ > 0 are sufficiently large numbers depending
on Φ.

Proof. Let us (9) not satisfy. To prove the assertion of
(eorem 2 together with (34), we construct the functions
φ1(x), . . . ,φm(x), q1(x), . . . , qm(x) so that each one of the
functionsq1(x), . . . , qm(x)(x ∈ Ω) as the function q (x) in
(eorem 1 satisfies (8).

(erefore, let

φ1(x), . . . ,φm(x), q1(x), . . . , qm(x) ∈ C
∞
0 (Ω) (35)

satisfy

0≤φr(x), r � 1, . . . , m,

φ2
1(x) + · · · + φ2

m(x) ≡ 1, (x ∈ Ω)

d
dt
φr(x) ∈ C∞0 (Ω), qr(x) � q(x), ∀x ∈ suppφr,

qr(x) ∈ C\Φ, (∀x ∈ Ω), r � 1, . . . , m,

arg qr x1( 􏼁q
− 1
r x2( 􏼁􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
π
8

, ∀x1, x2 ∈ suppφr( 􏼁, r � 1, . . . , m.

(36)

In view of (eorem 1 and by (9) and (10), set Ar �A in
the definition of the differential operator, which implies that

Aru(x) � − 􏽘
n

i,j�1
ρ2β(x)αij(x)q(x)uxi

′(x)xj
′ (37)

is acting on H where

D Ar( 􏼁 � u ∈H
o

∩W2
2,loc(Ω);

zu

zxj

􏽘

n

i,j�1
ρ2βαijqr

zu

zxi

􏼠 􏼡 ∈H
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(38)

Due to the assertion of (eorem 1, for 0≠ λ ∈ Φ, the
inverse operator (A − λI)− 1 exists and is continuous in space
H � L2(Ω) and satisfies

(A − λI)
− 1����

����≤MΦ‖λ‖
− 1

,

ρβ
z

zxi

(A − λI)
− 1

��������

��������
≤MΦ′|λ|

− (1/2)
, λ ∈ Φ, |λ|>CΦ( 􏼁, (0≠ λ ∈ Φ).

(39)

Let us introduce

G(λ) � 􏽘
m

r�1
φr Ar − λI( 􏼁

− 1φr. (40)

Here φr is the multiplication operator in H by the
function φr(x). Consequently, it is easily verified that

Ar − λI( 􏼁G(λ) � I + ρ2β− 1
(x) 􏽘

m

r�1
ηr(x) Ar − λI( 􏼁

− 1φr

+ ρβ(x) 􏽘
n

i�1
􏽘

m

r�1
Υir(x)

z

zxi

Ar − λI( 􏼁
− 1φr,

(41)

where ηr,Υir ∈ L∞(Ω); supp βr and supp Υir are contained
in supp φr. Let us take the right side of (41) equal to I +T (λ).
(us, we will have

(A − λI)G(λ) � I + T(λ). (42)

Now according to Section 2, if we put A�Ar for
r� 1,. . .,m in (8), we will have

Ar − λI( 􏼁
− 1

�����

�����≤M1s‖λ‖
− 1

,

ρβ
z

zxi

Ar − λI( 􏼁
− 1

��������

��������
≤MΦ′|λ|

− (1/2)
.

(43)

Owing to the definition of T (λ) in (41) easily, it follows
that

‖T(λ)‖≤MΦ′|λ|
− (1/2)

, (λ ∈ Φ, |λ|> 1). (44)

Since |λ| is a sufficiently large number, it easily implies
that ‖T(λ)‖< (1/2)< 1. From this and using the well-known
theorem in the operator theory, we conclude that I +T (λ)
and so (A − λI) G (λ) are invertible. Hence, ((A − λI) G (λ))− 1

exists and is equal to

G(λ)
− 1

(A − λI)
− 1

􏼐 􏼑 � (I + T(λ))
− 1

. (45)

By adding + I and –I to the right side of (44), it follows
that

G(λ)
− 1

(A − λI)
− 1

􏼐 􏼑 � (I + T(λ))
− 1

− I + I. (46)

We now set

F(λ) � (I + T(λ))
− 1

− I. (47)

(en

G(λ)
− 1

(A − λI)
− 1

􏼐 􏼑 � I + F(λ). (48)

In view of kT (λ)< 1 and (44), we now estimate F (λ) by
the following geometric series:

‖F(λ)‖≤ 􏽘
+∞

i�2
T

k
(λ)

�����

�����≤ ‖T(λ)‖
2 1 +‖T(λ)‖ +‖T(λ)‖

2
+ · · ·􏼐 􏼑

≤ ‖T(λ)‖
2
MΦ 1 +

1
2

+ · · ·􏼒 􏼓≤ 2MΦ MΦ′|λ|
− (1/2)

􏼐 􏼑
2
,

(49)
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i.e., ‖F(λ)‖≤ 2M1Φ|λ|− 1.By ‖(Ar − λI)− 1‖≤M1Φ|λ|− 1, for
we will have

‖G(λ)‖ � 􏽘
m

r�1
φr Ar − λI( 􏼁

− 1φr

���������

���������
≤MΦ″ Ar − λI( 􏼁

− 1
�����

�����

≤MΦ″M1Φ|λ|
− 1

,

(50)

i.e., ‖G(λ)‖≤M2Φ|λ|− 1. Now from (45), we have

(A − λI)
− 1

� G(λ)(I + T(λ))
− 1

� G(λ)(I + F(λ)). (51)

(erefore

(A − λI)
− 1����

���� � ‖G(λ)‖‖I + F(λ)‖

≤M2Φ|λ|
− 1 1 + 2M1Φ|λ|

− 1
􏼐 􏼑
�����

�����,
(52)

i.e., here the assertion of (eorem 2 is proved. (erefore, to
complete the proof (eorem 2, we must prove the estimate
(34). To the end, according to the latter inequality, we have

(A − λI)
− 1����

����≤M2Φ|λ|
− 1

+ 2M2ΦM1Φ|λ|
− 1

|λ|
− 1

, (53)

and since |λ|− 1|λ|− 1 � |λ|− 2 ≤ |λ|− 1, it follows that

(A − λI)
− 1����

����≤MΦ|λ|
− 1

, (|λ|≥C, λ ∈ Φ). (54)

(is completes the proof of (eorem 2. □

4. On the Resolvent Estimate of the Differential
Operator in Hℓ

As in Section 1, let the differential operator

(Au)(x) � − 􏽘
n

i,j�1

z

zxj

ρ2β(x)αij(x)q(x)
zu

zxi

(x)􏼠 􏼡, (55)

act on Hilbert space Hℓ � L2
ℓ(Ω) with Dirichlet-type

boundary conditions, and suppose that
q(x) ∈ C2(Ω,EndCℓ) such that for each x ∈ Ω, the matrix
function q (x) has nonzero simple eigenvalues
μj(x) ∈ C2(Ω), (1≤ j≤ ℓ) arranged in the complex plane in
the following way:

μ1(x), . . . , μℓ(x) ∈ C\Φ, (56)

where

Φ � z ∈ C: |argz|≤φ􏼈 􏼉, φ ∈ (0, π). (57)

Furthermore, suppose that for j � 1, . . . , ℓ, we have

μj(x) ∈ C1
(Ω),

μj(x) ∈ C\Φ, (∀x ∈ Ω),

(58)

arg μj x1( 􏼁μ− 1
j x2( 􏼁􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
π
8

, ∀x1, x2 ∈ Ω( 􏼁. (59)

Now, according to (eorem 1, but here instead of op-
erator A which acts on the space H� L2 (Ω), let operator A
act on the space Hℓ � L2(Ω)ℓ. Now by the assumption of

Section 1, we will have the following theorem in the general
case.

Theorem 3. Let (58) and (59) and the assumptions of Section
1 hold for operator A as in (2), then for sufficiently large
modulus λ ∈ Φ, the inverse operator (A − λI)− 1 exists and is
continuous in the space Hℓ � L2(Ω)ℓand the following esti-
mate holds:

(A − λI)
− 1����

����≤MΦ|λ|
− 1

,

ρ
d
dx

(A − λI)
− 1

�������

�������
≤M2′|λ|

− (1/2)
, (λ ∈ Φ, |λ|≥C),

(60)

where MΦ, CΦ > 0 are sufficiently large numbers depending
on Φ and |λ|>CΦ.

Proof. Now by applying the eigenvalues μ1(x), . . . , μℓ(x) of
the matrix function q (x), we define the operators A1, . . . , Aℓ
such that

Aju􏼐 􏼑(x) � −
zu

zx j
􏽘

n

i,j�1
ρ2β(x)αij(x)μj(x)

zu

zxi

(x)􏼠 􏼡,

(j � 1, . . . , ℓ),
(61)

where its extension domains are

D Aj􏼐 􏼑 � y ∈ H
o

∩W
2
2,loc(Ω);

zy

zx j
􏽘

n

i,j�1
ρ2βαijμj

zy

zxi

􏼠 􏼡 ∈ H
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(62)

which, as operator A in (eorem 1, the operators Aj,
j � 1, . . . , ℓ, acts on space H� L2 (Ω) (notice that here the
operators Aj are the same operator A in Section 2, i.e., to define
the operators Aj, we just change the function q(x) in operator
A by the eigenvalues functions μj (x), j � 1, . . . , ℓof matrix
q(x)). (e conditions which we consider on the eigenvalues μj
(x) of the matrix function q(x) in Section 1 guarantee that one
can convert the matrix q(x) to the diagonal form
q(x) � U(x)Λ(x)U− 1(x), where U(x), U− 1(x)∈
C2([0,1];EndCℓ) and Λ(x) �diag μ1(x), ... ,μℓ(x)􏼈 􏼉. Con-
sider space Hℓ � H⊕ · · ·H⊕ (ℓ times). Put Γ(λ) � UB(λ)U− 1

where the operator

B(λ) � diag A1 − λI( 􏼁
− 1

, . . . , Aℓ − λI( 􏼁
− 1

􏽮 􏽯 (63)

acts on the direct sum Hℓ � H⊕ · · · H⊕ (ℓ times) in which
λ ∈ Φ\R+, |λ|≥C0 and (Uu)(x)�U (x) u (x); (u ∈ Hℓ).
Consequently, it follows that

(A − λI)Γ(λ)u � −
d
dx

ρ2A(x)
d
dx

U(x)B(λ)U
− 1

(x)u(x)􏼠 􏼡

� T1 + T2 + T3,

(64)

where
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T1 � −
d
dx

ρ2A(x)U(x)
d
dx

B(λ)U
− 1

(x)u(x)􏼠 􏼡

� −
d
dx

ρ2U(t)Λ(x)
d
dx

B(λ)U
− 1

(x)u(x)􏼠 􏼡

� − U
d
dx

ρ2Λ(x)
d
dx

B(λ)U
− 1

(x)u(x)􏼠 􏼡 − U′(x)ρ2Λ
d
dx

B(λ)U
− 1

u

� λUB(λ)U
− 1

u − U′(x)ρ2Λ
d
dx

B(λ)U
− 1

u + UU
− 1

u,

T2 � −
d
dx

ρ2qU′B(λ)U
− 1

u􏼐 􏼑,

T3 � − λU(x)B(λ)U
− 1

u.

(65)

Using (9) and (10), we have (A − λI)T(λ) � I + T0
1 + T0

2
where T0

2 � (ρ2)′qU′B(λ)U− 1 and ‖T0
1‖≤M|λ|− (1/2). Now

by the Hardy-type inequality, we estimate the operator T0
2 as

follows:

􏽚
1

0
t
− 1+ε1′(1 − t)

− 1+ε2′|y(t)|
2dt

≤M ε1′, ε2′( 􏼁 􏽚
1

0
|y(t)|

2dt + M ε1′, ε2′( 􏼁

· 􏽚
1

0
t
1+ε1′(1 − t)

1+ε2′ y′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dt, ∀y ∈ Η

0
, ε1′, ε2′ ≠ 0.

(66)

Since |q(t)U′(t)|≤M by (3), we have the following
inequality:

􏽚
1

0
ρ2(t)􏼐 􏼑′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
|(B(λ)u(t))|

2
Cℓdt

≤M2 􏽚
1

0
t
α− 2+2ε1′(1 − t)

β− 2+2ε2′|(B(λ)u(t))|
2
Cℓdt

≤M3 􏽚
1

0
t
α
(1 − t)

βρ− 2
(t)

�����

����� ρ
2
((B(λ)u)(t))t

′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
Cℓdt

+ M|B(λ)u|
2
Hℓ

.

(67)

Now by (3) and estimate (9), it follows

􏽚
1

0
ρ2(t)􏼐 􏼑′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
|(B(λ)u(t))|

2
Cℓdt

≤M 􏽚
1

0
ρ2|(B(λ)u(t))|

2
Cℓdt + M|B(λ)u|

2
Hℓ

≤M′|λ|
− 1

|u|
2
Hℓ

, (λ ∈ Φ, |λ|>C).

(68)

(en, ‖T0
2‖≤M′|λ|− (1/2) for sufficiently large in modulus

of λ ∈ Φ; consequently,

(A − λI)Γ(λ) � I + F(λ),

‖F(λ)‖≤M|λ|
− (1/2)

, (λ ∈ Φ, |λ|>C).
(69)

Proceeding as at the end of Section 2 (e.g., see (43)) from
‖F(λ)‖≤M|λ|− (1/2), it easily follows that I + F(λ) is inver-
sible and then that (A − λI)Γ(λ) is inversible, that is,

((A − λI)Γ(λ))
− 1

� (I + F(λ))
− 1

. (70)

(en by adding ±I, the last relation we have is

(I + F(λ))
− 1

� (I + F(λ))
− 1

+ I − I. (71)

Since ‖F(λ)‖≤M|λ|− (1/2), in a calculation as in Section 2,
take y(λ) � (I + F(λ))− 1 − I. (en, y(λ)satisfies

‖y(λ)‖≤M|λ|
− 1

, (λ ∈ Φ, |λ|>C). (72)

Consequently, (A − λI)− 1 � Γ(λ)(I + y(λ)) since

Γ(λ) � UB(λ)U
− 1

,

B(λ) � diag A1 − λI( 􏼁
− 1

, . . . , Aℓ − λI( 􏼁
− 1

􏽮 􏽯.
(73)

Put Pj � Aj, j � 1, . . . , ℓ as in (39). By (72) and (73), we
have ‖(Aj − λI)1‖≤M|λ|− 1, j � 1, . . . , ℓ and it follows that
‖Γ(λ)‖≤ |λ|− 1, so

(A − λI)
− 1����

����≤ ‖Γ(λ)‖‖I + y(λ)‖

≤M|λ|
− 1 1 + M|λ|

− 1
􏼐 􏼑≤M|λ|

− 1
.

(74)

Now we prove estimate (39). Since
‖ρ(d/dt)(Aj − λI)− 1‖≤M|λ|− 1, j � 1, . . . , ℓfor Γ1(λ), we
can get the corresponding estimate ‖Γ1(λ)‖≤M1|λ|− (1/2),
and this implies

ρ
d
dx

(A − λI)
− 1

�������

�������
≤ Γ1(λ)

����
���� I + y1(λ)( 􏼁
����

����. (75)

Since ‖y1(λ)‖≤M1′|λ|− 1, we have

ρ
d
dx

Aj − λI􏼐 􏼑
− 1

�������

�������
ρ
d
dx

Pj − λI􏼐 􏼑
− 1

�������

�������
≤M|λ|

− (1/2) 1 + M1′|λ|
− 1

􏼐 􏼑,

(76)
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which implies ‖ρ(d/dx)(Aj − λI)− 1‖≤M|λ|− (1/2)

(λ ∈ Φ, |λ|≥C) so that the proof of the fundamental (e-
orem 3 in the general case Hℓ � L2(Ω)ℓ is completed. □
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