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Polynomials can be used to represent real-world situations, and their roots have real-world meanings when they are real numbers.
(e fundamental theorem of algebra tells us that every nonconstant polynomial p with complex coefficients has a complex root.
However, no analogous result holds for guaranteeing that a real root exists to p if we restrict the coefficients to be real. Let n≥ 1 and
Pn be the vector space of all polynomials of degree n or less with real coefficients. In this article, we give explicit forms of
polynomials in Pn such that all of their roots are real. Furthermore, we present explicit forms of linear transformations on Pn

which preserve real roots of polynomials in a certain subset of Pn.

1. Introduction

Polynomials are the simplest and most commonly used in
mathematics. We can approximate functions from real-world
situation models by polynomials, and they give us results that
are “close enough” to what we would get by using the actual
functions and are a lot easier to use. (e roots of a polynomial
which are also thex-intercepts of the graph are key information
when it comes to draw the polynomial graph, and they have
real-world meaning when they are real numbers. Numerous
approaches to compute the roots of polynomials have been
developed (for example, [1–3]), and various efficient algorithms
have been proposed (for example, [4, 5]). It is natural to ask
which forms of polynomials guarantee all real roots and when
we map a polynomial to another polynomial, how linear
transformations that preserve real roots of polynomials look
like. (e obvious result is proved in [6] that only nonzero
multiples of the identity transformation preserve roots of all
polynomials in the vector space of all polynomials of degree n

or less with real coefficients, Pn.
(e aim of this article is to provide explicit forms of

polynomials in Pn such that all of their roots are real as well

as give explicit forms of linear transformations on Pn that
preserve real roots of polynomials in a certain subset of Pn.

(e organization of this article is as follows. In Section
2, we review some basic definitions and properties about
q-factorial as well as polynomials and their applications.
In Section 3, we present explicit forms of polynomials and
show that they always have all real roots. In Section 4, we
define a subset S of Pn and linear transformations on Pn.
(en, we prove that they preserve real roots of all poly-
nomials in S. In Section 5, we give a conclusion of our
results.

2. Preliminary

In this section, we introduce q-factorial and recall basic
theorems of polynomials and their applications.

2.1. q-Factorial

Definition 1. For nonnegative integers n and k, the number
of combinations of n objects, taken k at a time, is given by
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n!

k!(n − k)!
�

n(n − 1)(n − 2) . . . (n − k + 1)

k!
. (1)

By convention, n

0􏼠 􏼡 is defined to be 1, and n

k
􏼠 􏼡 is

defined to be 0 for n< k.

Definition 2. For a nonnegative integer n, the q-analog of n

is defined to be

[n]q �
1 − q

n

1 − q
� 1 + q + q

2
+ · · · + q

n− 1
. (2)

By convention, [0]q is defined to be 0. Note that
limq⟶1[n]q � n.

Definition 3. For a nonnegative integer n, the q-factorial of n

denoted by [n]q! is defined to be

[n]q! � [n]q[n − 1]q . . . [2]q[1]q. (3)

By convention, [0]q! is defined to be 1. Note that
limq⟶1[n]q! � n!, and

[n]q! �
1 − q

n

1 − q

1 − q
n− 1

1 − q
. . .

1 − q
2

1 − q

1 − q

1 − q

� 1 + q + q
2

+ · · · + q
n− 1

􏼐 􏼑

· 1 + q + q
2

+ · · · + q
n− 2

􏼐 􏼑 . . . (1 + q)(1).

(4)

Example 1. Consider n � 4; we have

[4]1! � 1 + 1 + 12 + 13􏼐 􏼑 1 + 1 + 12􏼐 􏼑(1 + 1) � 24 � 4!,

[4]2! � 1 + 2 + 22 + 23􏼐 􏼑 1 + 2 + 22􏼐 􏼑(1 + 2) � 315.

(5)

2.2. Polynomials

Definition 4. An elementw inC is said to be a root of a given
polynomial p over C if p(w) � 0. (e set of all roots of p is
denoted by Z(p).

Theorem 1 (the fundamental theorem of algebra; see [7]).
Every nonconstant polynomial p with complex coefficients has
a complex root.

(is is a remarkable statement; however, no analogous
result holds for guaranteeing that a real root exists to p if we
restrict the coefficients to be real numbers.

(e following theorem which we use to prove
throughout our main results provides a sufficient condition
for the existence of all real roots.

Theorem 2 (see [8]). Let p(x) � anxn + an− 1 xn− 1 + · · · +

a2x
2 + a1x + a0 be a polynomial of degree n≥ 2 with positive

real coefficients. If

a
2
i − 4ai− 1ai+1 > 0 for all i � 1, 2, 3, . . . , n − 1, (6)

then Z(p)⊆R.

(ere are a variety of different applications of polyno-
mials that we can look at. (e following examples show real
roots of polynomials apply to real-world situations.

Example 2. Gravity is roughly constant on the earth’s
surface with an acceleration of g ≈ 32 feet/second2, and the
height of a rigid object in free fall at time t is modeled by
Newton’s equation of motion:

p(t) �
1
2

gt
2

+ v0t + p0, (7)

where t is the elapsed time in seconds, v0 is the initial velocity
in feet/second, and p0 is the initial height of the object above
the ground level in feet. When v0 and p0 are known, we have
p(t0) � 0 if t0 is a root of p(t).(is means that the object will
take t0 seconds to hit the ground. Note that since t represents
time, only nonnegative real roots apply.

In [9], the special case v0 � 0 is used to translate height
measurements of the moving object in the image to metric
units in 3D world coordinates and derive relations for the
case of rigid objects and then for articulated motion to
estimate a person’s height from the video.

Example 3. Chemical equilibrium is a state in which the rate
of the forward reaction equals the rate of the backward
reaction. Consider chemical equilibrium in the gaseous
system Cl2 + 2NO� 2NOCl described by

A + 2B � 2C. (8)

In [10], if P � 1 bar and the equilibrium constant
Kp � 70.23 bar at 500K, the expression for Kp can be written
in the equation

f(x) � x
3

− 3x
2

+ 3.173x − 0.9422 � 0, (9)

where x is the number of moles of A reacted at equilibrium
from an initial state consisting of 1mol of A, 2mol of B, and
2mol ofC. Sincef(x) has two complex roots and one real root
x0 ≈ 0.479764, only the real root is a chemical root of f(x).

3. Real Root Polynomials

Fisk [11] observed that if the coefficients of a polynomial are
decreasing sufficiently rapidly, then all of the roots of the
polynomial are real numbers. Motivated by this observation,
we construct polynomials in the following forms and use
(eorem 2 to show that they have all real roots.

Proposition 1. Let p be a polynomial in one of the following
forms.  en, Z(p) ⊂ R.

(1) p(x) � 􏽐
n
i�0 α

− i
2􏼒 􏼓

xi, α> 4
(2) p(x) � 􏽐

n
i�0 α

− i2xi, α> 2
(3) p(x) � 􏽐

n
i�0 xi/[i]q!, q≥ 4

Proof. First, note that if α> 4, then for 1≤ i≤ n − 1,
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α− i
2( )􏼒 􏼓

2
− 4α− i− 1

2( )α− i+1
2( ) � α− i2+i

− 4α − 2i2+2i− 2/2( ) � α− i2− i( ) 1 −
4
α

􏼒 􏼓> 0. (10)

Similarly, if α> 2, then for 1≤ i≤ n − 1,

α− i2
􏼒 􏼓

2
− 4α− (i− 1)2α− (i+1)2

� α− 2i2
− 4α− 2i2− 2

� α− 2i2 1 −
4
α2

􏼠 􏼡> 0.

(11)

Also, if q≥ 4, then for 1≤ i≤ n − 1, [i + 1]q > q[i]q, and
hence,

1
[i]q!

􏼠 􏼡

2

−
4

[i − 1]q![i + 1]q!
�

1

[i − 1]q!􏼐 􏼑
2
[i + 1]q[i]q

·
[i + 1]q

[i]q

− 4􏼠 􏼡> 0.

(12)

(erefore, by (eorem 2, all roots of p in the above
forms are real. □

Example 4. By Proposition 1,

􏽘

4

i�0
5− i

2( )x
i

� 1 + x +
1
5
x
2

+
1
125

x
3

+
1

15625
x
4
,

􏽘

3

i�0
3− i2

x
i

� 1 +
1
3

x +
1
81

x
2

+
1

19683
x
3
,

􏽘

5

i�0

x
i

[i]4!
� 1 + x +

x
2

5
+

x
3

105
+

x
4

8925
+

x
5

3043425

(13)

have all real roots.

4. Real Root Preserving Transformations

Let n≥ 3 and S be the set of polynomials satisfying conditions
in(eorem 2, i.e., S � p(x) � anxn+􏼈 an− 1x

n− 1+ · · · + a2x
2 +

a1x+ a0 ∈ Pn|ai > 0 for 0≤ i≤ n and a2
i − 4ai− 1ai+1 > 0 for

1≤ i≤ n − 1}. Clearly, S is a subset of Pn, and all of the roots
of polynomials in S are real numbers.

Proposition 2.  e following linear transformations on Pn

preserve real roots of polynomials in S.

(1) xi↦βxi for β> 0

(2) xi↦ n

i
􏼠 􏼡xi

(3) xi↦ixi− 1

(4) xi↦xi/i!
(5) xi↦xi/(n − i)!

(6) xi↦xi/(i!(n − i)!)

(7) xi↦xi/[i]q! for q> 0

Proof. Suppose p(x) � anxn + an− 1x
n− 1 + · · · + a2x

2 + a1x+

a0 is in S. (en, for 1≤ i≤ n − 1, we have a2
i − 4ai− 1ai+1 > 0.

For each linear transformation, we show that it preserves
real roots of p using (eorem 2.

(1) Let β> 0. Define T1(r(x)) � βr(x) for r(x) ∈ Pn. It
is obvious that T1 preserves real roots of all poly-
nomials in Pn.

(2) Define

T2(r(x)) �
n

n
􏼠 􏼡knx

n
+

n

n − 1
􏼠 􏼡kn− 1x

n− 1
+ · · ·

+
n

2
􏼠 􏼡k2x

2
+

n

1
􏼠 􏼡k1x +

n

0
􏼠 􏼡k0,

(14)

for r(x) � knxn + kn− 1x
n− 1 + · · · + k2x

2 + k1x + k0
∈ Pn. (en, for 1≤ i≤ n − 1,

n

i

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ai

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

− 4
n

i − 1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ai− 1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

n

i + 1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ai+1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

�
n!

2

(n − i + 1)!(i − 1)!(n − i − 1)!(i + 1)!

·
(n − i + 1)(i + 1)

(n − i)i
a
2
i − 4ai− 1ai+1􏼢 􏼣.

(15)

Since (n − i + 1)(i + 1)> (n − i)i, we have
((n − i + 1)(i + 1)/((n − i)i))a2

i − 4ai− 1ai+1 > 0, and
hence, Z(T2p)⊆R.

(3) Define

T3(r(x)) � nknx
n− 1

+(n − 1)kn− 1x
n− 2

+ · · · + 2k2x + k1,

(16)
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for r(x) � knxn + kn− 1x
n− 1 + · · · + k2x

2 + k1x + k0
∈ Pn. (en, for 2≤ i≤ n − 2,

iai( 􏼁
2

− 4(i − 1)ai− 1(i + 1)ai+1 � i
2

− 1􏼐 􏼑
i
2

i
2

− 1
a
2
i − 4ai− 1ai+1􏼢 􏼣> 0, (17)

and hence, Z(T3p)⊆R.
(4) Define

T4(r(x)) �
knx

n

n!
+

kn− 1x
n− 1

(n − 1)!
+ · · · +

k2x
2

2!
+

k1x

1!
+

k0

0!
,

(18)

for
r(x) � knxn + kn− 1x

n− 1 + · · · + k2x
2 + k1x + k0 ∈ Pn.

(en, for 1≤ i≤ n − 1,

ai

i!
􏼒 􏼓

2
−

4ai− 1

(i − 1)!

ai+1

(i + 1)!
�

1
(i − 1)!

2
(i + 1)i

i + 1
i

a
2
i − 4ai− 1ai+1􏼔 􏼕> 0, (19)

and hence, Z(T4p)⊆R.
(5) Define

T5(r(x)) �
knx

n

0!
+

kn− 1x
n− 1

1!
+ · · · +

k2x
2

(n − 2)!

+
k1x

(n − 1)!
+

k0

n!
,

(20)

for r(x) � knxn + kn− 1x
n− 1 + · · · + k2x

2 + k1x + k0
∈ Pn. (en, for 1≤ i≤ n − 1, we have

ai

(n − i)!
􏼠 􏼡

2

−
4ai− 1

(n − (i − 1))!

ai+1

(n − (i + 1))!

�
1

(n − i − 1)!
2
(n − i + 1)(n − i)

·
n − i + 1

n − i
a
2
i − 4ai− 1ai+1􏼔 􏼕> 0.

(21)

(us, Z(T5p)⊆R.
(6) Define

T6(r(x)) �
knx

n

n!(n − n)!
+

kn− 1x
n− 1

(n − 1)!(n − (n − 1))!
+ · · ·

+
k2x

2

2!(n − 2)!
+

k1x

1!(n − 1)!
+

k0

0!(n − 0)!
,

(22)

for r(x) � knxn + kn− 1x
n− 1 + · · · + k2x

2 + k1x + k0
∈ Pn. (en, for 1≤ i≤ n − 1,

ai

i!(n − i)!
􏼠 􏼡

2

−
4ai− 1

(i − 1)!(n − (i − 1))!

ai+1

(i + 1)!(n − (i + 1))!
�

1
(i + 1)i(i − 1)!

2
(n − i + 1)(n − i)(n − i − 1)!

2

(i + 1)(n − i + 1)

i(n − i)
a
2
i − 4ai− 1ai+1􏼢 􏼣.

(23)

Since (i + 1)(n − i + 1)> i(n − i)> 1, we have that
(i + 1)(n − i + 1)/(i(n − i))> 1, and hence,
((i + 1)(n − i + 1)/(i(n − i)))a2

i − 4ai− 1ai+1 > 0.
(erefore, Z(T6p)⊆R.

(7) Let q> 0. Define

T7(r(x)) �
knx

n

[n]q!
+

kn− 1x
n− 1

[n − 1]q!
+ · · · +

k2x
2

[2]q!
+

k1x

[1]q!
+

k0

[0]q!
,

(24)

for r(x) � knxn + kn− 1x
n− 1 + · · · + k2x

2 + k1x+

k0 ∈ Pn. (en, for 1≤ i≤ n − 1,

4 International Journal of Mathematics and Mathematical Sciences



ai

[i]q!
􏼠 􏼡

2

−
4ai− 1

[i − 1]q!

ai+1

[i + 1]q!
�

1
[i − 1]q!

2
[i]q[i + 1]q

·
[i + 1]q

[i]q

a
2
i − 4ai− 1ai+1􏼢 􏼣.

(25)

Since [i + 1]q/[i]q � (1 + q + q2 + · · · + qi− 1 + qi)/
(1 + q + q2 + · · · + qi− 1)> 1, we have ([i + 1]q/
[i]q)a2

i − 4ai− 1ai+1 > 0. Hence, Z(T7p)⊆R. □

5. Conclusion

Real-world situations that cannot be modeled using a linear
function can be approximated using polynomials, and this
article gives three explicit forms of real root polynomials and
seven explicit forms of real root preserving linear trans-
formations of polynomials that guarantee real-world in-
terpretations and understanding.
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