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In this paper, we introduce a new three-parameter distribution defined on the unit interval. The density function of the dis-
tribution exhibits different kinds of shapes such as decreasing, increasing, left skewed, right skewed, and approximately sym-
metric. The failure rate function shows increasing, bathtub, and modified upside-down bathtub shapes. Six different frequentist
estimation procedures were proposed for estimating the parameters of the distribution and their performance assessed via Monte
Carlo simulations. Applications of the distribution were illustrated by analyzing two datasets and its fit compared to that of other
distributions defined on the unit interval. Finally, we developed a regression model for a response variable that follows the

new distribution.

1. Introduction

The development of distributions defined on the unit in-
terval is increasingly gaining grounds in literature due to
their usefulness in the areas of psychology, economics, bi-
ology, and engineering among others. These distributions
are useful for modeling data that are defined on the unit
interval such as proportions, percentages, or rates. In psy-
chology for instance, proportions and percentages play a
critical role in assessing the probability of judgments, the
proportion of the brain’s volume occupied by a specific part
of the brain, and the proportion of a period of time spent on
an activity [1]. In economics, there are many instances where
data are bounded on the unit interval, for example, pro-
portion of income spent on nondurable consumption,
pension plan participation rates, market shares, fractional
repayment on debts, and capital structures [1-3].
Distributions defined on the unit interval are known to
have desirable failure (hazard) rate characteristics such as
increasing, decreasing, and bathtub shapes. These failure rate
characteristics are vital when modeling datasets. For in-
stance, Rajarshi and Rajarshi [4] and Lawless [5] indicated

different scenarios where distributions with bathtub hazard
rates are needed to model lifetime of electronic, electro-
chemical, and mechanical products. Lai [6] reported that the
optimum number of minimal repairs for systems have in-
creasing failure rates. Also, Woosley and Cossman [7]
revealed that drugs have increasing failure rate during
clinical development.

Although the two-parameter beta distribution [8] is one
of the oldest distributions for modeling dataset on the unit
interval, its cumulative distribution and quantile functions
are not tractable. This makes generation of random obser-
vations for simulation from the beta distribution a bit
complex. Hence, many researchers aim at developing
bounded distributions with tractable cumulative distribu-
tion and quantile functions. Some of the existing bounded
distributions in the literature include bounded M-O ex-
tended exponential distribution [2], unit Gompertz distri-
bution [9], unit gamma distribution [10], Kumaraswamy
distribution [11], Topp-Leone distribution [12], unit Burr I1I
distribution [13], unit Weibull distribution [14], unit Lindley
distribution [15], log-extended exponential-geometric dis-
tribution [16], logit slash distribution [17], unit Burr XII


mailto:sulemanstat@gmail.com
https://orcid.org/0000-0001-6652-4251
https://orcid.org/0000-0003-0423-8465
https://orcid.org/0000-0001-9924-7086
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9955657

2 International Journal of Mathematics and Mathematical Sciences

distribution [18], Arcsecant hyperbolic normal distribution
[19], unit Johnson §;; distribution [20], and unit inverse
Gaussian distribution [21].

Despite the existence of some bounded distributions in
the literature, no single distribution can be considered as the
best for modeling all kinds of datasets. We are therefore
motivated to develop a new bounded distribution with
tractable cumulative distribution and quantile functions
called bounded odd inverse Pareto exponential (BOIPE)
distribution for modeling datasets on unit intervals. The
BOIPE distribution is developed using the transformation
Y = e X, where X follows the odd inverse Pareto expo-
nential (OIPE) distribution [22]. The new distribution hubs
other existing distributions such as the Kumaraswamy,
bounded M-O extended exponential, and power function
distributions as submodels.

The remainder of the article is organized as follows:
Sections 2 and 3 present the BOIPE distribution and its
statistical properties, respectively. In Section 4, different
frequentist estimation techniques are discussed. In Section 5,
Monte Carlo simulations are carried out to examine their
performance of the estimators. In Section 6, the applications
of the BOIPE distribution are demonstrated. In Section 7, a
regression model is proposed. Finally, the conclusion of the
study is presented in Section 8.

2. BOIPE Distribution

Let the random variable X follow the OIPE distribution with
probability density function (PDF) given by

ocﬁ/\e_“(l - e_)‘x)“i1

(x) = T
f X (1_(1_/3)6_/1){)0(1

a>0,5>0,A>0,x>0.

(1)

Then, the distribution of the random variable Y = e~ X is
the BOIPE distribution. The PDF, cumulative distribution
function (CDF), and hazard rate of the BOIPE distribution

are respectively given by

aply (1)
a+l”’

(1- - py")"”

—-1

fy) = a>0,>0,1>0,0<y<1,

(2)

i=0

fy)=

L

Proposition 1. Let Y, be the BOIPE random variable with
CDF F(y;a;,3,A) and Y, be the BOIPE random variable

F(y)zl—ﬂ 0<y<1 (3)
(1-a-py)” ’
A-1
7(y) = aply O<y<lL (4)

(1-y)(-a-py')y

The BOIPE distribution generalizes some existing dis-
tributions defined on the (0,1) support. These are the
Kumaraswamy distribution for =1, the bounded M-O
extended exponential (BMOEE) distribution for « = 1, and
the power function (PF) distribution for « = 8 = 1. Figure 1
shows the relationship between the BOIPE distribution and
its submodels.

The PDF and hazard rate function of the BOIPE dis-
tribution exhibit different kinds of shapes as shown in
Figure 2. The PDF exhibits left skewed, right skewed,
symmetric, J shape, and reversed ] shape for the given pa-
rameter values. The hazard rate function displays increasing,
bathtub, and modified upside-down bathtub shapes. The R
codes for PDF and hazard rate function can be found in the
Appendix section.

The limiting behavior of the density and hazard rate
functions as y — 0 and y — 1 are respectively given by

0, A>1,

lim f(y)=lim7(y)=4 af, A=1,

y—0 y—0 (5)
o0, A<,

lim f(y)=lim7(y) =
y—1 y—1

Sometimes, to derive the statistical properties of a de-
veloped distribution, the expansion of the density function is
required. Using the generalized binomial expansion,

(I—Z)"“=Z<a+k_l>zk, lZ1<1,  (6)
k=0 k
the density function can be written as
i M(i+1)- a-1
( )(1 BT 1=, e o),
(7)

DY (=N el

with CDF F(y;ay,5,A). Then, the BOIPE distribution is
identifiable if a; = a,.
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Ficure 1: Submodels of BOIPE distribution.
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FiGgure 2: Plots of PDF (a) and hazard function (b) of BOIPE distribution.
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Proof. For the BOIPE distribution to be identifiable,
F(y;ay,8,A) = F(y; ay, B, A), when «; = «,. Hence,
A\ % A\%2
- (=)
1- = 1- - (8)
(1- - py') (1- a-py)
This implies that

1_/10‘1 1_/1"‘2
(=) (=¥ ©

(1-a-py)" (1-a-py")™

When o, = a,, F(y;a4,5,A) = F(y; a,, 5, A). This com-
pletes the proof. O

3. Statistical Properties

The statistical properties of the BOIPE distribution are
presented in this section.

3.1. Quantile. The quantile function is useful when gener-
ating random observations from a distribution. It can also be
utilized in estimating measures of shapes (skewness and
kurtosis) when the moments of the random variable do not
exist. The quantile function of the BOIPE distribution is

(1 B (1 B u)]//\)l/)t
(1- - pa-w')"™

The first quartile, the median, and the upper quartile are
obtained by substituting # = 0.25, 0.5 and 0.75, respectively,
into equation (10). The quantile function can be used to
generate random observations from the BOIPE distribution.

Qy (u) = ue (0,1). (10

!

bn =

Ifweletu = y*, thenas y — 0,u —> Oandas y — 1,
u — 1. Further, dy = du/Ay*~!. Hence, after some alge-
braic manipulations, we have

[ o/ a+i .
Oéﬁz< >(1 _ﬁ)iB<w)a), ﬁ € (0,1),
i=0

i

a+i ‘ A +
( )/3“““) (8- 1)’3("7, a+ i), B>1,

(13)

(49

L

Il
(=]

1

Oéﬁl i( a :' i ) (1 _ﬁ)i J-(l) yn+/1(i+l)—1(1 _ y,\)a—ldy’ ﬁ . (0’ 1)’
i=0

o At o (a) i1 et Ayaric1
ay (e - Joy (1= dy, p>1,
i=0

The algorithm for generating random observation from the
BOIPE distribution is as follows:

(i) Generate U; ~ uniform(0,1),i =1,...,n;

(i) Set g, = (1= (1-w"™M"™Ma-a-p
(1 - wy).

The following R codes can be used to generate random
observations from the distribution.

quantile < -function(n, alpha, beta, lambda){
u<-if(n, 0, 1)

P <-(1-(1-u)(1/alpha))(1/lambda)

Z < -(1-((1-beta)*((1-u)(1/alpha))))(1/lambda)
y<-P/Z

return(y).

}

The histograms of 1000 random observations generated
from the BOIPE distribution using different parameter
values are shown in Figure 3. The histograms of the random
observations show that the distribution can exhibit different
degrees of skewness.

3.2. Moments and Incomplete Moments. The moments of a
random variable, if they exist, are useful for estimating measures
of central tendency, dispersion, and shapes. For the BOIPE
random variable, the 7" noncentral moment is given by

1
= Joy”f (y)dy. (11)

Thus, using the expanded form of the density function
yields

(12)

where B(a,b) = f(l) z¢ (1 - z)b_ 'dz is the beta function and
n=1,2,..., The central moments (4,) and the cumulants
(%) can be obtained from the noncentral moments as y, =
Sro CO/( s ana =52 (5] Jonts
respectively, where x; = y;. The skewness and kurtosis are
respectively calculated from the third and fourth stan-
dardized cumulants as y, = k;/x3* and y, = ,/x3. Table 1
displays the first six moments, standard deviation (SD),
coefficient of variation (CV), coefficient of skewness (CS),
and coeflicient of kurtosis (CK). The values for SD, CV, CS,
and CK are computed respectively using
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FIGURE 3: Histograms of simulated data from BOIPE distribution.
TaBLE 1: First six moments, SD, CV, CS, and CK.
ul a=04,f=251=0.1 a=45p=31,1=15 a=03,8=04,1=08
y{ 0.2459 0.1610 0.8281
w 0.1860 0.0386 0.7452
s 0.1580 0.0119 0.6911
ul 0.1408 0.0044 0.6513
ul 01288 0.0019 0.6202
[Aé 0.1198 0.0009 0.5948
SD 0.3543 0.1125 0.2439
CV 1.4406 0.6987 0.2945
SK 1.1365 1.1369 -1.6888
CK 2.6565 4.5168 4.9744
SD = lul — 2 The incomplete moments are important when estimat-
T\ ing measures of inequalities such as the Lorenz and Bon-
- ferroni curves and measures of deviations such as the mean
cv=2_ "’_g -1, and median deviations. The incomplete #" moment for the
U U BOIPE distribution is defined as

. LT et

(43— )’

(14)

y
0, (y) = JO A F (x)dx.

(15)

Substituting the expanded form of the density function
into the definition of the incomplete moments and sim-

plifying yields



6 International Journal of Mathematics and Mathematical Sciences

[ o/ a+i
aﬁZ( ) -p( A ) e
i=0

$n =1 (16)
oa+1i 1
( )ﬁ"“‘)(/} 1)3( T ,(x+1) B>1,
i

where B(g;a,b) = IZ zv (1 - z)b’ 'dz is the incomplete this section. The moment generating function, if it exists, is
beta function. given by My (t) = E(e'"). Hence, employing Taylor series
expansion, the moment generating function of the BOIPE
random variable Y is given by

L

Il
o

[0

1

3.3. Generating Functions. The moment generating, char-
acteristic, and cumulant generating functions are derived in

t
My (8) =) —u,
n= 0
00 00 a+i tn(l ﬁ)l A( 1)
- n+A(i+
o B S, € (0,1),
ﬁz(;zo ; n ( A ) g (17)
o0 00 a +i t — (X'H ( A
59 B B<"I ,a+i>, B>
| n=0i=0 ; :
The  characteristic ~ function is  defined as
¢y (1) = E(e™) = Y2 ((it)"/n)y,,i = V-1.  Thus, the
characteristic function is given by
© o ¥ @it)" (1 AG+1
35" ), e
=0 i=0 i :
Gy (£) = 5 (18)
00 00 a+i .\ p—(at+i) 1y
S
=00 i
The  cumulant generating function of Y,
Kky (1) = log ¢, (t). Hence,
o oo [ AT 1 A+l
log (af) +logzz< ) _ﬁ) <n+ Al il ),zx>, B e (0,1),
n=0 i=0 i
Ky (t) = 1 (19)

00 0 o+i . 1 o (a+i) 1y
log((x)+logZZ( )(lt)ﬁ o B-1 B<n1—/\,(x+i>, p>1

n=0i=0 i
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3.4. Entropies. Entropies are useful measures of variation of
a random variable. They have been extensively used in the
areas of physics, molecular imaging of tumours, and sparse
kernel density estimation. In this subsection, the Rényi [23]
and § entropies are discussed. The Rényi entropy of a
random variable Y having the BOIPE distribution is defined
as

1
Hs(y) = 1iélog“()fé(y)dy], 8§>0,8+1.  (20)

Using the generalized binomial expansion, we have

(LT o/ 0@+ +i-1 1 .
i +i)— a-1
1_51°g (aﬁ/\)ﬁz( )(1_/;)1 Joym ) 5(1_)/\) y:|, Be(0,1),
L i=0 i
Hs(y) =4 (21)
. r o [Ola+)+i-1 . 5 _
mlog (M)az( )ﬂ(&xﬂ') B-1) Joyawl)(l —yA) ((H)ﬂdy], ol
L i=0 i
Letting u=y* as y — 0, u — 0 and as y — 1,
u —> 1. Also, dy = du/Ay*!. Thus, after some algebraic
manipulations, the Rényi entropy is obtained as
( ) r o [Ola+1)+i-1 A i) b1
8y0-1 i -0~
s ZO | 1-p) B<f,8((x—l)+l) , Be(0,1)
L i
Hs(y) =1 (22)
) [ o [ Ola+1)+i-1 SO-1)+1
1 8y0-1 ~(a+d) (5 _ 1)iB -+ ’ “D+i+1)], L
g log|a’d ZO | B B-1) ) Sla—1)+i+ B>
{ L i

The §-entropy is defined as
1 1 5
Is(y) = mlog 1- Jof (»dy|, 6>0,8+1, (23)
and then it follows from equation (22).

3.5. Stochastic Ordering. Stochastic ordering is used to ex-
amine comparative behavior in reliability theory and other
fields. Suppose Y, and Y, are two continuous random
variables with PDFs f(y) and g(y), respectively. If
f(»)/g(y) is nondecreasing, then the random variable Y, is
smaller than Y, in likelihood ratio order denoted as
Y, <.Y,. The likelihood ratio order is stronger than the
hazard rate order and the usual stochastic order, which are
defined as follows:

(i) Y, is said to be stochastically smaller than Y,
denoted by Y, <Y, if F(y)<G(y) for all y. F(y)
and G(y) are the CDFs of Y, and Y,, respectively.

(ii) Y, is said to be smaller than Y, in hazard rate order
denoted by Y, <Y, if 7, (y) <7, (y) forall y. 7, ()
and 7, (y) are the CDFs of Y, and Y,, respectively.

Proposition 2. Let Y, and Y, be two random variables
having the BOIPE distribution with parameters («,, 3, ) and
(ay, B, A), respectively. If a, > oy, then Y, <, Y.

Proof. The ratio of the densities of the random variables is

Y STS

9\«

Next,
%(f(y)) Moyt A e - a)(B- )yt
dy \g(y) 1-y 1+(B-1y"

(25)

Hence, if a, > a;, then (dlog/dy) (f (¥)/g(y)) >0 for all
y. 'This implies that f(y)/g(y) is nondecreasing in y and
thus Y,<,Y,. It is worth noting that Y,<,Y, =
VoS =Y, <4Y).

3.6. Order Statistics. Order statistics are important for es-
timating summary statistics such as the minimum, maxi-
mum, and range of a dataset. They are also used in quality
control testing and reliability to forecast failure of future
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items based on the times of few early failures. Given that
Y (1 € -+ <Y,y are order statistics of a random sample

Y, from the BOIPE distribution, then the PDF of the
Kt order statistic, Y (k.n)> 18 given by

_ f(y)

Using the binomial expansion, the PDF of the k" order
statistic can be written as

[FO)I 'L -F()I" " (26)

k-1 -1 )
Jien D) = D nﬁy) ,Z( 1)( . )[I—F(y)]"“k.

i
(27)

Substituting the PDF and CDF of the BOIPE distribution
defined in equations (2) and (3), respectively, we have

l’l! k-1 .
frn () = [CEnICE] ; vf (yia(n+i-k),Ap),

(28)

1

where v; = ((—1)i/(n+i—k))<k_ > and f(y;a(n+i-

k), A, B) is the PDF of the BOIPE distribution with param-
eters a(n+i—-k),A, and f.

4. Parameter Estimation

The methods for estimating the parameters of the BOIPE
distribution are presented in this section. These include
maximum likelihood, ordinary least-squares (OLS), maxi-
mum product spacing (MPS), Cramér-von Mises (CVM),
Anderson-Darling (AD), and percentile (PC) methods.

4.1. Maximum Likelihood Method. If y,,...,y, are n in-
dependent and identically distributed observations from the
BOIPE distribution and 6 = (a, 3,1)", then the total log-
likelihood function, € = £(6), is given by

¢=nlog(apl) +(A-1) ilog()’i)

i=1
(-1 Y log(1-y!) = (a+1) Y log(1 - (1-B)y}).
) i-1

(29)

The maximum likelihood estimates (MLE) of parameters
can be obtained by directly maximizing equation (29) using
the R software or equating the following system of equations
to zero and solving them simultaneously using numerical
methods:

ae n n

E:Z+glog(l—yﬁ)—;10g(l—(l—ﬂ)y?),

ol n

B p )21—(1- By (30)
ot 2 1 1-p)l )

=g+ ;og(y,) (o= 1)Z°g(yl y’+( +1)Zl—(l_()1°_gg’)y’.

When the regularity conditions are satisfied, the mul-
tivariate normal N5 (0, J OB distribution, where J (0 'is
the observed information estimated at 0, can be utilized to
estimate the approximate confidence intervals for the BOIPE
distribution parameters.

4.2. Ordinary Least Squares. The OLS technique is an esti-
mation procedure introduced by Swain et al. [24] for esti-
mating the parameters of a model. Suppose
Yy Y@y > Y are ordered observations from the BOIPE
distribution with CDF F (y|a, 8,A). The OLS estimates are
obtained by minimizing

n . 2

LD =) [F(yglapd)-—=]. @D

i=1

with respect to the parameters a, 5, and A.

4.3. Maximum Product Spacing. MPS technique was de-
veloped as an alternative method to the maximum likelihood
approach using the Kullback-Leibler information measure
[25-29]. Suppose the uniform spacing

D; = F(yla f.A) = F(y ipla fi 1), (32)

where F(y @l fA) =0, F(y yple B A) = 1 and
Dy(a,5,A) + Dy (&, ,A) +--- + D, («, 5,A) = 1. The MPS
estimates are obtained by maximizing the logarithm of the

geometric mean of the spacing
n+l

Ma, B ) = ﬁ Ylog D(@f),  (33)
i=1
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with respect to a, 3, and A.

4.4. Percentile Method. The PC method is also another
approach for estimating the parameters of a model [30, 31].
Suppose u; =1/(n+1) is an unbiased estimator of
F(y@la, B, A). The PC estimates of the BOIPE distribution
parameters are obtained by minimizing

P(a,BN) = Z [)’(i) -Qy (”i)]2> (34)
i=1

with respect to the parameters and Qy (1;) is given by
equation (10).

4.5. Cramér-von Mises Method. The CVM estimation
method is considered to have less bias than other minimum
distance estimators [32]. The CVM estimates for the BOIPE
distribution are obtained by minimizing

2 -
[F(J’<i>|“>/3’)‘) - 12n

2
C(a,ﬁ,/\):ﬁ+ 1] L (3)

n
i=1

with respect to the parameters a, 5, and A.

4.6. Anderson-Darling Method. The AD estimator is another
type of minimum distance estimators. The AD estimates of
the BOIPE distribution are obtained by minimizing

A(a,BA) = —n —% Z (2i - 1)[log F(y(i)loc,/},)t) + log(l - F(y(i)loc,ﬁ,/l))], (36)
i=1

with respect to the parameters a, 5, and A.

5. Monte Carlo Simulation

In this section, the performance of the estimators for the
parameters of the BOIPE distribution is examined via Monte
Carlo simulations. The simulation exercise was carried out
using two sets of parameter values, that is,
(a, 5,A) = (0.8,0.5,0.2) and (0.9, 3.8,0.8). The sample sizes
n =25,75,150,200,300, and 500 were used to generate
random observations from the BOIPE distribution using its
quantile function. For each sample size, the experiment was
replicated for N = 5,000 times and the average estimate
(AE), absolute bias (AB), and mean square error (MSE) were
estimated. The results, as shown in Tables 2 and 3, revealed
that all the estimators are consistent. For the first case
(Table 2), the maximum likelihood estimators tend to have
the least MSEs compared to the other estimators. For the
second case (Table 3), when the sample size was 25, all the
estimators tend to over estimate the parameter 5. However,
as the sample size increases, the estimates tend to converge
to the actual parameter value. Again, the maximum likeli-
hood estimators had the smallest of the MSEs, as the sample
size increases.

6. Applications

The empirical applications of the BOIPE distribution are
illustrated in this section using two real datasets. The first
dataset (data I) can be found in the study by Yousof et al. [33]
and consists of transformed total milk production in the first
birth of 107 cows from the SINDI race. The data are 0.4365,
0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990,
0.6058, 0.6891, 0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525,
0.5483, 0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707,
0.7131, 0.5853, 0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259,
0.2303,0.7687,0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804,
0.3406, 0.4823, 0.5912, 0.5744, 0.5481, 0.1131, 0.7290, 0.0168,

0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167, 0.6750,
0.5113,0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553,
0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627,
0.3906, 0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 0.6220, 0.5629,
0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635,
0.4111, 0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553,
0.5878,0.4741, 0.3598, 0.7629, 0.5941, 0.6174, 0.6860, 0.0609,
0.6488, and 0.2747.

The second dataset (data II) was first reported by
Dumonceaux and Antle [34] and comprises the maximum
flood level (in millions of cubic feet per second) for the
Susquehanna River at Harrisburg, Pennsylvania. Each data
point is the maximum flood level for a four-year period. The
first being, 0.654, for the period 1890-1893 and the last
being, 0.265, for the period 1966-1969. The data are 0.654,
0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324,
0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484,
and 0.265. The performance of the BOIPE distribution was
compared to that of the beta (B), Kumaraswamy (K),
bounded Marshall-Olkin extended exponential (BMOEE),
and exponentiated Topp-Leone (ETL) [35] distributions
using goodness-of-fit statistics such as the Akaike infor-
mation criterion (AIC), corrected Akaike information cri-
terion (AICc), —2¢, Anderson-Darling method (AD), and
Cramér-von Mises (CVM) method. The p values of the AD
and CVM statistics are given in the parentheses. The dis-
tribution with the smallest values of the goodness-of-fit
statistics is considered the best for a given dataset. The R
codes for the empirical illustration can be found in the
appendix section. Table 4 presents the maximum likelihood
estimates of the parameters of the fitted distributions
with their corresponding standard errors in parentheses for
data I.

The goodness-of-fit statistics for the fitted distribution
for the first dataset are shown in Table 5. It can be seen that
the BOIPE distribution provides the best fit to the dataset
since it has the least values for all the goodness-of-fit
statistics.
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TaBLE 2: Simulation results for « = 0.8, = 0.5, and A = 0.2.

n Estimate Parameter MLE MPS OLS CVM AD PC

« 1.0646 1.4949 0.9073 1.0274 0.9796 0.7282

AE ﬂ 1.7111 1.7185 3.1877 3.2045 1.8115 113.9482
A 0.2654 0.3224 0.2515 0.2806 0.2385 0.5679
« 0.2646 0.6949 0.1073 0.2274 0.1796 0.0718

25 AB ﬁ 1.2111 1.2185 2.6877 2.7045 1.3115 113.4482
A 0.0654 0.1224 0.0515 0.0806 0.0385 0.3679
o 1.3050 3.7320 0.9636 1.0335 1.2921 0.5436

MSE /3 7.9240 7.9016 21.4493 23.0297 10.3399 1543.1780
A 0.1748 0.2183 0.2294 0.2477 0.1741 0.5791
o 0.8540 0.9189 0.8376 0.8684 0.8401 0.7710
AE /3 0.6806 0.6922 0.8020 0.8120 0.6755 2.4090
A 0.2215 0.2464 0.2162 0.2277 0.2142 0.3342
o 0.0540 0.1189 0.0376 0.0684 0.0401 0.0290
75 AB [j’ 0.1806 0.1922 0.3020 0.3120 0.1755 1.9090
A 0.0215 0.0464 0.0162 0.0277 0.0142 0.1342
fo4 0.2571 0.3060 0.3348 0.3705 0.2449 0.2644
MSE B 0.6085 0.5965 0.9434 0.9430 0.6282 5.6751
A 0.0798 0.0911 0.1102 0.1138 0.0843 0.2673
o 0.8253 0.8582 0.8237 0.8395 0.8233 0.7884
AE [5’ 0.5745 0.5915 0.5997 0.6141 0.5682 1.1278
A 0.21205 0.2273 0.2053 0.2111 0.2071 0.2673
fo4 0.0253 0.0582 0.0237 0.0395 0.0233 0.0116
150 AB B 0.0745 0.0915 0.0997 0.1141 0.0682 0.6278
A 0.0120 0.0273 0.0053 0.0111 0.0071 0.0673
o 0.1413 0.1638 0.1764 0.1932 0.1452 0.1740
MSE ﬁ 0.3009 0.3077 0.4330 0.4792 0.3239 1.7357
A 0.0540 0.0599 0.0744 0.0767 0.0590 0.1799
o 0.8141 0.8375 0.8068 0.8169 0.8115 0.7773
AE [J’ 0.5507 0.5679 0.6021 0.6128 0.5573 1.0201
A 0.2071 0.2194 0.2076 0.2126 0.2055 0.2625
« 0.0141 0.0375 0.0068 0.0169 0.0115 0.0227
200 AB [5 0.0507 0.0679 0.1021 0.1128 0.0573 0.5201
A 0.00712 0.0194 0.0076 0.0126 0.0055 0.0625
o 0.1121 0.1263 0.1447 0.1539 0.1206 0.1507
MSE ﬁ 0.2499 0.2495 0.3862 0.4133 0.2822 1.2590
A 0.0426 0.0482 0.0660 0.0700 0.0491 0.1639
« 0.8094 0.8263 0.8070 0.8144 0.8071 0.7890
AE /3 0.5342 0.5481 0.5590 0.5619 0.5388 0.7746
A 0.2055 0.2146 0.2050 0.2074 0.2047 0.2331
o 0.0094 0.0263 0.0070 0.0144 0.0071 0.0110
300 AB /3 0.0342 0.0481 0.0590 0.0619 0.0388 0.2746
A 0.0055 0.0146 0.0050 0.0074 0.0047 0.0331
o 0.0926 0.1017 0.1166 0.1212 0.0973 0.1227
MSE [j’ 0.1929 0.2012 0.2839 0.2898 0.2133 0.7608
A 0.0357 0.0394 0.0536 0.0541 0.0417 0.1271
o 0.8091 0.8196 0.8050 0.8109 0.8081 0.8007
AE ﬁ 0.5135 0.5226 0.5285 0.5315 0.5174 0.6352
A 0.2026 0.2085 0.2021 0.2038 0.2019 0.2160
o 0.0091 0.0196 0.0058 0.0109 0.0081 0.0007
500 AB ﬂ 0.0135 0.0226 0.0285 0.0315 0.0174 0.1352
A 0.0026 0.0085 0.0021 0.0038 0.0019 0.0160
o 0.0682 0.0744 0.0863 0.0912 0.0764 0.0959
MSE [J’ 0.1306 0.1377 0.1925 0.2043 0.1581 0.4831
A 0.0265 0.0279 0.0393 0.0417 0.0320 0.1022

Figure 4 displays the PDF and CDF plots of the fitted The probability-probability (P-P) plots of the fitted

distributions for data I. The graph clearly shows that the  distributions for data I are shown in Figure 5. The plots again
BOIPE distribution provides a good fit to the dataset. reveal that the BOIPE distribution fits the data well.
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TaBLE 3: Simulation results for « = 0.9, = 3.8, and A = 0.8.

n Estimate Parameter MLE MPS OLS CVM AD PC

a 1.3479 1.7895 1.2252 1.2601 1.2060 1.5544
AE B 21.2341 128.6030 264.7218 137.1928 24.5256 11.7387

A 0.8930 0.9900 0.9103 0.9187 0.8812 0.8575

a 0.4479 0.8895 0.3252 0.3601 0.3060 0.6544

25 AB B 17.4341 124.8030 260.9218 20.7255 1.3115 7.9387
A 0.0930 0.1900 0.1103 0.1187 0.0812 0.0575

a 1.7616 2.7191 1.6121 1.4790 1.4195 3.9597

MSE B 117.5867 2766.3810 3432.5360 1500.9980 120.9186 14.5361

A 0.3314 0.4250 0.5048 0.4511 0.3397 0.3941

o4 0.9983 1.0709 1.0246 0.8684 0.9723 0.9287

AE B 5.0327 5.6193 10.0174 0.8120 5.4761 8.4316

A 0.8198 0.8564 0.8211 0.2277 0.8218 0.8515

a 0.0983 0.1709 0.1246 0.1539 0.0723 0.0287

75 AB B 1.2327 1.8193 6.2174 4.2008 1.6761 4.6316
A 0.0198 0.0564 0.0211 0.0330 0.0218 0.0515

a 0.3547 0.5474 0.5977 0.7598 0.3726 0.3827

MSE B 5.0275 7.2441 83.5301 25.3746 6.8930 10.1803

A 0.1621 0.1832 0.2360 0.2205 0.1715 0.3147

a 0.9370 0.9743 0.9393 0.9616 0.9328 0.9050

AE B 4.4916 4.3804 5.1789 5.0559 4.5906 6.2644

A 0.8176 0.8297 0.8123 0.8149 0.8153 0.8359

a 0.0370 0.0743 0.0393 0.0616 0.0328 0.0050

150 AB B 0.6916 0.5804 1.3789 1.2559 0.7906 2.4644
A 0.0176 0.0297 0.0123 0.0149 0.0153 0.0359

a 0.2041 0.2180 0.2952 0.3085 0.2219 0.2440

MSE B 2.8083 2.7220 4.7300 5.0739 3.0367 6.5710

A 0.1158 0.1191 0.1478 0.1505 0.1229 0.2284

a 0.9229 0.9602 0.9303 0.9446 0.9139 0.8958

AE B 4.2587 4.1614 4.7214 4.7278 4.4483 5.9325

A 0.8106 0.8215 0.8041 0.8147 0.8134 0.8424

a 0.0229 0.0602 0.0303 0.0446 0.0139 0.0042

200 AB B 0.4587 0.3614 0.9214 0.9278 0.6483 2.1325
A 0.0106 0.0215 0.0041 0.0147 0.0134 0.0424

o 0.1560 0.1791 0.2324 0.2617 0.1635 0.2107

MSE B 0.1642 2.1522 3.9443 3.5360 2.5156 5.7578

A 0.0974 0.1023 0.1261 0.1295 0.1062 0.2088

o 0.9128 0.9434 0.9178 0.9300 0.9100 0.9076

AE B 4.1064 3.990 4.3935 4.2727 4.2022 4.7893

A 0.8091 0.8132 0.8035 0.8082 0.8096 0.8122

fod 0.0128 0.0434 0.0178 0.0300 0.0100 0.0076

300 AB B 0.3064 0.1990 0.5935 0.4727 0.4022 0.9893
A 0.0091 0.0132 0.0035 0.0082 0.0096 0.0122

a 0.1215 0.1422 0.1874 0.1845 0.1358 0.1736

MSE B 1.6734 1.6217 2.5497 2.3692 1.8528 3.4530

A 0.0803 0.0818 0.1017 0.1013 0.0873 0.1630

a 0.9141 0.9260 0.9140 0.9128 0.9102 0.9020

AE B 3.9092 3.9358 4.0276 4.1266 3.9692 4.4265

A 0.8029 0.8110 0.8000 0.8087 0.8033 0.8128

a 0.0141 0.0260 0.0140 0.0128 0.0102 0.0020

500 AB B 0.1092 0.1358 0.2276 0.3266 0.1692 0.6265
A 0.0029 0.0110 0.00002 0.0087 0.0033 0.0128

a 0.0938 0.1001 0.1281 0.1288 0.0996 0.1205

MSE B 1.1206 1.1582 1.5660 1.6586 1.2290 2.4066

A 0.0605 0.0627 0.0765 0.0803 0.0629 0.1243

The maximum likelihood estimates for the parameters of ~ the BOIPE distribution again provides the best fit to the second
the fitted distributions for data II are given in Table 6. dataset as compared to the other competing distributions.

The goodness-of-fit statistics for the fitted distributions for The PDF and CDF plots of the fitted distributions,
the second dataset are given in Table 7. The results revealed that ~ shown in Figure 6, give a pictorial representation of how
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TABLE 4: Maximum likelihood estimates for data I.
Model Estimates
BOIPE @ = 46.8165 B =0.0379 1 =1.7085
(1.9334 x 10~ %) (9.4107 x 1073) (2.5741 x 107 1)
B @ =2.4125 B =2.8297 B
(0.3145) (0.3744)
K & = 3.4363 A =2.1949 B
(0.5820) (0.2224)
B = 6.3399 A =2.5683 B
BMOEE (2.0703) (0.3213)
@ = 2.4684 B = 1.3050
ETL (0.3016) (0.1792) o
TaBLE 5: Goodness-of-fit statistics for data I.
Model -2¢ AIC AICc AD (P value) CVM (Pvalue)
BOIPE -54.3796 —48.3796 —48.1466 0.6471 (0.6043) 0.1057 (0.5583)
B —47.5545 —43.5545 —43.4391 1.3853 (0.2064) 0.2281 (0.2190)
K -50.7894 —46.7894 —46.6740 1.0030 (0.3555) 0.1522 (0.3836)
BMOEE -30.0969 —-26.0969 —-25.9815 2.5737 (0.0454) 0.3316 (0.1103)
ETL —46.6856 —42.6856 —42.5702 1.5421 (0.1668) 0.2632 (0.1723)
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FiGure 4: Plots of PDF (a) and CDF (b) of fitted distributions for data I.

well the distributions fit data II. It can be seen that the
BOIPE distribution mimics the empirical distribution of
the dataset.

The P-P plots shown in Figure 7 also revealed that the
BOIPE distribution provides a good fit to data I compared
to the other fitted distributions.

7. BOIPE Regression Model

Sometimes, one may be interested in investigating the effects
of some exogenous variables on an endogenous variable and

a regression model may be required to accomplish this task.
Thus, we proposed a new parametric regression model with
assumption that the underlying distribution of the response
variable follows the BOIPE distribution. In order to establish
the regression model, we relate the parameters « and A to
exogenous variables by the logarithm link functions «; =
exp(x’a;) and A, =exp(x'),), i=1,...,n, respectively,
where a; = (&), - ..,oclp)T and A, = (Alo,...,llp)T con-
stitute the vectors of the regression coefficients and
X! = (X, »X;p). The survival function of Y|X from
equation (3) follows as
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FIGURE 5: P-P plots of fitted distributions for data I: (a) BOIPE distribution. (b) B distribution. (c) K distribution. (d) BMOEE distribution.
(e) ETL distribution.

TABLE 6: Maximum likelihood estimates for data II.

Model Estimates
BOIPE @ =0.5764 B = 5000.4970 1 =8.3109
(1.6068 x 10~ 1) (8.4895 x 10°%) (5.8128 x 107 1)
B & = 6.7594 B =9.1141 B
(2.0954) (2.8525)
K & =11.7932 A =3.3639 B
(5.3616) (0.6034)
B = 10250.1239 A =9.7920 B
BMOEE (4.3889 x 107%) (4.4583 x 107 1)
@ = 4.6079 B = 4.0457
ETL (0.9498) (1.4757) -
exp (x70,) | °F (x"a;) To estimate the parameters of the regression model, the
(1 -y ' ) maximum likelihood technique was employed. The total log-
S(ylx) = (37)  likelihood function that needs to be maximized in order to

(1- 1= gyt

>exp (xa)’

obtain the estimates of the regression parameters is given by
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TaBLE 7: Goodness-of-fit statistics for data II.
Model -2¢ AIC AlICc AD (Pvalue) CVM (P value)
BOIPE —-32.0306 —-26.0306 —24.5306 0.2437 (0.9735) 0.0387 (0.9438)
B —-28.1303 —24.1303 —23.4244 0.7329 (0.5301) 0.1237 (0.4844)
K -25.7371 —21.7371 —21.0312 0.9326 (0.3934) 0.1637 (0.3525)
BMOEE —25.7947 —21.7947 —21.0888 1.4356 (0.1927) 0.1271 (0.471)
ETL —27.1904 —23.1904 —22.4846 0.8147 (0.4689) 0.1434 (0.4132)
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FiGURE 6: Plots of PDF (a) and CDF (b) of fitted distributions for data II.
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FIGURE 7: P-P plots of fitted distributions for data II: (a) BOIPE distribution. (b) B distribution. (c) K distribution. (d) BMOEE distribution.

(e) ETL distribution.

TaBLE 8: Estimates of regression parameters and goodness-of-fit statistics.

Model Parameters Estimates P value Goodness-of-fit
ﬁ 100.1200 (0.0019) <2.2000 x 107° —£ =-106.5700
A 0.4675 (0.4754) 0.3253 AIC=-203.1476
BOIPE o 2.6183 (0.9544) 0.0061 AICc=-201.0047
Ao 0.3315 (0.0982) 0.0007 -
A 0.1945 (0.0705) 0.0058 —
[30 —3.7591 (0.1686) <0.0010 —£ =-103.8000
Beta [51 —0.3716 (0.1722) 0.0309 AIC =-201.6000
4 71.2000 (18.8100) <0.0010 AICc=-200.8000
Bo —3.7986 (0.3286) <0.0010 —£ =-94.3895
Simplex [31 —0.4421 (0.1213) <0.0010 AIC=-182.7790
v 2.5375 (0.1988) 0.0262 AICc=-181.9790

e=nlog(P)+ Y log(a),) + Y (A - 1)log(;)
i=1

i=1

+ Y (o= 1)log(1- y") (38)

M=

Il
—_

- Z(ai + l)log(l —(1 —ﬁ)y?").
i=1

We demonstrated the application of the BOIPE re-
gression by modeling the relationship between long-term
interest (LTI) rates of the Organization for Economic Co-
operation Development (OECD) countries and foreign di-
rect investment (FDI). The data can be found in the study by
Altun and Cordeiro [36] and are as follows:

LTI rate (%): 2.640, 0.596, 0.680, 2.190, 4.560, 2.140,
0.410, 0.530, 0.750, 0.280, 4.390, 3.390, 5.190, 0.800, 2.160,
2.640, 0.060, 2.549, 0.930, 0.310, 0.540, 7.750, 0.470, 2.810,
1.760, 3.170, 1.760, 1.010, 0.990, 1.318, 0.550, 0.040, 1.374,
and 2.890.

FDI stocks (outward) (% GDP): 30.78, 57.87, 121.52,
90.17, 45.39, 11.08, 55.92, 51.54, 56.31, 43.34, 11.64, 20.85,
21.99, 276.22, 28.81, 27.56, 30.6, 21.02, 5.93, 7.24, 380.1,
15.76, 305.44, 8.94, 48.05, 5.41, 23.68, 3.56, 14.53, 41.9, 71.7,
162.75, 61.86, and 40.43.

The performance of the BOIPE regression model was
compared to that of the beta and simplex regression models.
The beta and simplex regression models were fitted using the
betareg and simplexreg packages of the R software respec-
tively. The estimated parameters of the BOIPE regression
model were obtained using the mle2 function of the bbmle
package of the R software. The R codes can be found in the
appendix section. Table 8 presents the estimated parameters
(standard errors) of the fitted regression model and their
goodness of fit statistics. For all the fitted models, the co-
efficient of the FDI is significant. The coefficient of the FDI in
the BOIPE regression model is positive indicating that a
change in the FDI increases the LTI rate. However, the
coefficient of the FDI in the beta and simplex regression
models is negative implying that the FDI decreases the LTI
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FiGure 8: P-P plot (a) and Cox-Snell versus —log of Kaplan-Meier estimates (b).

rate. But, since the BOIPE regression model provides a better
fit to the data than the beta and simplex regression models,
we conclude that a change in the FDI increases the LTI rate.

From the estimated parameters of the BOIPE regression
model, we have

log(a;) = 0.4675 + 2.6183 FDI,,

(39)
log();) = 0.3315 + 0.1945 FDI,.

In order to examine the adequacy of the BOIPE re-
gression model, we estimated the Cox-Snell residuals [37].
The Cox-Snell residual is defined as

7 = —logS(y;1x,), (40)
where S (-) is the estimated survival function. If the model fits
the data well, the Cox-Snell residuals are expected to behave
like a sample from the standard exponential distribution [5].
Also, the plot of the Cox—-Snell residuals versus —logS (r,),
where S(r;) is the Kaplan-Meier estimate of the Cox—-Snell
residuals, is expected to be a straight line with zero intercept
and unit slope. Figure 8 shows the P-P plot of the Cox-Snell
residuals and the plot of the Cox-Snell residuals versus the
negative logarithm of the Kaplan-Meier estimate of the
Cox-Snell residuals. It can be seen from the P-P plot that the
plotted points are closer to the diagonal line indicating that
the model provides an adequate fit to the data. Also, the plot
of the Cox-Snell residuals versus the negative logarithm of
the Kaplan-Meier estimate of the residuals is a straight line
with zero intercept, as shown in Figure 8.

8. Conclusion

In this study, a three-parameter distribution called bounded
odd inverse Pareto exponential distribution was proposed.
The hazard rate function of the proposed distribution ex-
hibits different kinds of shapes making it suitable for

modeling the dataset with both monotonic and nonmonotonic
failure rates defined on the (0, 1) interval. Different estimation
techniques were proposed for estimating the parameters of the
model. However, the Monte Carlo simulation results revealed
that the maximum likelihood procedure estimates the pa-
rameters better compared to the other estimation procedures.
The empirical applications of the model using real datasets
indicated that the new distribution provides good fit to the
given datasets compared to other existing distributions. Finally,
we proposed the BOIPE regression model and compared its
performance with the beta and simplex regression models
using the real datasets. The goodness-of-fit statistics revealed
that the BOIPE regression model fitted the given data better
than the beta and simplex regression models.

Appendix

(1) ####pp#nspntntsp#tats# BOIPE PDF #######44
HARRHBRHHHHH

(ii) BOIPE_PDF < -function(y, alpha, beta, lambda)
{A < -alphaxbetaxlambdax(y(lambda-1))=((1-
ylambda)(alpha-1)); B < -(1-((1-beta)-
#(ylambda)))(alpha+1); PDF<-A/B;
return(PDF)}

(iii) ####### CDF ######4

(iv) BOIPE_CDF < -function(y, alpha, beta, lambda)
{C < -((1-ylambda)(alpha)); D < -(1-((1-beta)-
#(ylambda)))(alpha); CDF < -1-(C/D);
return(CDF)}

(v) ####### Hazard Function ######4#

(vi) BOIPE_H < -function(y, alpha, beta, lambda) {I < -
alpha*betaxlambdax (y(lambda-1))*((1-
ylambda)(-1)) J <-(1-((1-beta)*(ylambda)));
H < -1/]; return(H)}

(vii) #######Negative Loglikelihood Function #######
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(viii) BOIPE_LL < -function(alpha, beta, lambda) {A<-
alphaxbetaxlambdax (y(lambda-1))*((1-ylambda)
T(alpha-1)); B < -(1-((1-beta);* (ylambda)))(alpha+1);
PDF < -A/B LL < -sum(log(PDF)); return(LL)}
(ix) #######Negative Loglikelihood for Regression
Model #######

(x) BOIPE_LLR < -function(alpha0,  alphal,  beta,
lambda0, lambdal) {alpha < -exp(alpha0O+alpha
1xx1) lambda < -exp(lambda0+lambdal=x1); A< -
alphaxbetaxlambdas (y(lambda-1))*((1-ylambda)
T(alpha-1)); B<-(1-((1-beta)=*(ylambda)))(alpha+1);
PDF < -A/B; LL < —sum(log(PDF)); return(LL)}

(xi) #######Optimization #HHHH#H

(xii) library (bbmle) ####### Calling the Package
bbmle #######

(xiil) ####### Optimizing the
HHAHBHH

(xiv) fit < -mle2(BOIPE_LLR,start = list(alpha0 = 0.034
55,alphal = 0.005,beta =100.235, lambda0=0.34
5,Jlambdal = 0.0008945),data = list(y,x1),method =
“BFGS”); summary(fit)

(xv) ####### Optimizing the BOIPE distribution for
Milk Data #######

(xvi) fitl < -mle2(BOIPE_LL,start =list(alpha = 38.9458
9368,beta = 0.04548055, lambda = 0.70421823),
data =list(x),method = “BFGS”); summary(fitl).

Regression Model

Data Availability

The study is on methodological improvement, and the data
used can be found within the paper with the appropriate
source duly cited.
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