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In this paper, we establish an iterative algorithm by combining Yamada’s hybrid steepest descent method and Wang’s algorithm
for finding the common solutions of variational inequality problems and split feasibility problems. *e strong convergence of the
sequence generated by our suggested iterative algorithm to such a common solution is proved in the setting of Hilbert spaces
under some suitable assumptions imposed on the parameters. Moreover, we propose iterative algorithms for finding the common
solutions of variational inequality problems and multiple-sets split feasibility problems. Finally, we also give numerical examples
for illustrating our algorithms.

1. Introduction

In 2005, Censor et al. [1] introduced the multiple-sets split
feasibility problem (MSSFP), which is formulated as follows:

findx ∈ ∩
N

i�1
Ci such thatAx ∈ ∩

M

j�1
Qj, (1)

where Ci (i � 1, 2, . . . , N) and Qj(j � 1, 2, . . . , M) are
nonempty closed convex subsets of Hilbert spaces H1 and
H2, respectively, and A: H1⟶ H2 is a bounded linear
mapping. Denote by Ω the set of solutions of MSSFP (1).
Many iterative algorithms have been developed to solve the
MSSFP (see [1–3]). Moreover, it arises in many fields in the
real world, such as inverse problem of intensity-modulated
radiation therapy, image reconstruction, and signal pro-
cessing (see [1, 4, 5] and the references therein).

When N � M � 1, the MSSFP is known as the split
feasibility problem (SFP); it was first introduced by Censor
and Elfving [5], which is formulated as follows:

findx ∈ C such thatAx ∈ Q. (2)

Denote by Γ the set of solutions of SFP (2).
Assume that the SFP is consistent (i.e., (2) has a solu-

tion). It is well known that x ∈ C solves (2) if and only if it
solves the fixed point equation

x � Tx,

T � PC I − cA
∗

I − PQ􏼐 􏼑A􏼐 􏼑, x ∈ C,
(3)

where c is a positive constant, A∗ is the adjoint operator of
A, and PC and PQ are the metric projections of H1 and H2
onto C and Q, respectively (for more details, see [6]).

*e variational inequality problem (VIP) was introduced
by Stampacchia [7], which is finding a point

x
∗ ∈ C such that 〈F x

∗
( 􏼁, x − x

∗〉 ≥ 0, for allx ∈ C, (4)

where C is a nonempty closed convex subset of a Hilbert
space H and F: C⟶ H is a mapping. *e ideas of the VIP
are being applied in many fields including mechanics,
nonlinear programming, game theory, and economic
equilibrium (see [8–12]).
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In [13], we see that x ∈ C solves (4) if and only if it solves
the fixed point equation

x � Sx,

S � PC(I − μF), x ∈ C.
(5)

Moreover, it is well known that if F is k-Lipschitz
continuous and η-strongly monotone, then VIP (4) has a
unique solution (see, e.g., [14]).

Since SFP and VIP include some special cases (see
[15, 16]), indeed, convex linear inverse problem and split
equality problem are special cases of SFP, and zero point
problem and minimization problem are special cases of
VIP. Jung [17] studied the common solution of variational
inequality problem and split feasibility problem: find a
point

x
∗ ∈ Γ such that 〈Fx

∗
, x − x

∗〉 ≥ 0, for allx ∈ Γ, (6)

where Γ is the solution set of SFP (2) and F: H1⟶ H1 is an
η-strongly monotone and k-Lipschitz continuous mapping.
After that, for solving problem (6), Buong [2] considered the
following algorithms, which were proposed in [14, 18],
respectively:

xn+1 � I − tnμF( 􏼁Txn, n≥ 0, (7)

xn+1 � αnxn + 1 − αn( 􏼁 I − tnμF( 􏼁Txn, n≥ 0, (8)

where T � PC(I − cA∗(I − PQ)A), and under the following
conditions:

(C1) tn ∈ (0, 1), tn⟶ 0 as n⟶∞ and 􏽐
∞
n�1 tn �∞.

(C2) 0< liminfn⟶∞αn ≤ limsupn⟶∞αn < 1.

Moreover, Buong [2] considered the sequence xn􏼈 􏼉 that
is generated by the following algorithm, which is weakly
convergent to a solution of MSSFP (1):

xn+1 � P1 I − cA
∗

I − P2( 􏼁A( 􏼁xn, (9)

where P1 � PC1
, . . . , PCN

and P2 � PQ1
, . . . , PQM

or P1 �

􏽐
N
i�1 αiPCi

and P2 � 􏽐
M
j�1 βjPQj

in which αi and βj, for
1≤ i≤N and 1≤ j≤M, are positive real numbers such that
􏽐

N
i�1 αi � 􏽐

M
j�1 βj � 1.

Motivated by the aforementioned works, we establish an
iterative algorithm by combining algorithms (7) and (8) for
finding the solution of problem (6) and prove the strong
convergence of the sequence generated by our iterative al-
gorithm to the solution of problem (6) in the setting of
Hilbert spaces. Moreover, we propose iterative algorithms
for solving the common solutions of variational inequality
problems and multiple-sets split feasibility problems. Fi-
nally, we also give numerical examples for illustrating our
algorithms.

2. Preliminaries

In order to solve our results, we now recall the following
definitions and preliminary results that will be used in the
sequel. *roughout this section, let C be a nonempty closed

convex subset of a real Hilbert space H with inner product
〈·, ·〉 and norm ‖ · ‖.

Definition 1. A mapping T: H⟶ H is called

(i) k-Lipschitz continuous, if ‖Tx − Ty‖≤ k‖x − y‖ for
all x, y ∈ H, where k is a positive number.

(ii) Nonexpansive, if (i) holds with k � 1.
(iii) η-strongly monotone, if η‖x − y‖2 ≤ 〈Tx − Ty, x −

y〉 for all x, y ∈ H, where η is a positive number.
(iv) Firmly nonexpansive, if ‖Tx − Ty‖2 ≤ 〈Tx − Ty,

x − y〉 for all x, y ∈ H.
(v) α-Averaged, if T � (1 − α)I + αN for some fixed

α ∈ (0, 1) and a nonexpansive mapping N.

In [5], we know that the metric projection PC: H⟶ C

is firmly nonexpansive and (1/2)-averaged.
We collect some basic properties of averaged mappings

in the following results.

Lemma 1 (see [16]). We have

(i) !e composite of finitely many averaged mappings is
averaged. In particular, if Ti is αi-averaged, where
αi ∈ (0, 1) for i � 1, 2, then the composite T1T2 is
α-averaged, where α � α1 + α2 − α1α2.

(ii) If the mappings Ti􏼈 􏼉
N

i�1 are averaged and have a
common fixed point, then

Fix T1, T2, . . . , TN( 􏼁 � ∩
N

i�1
Fix Ti( 􏼁. (10)

Proposition 1 (see [19]). Let D be a nonempty subset of H,
m≥ 2 be an integer, and ϕ; (0, 1)m⟶ (0, 1) be defined by

ϕ α1, . . . , αm( 􏼁 �
1

1 + 1/􏽐
m
i�1 αi/1 − αi( 􏼁( 􏼁

. (11)

For every i ∈ 1, . . . , m{ }, let αi ∈ (0, 1) and Ti: D⟶ D

be αi-averaged. *en, T � T1, . . . , Tm is α-averaged, where
α � ϕ(α1, . . . , αm).

*e following properties of the nonexpansive mappings
are very convenient and helpful to use.

Lemma 2 (see [20]). Assume that H1 and H2 are Hilbert
spaces. Let A: H1⟶ H2 be a linear bounded mapping such
that A≠ 0 and let T: H2⟶ H2 be a nonexpansive mapping.
!en, for 0≤ c< 1/‖A‖2, I − cA∗(I − T)A is c‖A‖2-averaged.

Proposition 2 (see [19]). Let C be a nonempty subset of H,
and let Ti􏼈 􏼉i∈I be a finite family of nonexpansive mappings from
C to H. Assume that 􏽥αi􏼈 􏼉i∈I ⊂ (0, 1) and δi􏼈 􏼉i∈I ⊂ (0, 1] such
that 􏽐i∈Iδi � 1. Suppose that, for every i ∈ I, Ti is 􏽥αi-averaged;
then, T � 􏽐i∈IδiTi is α-averaged, where α � 􏽐i∈Iδi􏽥αi.

!e following results play a crucial role in the next section.

Lemma 3 (see [14]). Let t be a real number in (0, 1]. Let
F: H⟶ H be an η-strongly monotone and k-Lipschitz
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continuous mapping. !e mapping I − tμF, for each fixed
point μ ∈ (0, (2η/k2)), is contractive with constant 1 − tτ, i.e.,

‖(I − tμF)x − (I − tμF)y‖≤ (1 − tτ)‖x − y‖, (12)

where τ � 1 −
�������������
1 − μ(2η − μk2)

􏽰
∈ (0, 1].

Theorem 1 (see [21]). Let F be a k-Lipschitz continuous and
η-strongly monotone self-mapping of H. Assume that Ti􏼈 􏼉

N
i�1

is a finite family of nonexpansive mappings from H to H such
that C � ∩N

i�1Fix(Ti)≠∅. !en, the sequence xn􏼈 􏼉 defined by
the following algorithm converges strongly to the unique
solution x∗ of the variational inequality (4):

xn+1 � 1 − β0n􏼐 􏼑xn + β0n I − tnμF( 􏼁T
n
N, T

n
N− 1, . . . , T

n
1xn, n≥ 0,

(13)

where μ ∈ (0, 2η/k2), Tn
i : � (1 − βi

n)I + βi
nTi, for i � 1, . . . ,

N, and under the following conditions:

(i) tn ∈ (0, 1), tn⟶ 0 as n⟶∞ and 􏽐
∞
n�0 tn �∞.

(ii) βi
n ∈ (α, β), for some α, β ∈ (0, 1), and

|βi
n+1 − βi

n|⟶ 0 as n⟶∞, (i � 0, . . . , N).

Theorem 2 (see [22]). Let F, C, μ, βi
n􏽮 􏽯

N

i�1, tn􏼈 􏼉, and Ti􏼈 􏼉
N
i�1

be as in !eorem 1. !en, the sequence xn􏼈 􏼉 defined by the
following algorithm:

xn+1 � I − tnμF( 􏼁T
n
N, T

n
N− 1, . . . , T

n
1xn, n≥ 1, (14)

converges strongly to the unique solution x∗ of variational
inequality (4).

3. Main Results

In this section, we consider the following iterative algorithm
by combining Yamada’s hybrid steepest descent method [14]
and Wang’s algorithm [18] for solving problem (6):

yn � 1 − αn( 􏼁xn + αn I − tnμF( 􏼁Txn,

xn+1 � I − tnμF( 􏼁Tyn, ∀n≥ 1,
􏼨 (15)

whereT � PC(I − cA∗(I − PQ)A). If we set αn � 0 for n ∈ N,
then (15) is reduced to (7) studied by Buong [2]. On the
other hand, in the Numerical Example section, we present
the example illustrating that the two-step method (15) is
more efficient that the one-step method (8) studied by
Buong [2] and in terms of the two-step method (15) the
generated sequence has the less number of iterations and
converges faster than the sequence generated by the one-step
method (8).

*roughout our results, unless otherwise stated, we
assume that H1 and H2 are two real Hilbert spaces and
A: H1⟶ H2 is a linear bounded mapping. Let F be an
η-strongly monotone and k-Lipschitz continuous mapping
on H1 with some positive constants η and k. Assume that
μ ∈ (0, 2η/k2) is a fixed number.

Theorem 3. Let C and Q be two closed convex subsets in H1
and H2, respectively. !en, as n⟶∞, the sequence xn􏼈 􏼉

defined by (15), where the sequences tn􏼈 􏼉 and αn􏼈 􏼉 satisfy

conditions (C1) and (C2), respectively, converges strongly to
the solution of (6).

Proof. From Lemma 2, we have that I − cA∗(I − PQ)A is
c‖A‖2-averaged. Since T � PC(I − cA∗(I − PQ)A), by
Lemma 1 (i), we get that T is λ-averaged where
λ � (1 + c‖A‖2/2). Moreover, we obtain that z ∈ Γ if and
only if z ∈ Fix(T). It follows from Definition 1 (iv) that
T � (1 − λ)I + λS, where S is nonexpansive. *en, iterative
algorithm (15) can be rewritten as follows:

xn+1 � I − tnμF( 􏼁T􏽥Txn, (16)

where 􏽥T � (1 − αn)I + αn(I − tnμF)T and T � (1 − λ)I + λS.
Since (1 − λ)I + λS and I − tnμF are nonexpansive, then (I −

tnμF)T is also nonexpansive. *erefore, the strong con-
vergence of (15) to the element x∗ in the solution set of (6)
follows by *eorem 2.

In [23], Miao and Li showed the weak convergence
results of the sequence xn􏼈 􏼉 converging to the element of
Fix(T) where xn􏼈 􏼉 is generated by the following algorithm:

yn � 1 − βn( 􏼁xn + βn I − tnμF( 􏼁Txn,

xn+1 � 1 − αn( 􏼁xn + αn I − tnμF( 􏼁Tyn, ∀n≥ 1,
􏼨 (17)

which tn􏼈 􏼉 satisfies condition (C3) 􏽐
∞
n�1 tn < +∞. Next, we

will show the strong convergence for (17) where tn􏼈 􏼉 satisfies
condition (C1). □

Theorem 4. Let C and Q be two closed convex subsets in H1
and H2, respectively. !en, as n⟶∞, the sequence xn􏼈 􏼉

defined by (17), where the sequence tn􏼈 􏼉 satisfies condition
(C1) and βn􏼈 􏼉 and αn􏼈 􏼉 satisfy condition (C2), converges
strongly to the solution of (6).

Proof. In the proof of *eorem 3, one can rewrite iterative
algorithm (17) as follows:

xn+1 � 1 − αn( 􏼁xn + αn I − tnμF( 􏼁T􏽥Txn, (18)

where 􏽥T � (1 − βn)I + βn(I − tnμF)T and T � (1 − λ)I + λS.
Since (I − tnμF)T is nonexpansive, then the strong con-
vergence of (17) to the element x∗ in the solution set of (6)
follows by *eorem 1.

Moreover, we obtain the following results which are
solving the common solution of variational inequality
problem and multiple-sets split feasibility problem, i.e., find
a point

x
∗ ∈ Ω such that 〈Fx

∗
, x − x

∗〉 ≥ 0, for allx ∈ Ω, (19)

where Ω is a solution set of (1), and F: H1⟶ H1 is an
η-strongly monotone and k-Lipschitz continuous mapping.
*is problem has been studied in [2]. □

Theorem 5. Let Ci􏼈 􏼉
N

i�1 and Qj􏽮 􏽯
M

j�1 be two finite families of
closed convex subsets in H1 and H2, respectively. Assume that
c ∈ (0, 1/‖A‖2), tn􏼈 􏼉 and αn􏼈 􏼉 satisfy conditions (C1) and
(C2), respectively, and the parameters δn􏼈 􏼉 and ζn􏼈 􏼉 satisfy the
following conditions:
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(a) δi > 0 for 1≤ i≤N such that 􏽐
N
i�1 δi � 1.

(b) ζj > 0 for 1≤ j≤M such that 􏽐
N
i�1 ζj � 1.

*en, as n⟶∞, the sequence xn􏼈 􏼉, defined by

yn � 1 − αn( 􏼁xn + αn I − tnμF( 􏼁P1 I − cA I − P2( 􏼁A( 􏼁xn,

xn+1 � I − tnμF( 􏼁P1 I − cA I − P2( 􏼁A( 􏼁yn, ∀n≥ 1,
􏼨

(20)

with one of the following cases:

(A1) P1 � PC1
, . . . , PCN

and P2 � PQ1
, . . . , PQM

(A2) P1 � 􏽐
N
i�1 δiPCi

and P2 � 􏽐
M
j�1 ζjPQj

(A3) P1 � PC1
, . . . , PCN

and P2 � 􏽐
M
j�1 ζjPQj

(A4) P1 � 􏽐
N
i�1 δiPCi

and P2 � PQ1
, . . . , PQM

,

converges to the element x∗ in the solution set of (19).

Proof. Let T � P1(I − cA∗(I − P2)A). We will show that T

is averaged.
In the case of (A1), P1 � PC1

, . . . , PCN
and

P2 � PQ1
, . . . , PQM

. Since PCi
is (1/2)-averaged for all

i � 1, . . . , N, by Proposition 1, we get that P1 is λ1-averaged,
where λ1 � N/(N + 1). Similarly, we have that P2 is also
averaged and so P2 is nonexpansive. By using Lemma 2, we
deduce that I − cA∗(I − P2)A is λ2-averaged, where

λ2 � c‖A‖2. It follows from Lemma 1 (i) that T is λ-averaged
with λ � N/(N + 1) + c‖A‖2 − (N/(N + 1))c‖A‖2.

If P1 � 􏽐
N
i�1 δiPCi

and P2 � 􏽐
M
j�1 ζjPQj

, then by using
Proposition 2 and condition (a), we obtain that P1 is
(1/2)-averaged. From condition (b) and taking into account
that PQj

is nonexpansive, for all j � 1, . . . , M, we have that
P2 is also nonexpansive. It follows from Lemma 2 that I −

cA∗(I − P2)A is c‖A‖2-averaged. *us, T is λ-averaged with
λ � (1 + c‖A‖2)/2.

Cases (A3) and (A4) are similar. *is implies that
T: � (1 − λ)I + λS, where S is nonexpansive. Moreover, by
Lemma 1, we get that

Fix(T) � Fix P1( 􏼁∩ Fix I − cA
∗

I − P2( 􏼁A( 􏼁 � Fix P1( 􏼁∩A
− 1Fix P2( 􏼁

� ∩
N

i�1
Ci ∩A

− 1 ∩
M

j�1
Qj􏼒 􏼓 � Ω.

(21)

*en, iterative algorithm (20) can be rewritten as follows:

xn+1 � I − tnμF( 􏼁T􏽥Txn, (22)

where 􏽥T � (1 − αn)I + αn(I − tnμF)T and T � (1 − λ)I + λS.
Since (1 − λ)I + λS and I − tnμF are nonexpansive, then (I −

tnμF)T is nonexpansive. *us, the strong convergence of

(20) to the element x∗ in the solution set of (19) follows by
*eorem 2. □

Theorem 6. Let Ci􏼈 􏼉
N

i�1, Qj􏽮 􏽯
M

j�1, c, tn􏼈 􏼉, δn􏼈 􏼉, and ζn􏼈 􏼉 be as
in !eorem 5. !en, as n⟶∞, the sequence xn􏼈 􏼉, defined
by

yn � 1 − αn( 􏼁xn + αn I − tnμF( 􏼁P1 I − cA I − P2( 􏼁A( 􏼁xn,

xn+1 � 1 − βn( 􏼁xn + βn I − tnμF( 􏼁P1 I − cA I − P2( 􏼁A( 􏼁yn, ∀n≥ 1,
􏼨 (23)

with one of the cases (A1)–(A4), converges strongly to an
element in the solution set of (19).

Proof. In the proof of *eorem 5, one can rewrite iterative
algorithm (23) as follows:

xn+1 � 1 − αn( 􏼁xn + αn I − tnμF( 􏼁T􏽥Txn, (24)

where 􏽥T � (1 − βn)I + βn(I − tnμF)T and T � (1 − λ)I + λS.
Since (I − tnμF)T is nonexpansive, the strong convergence

of (23) to the element x∗ in the solution set of (19) follows by
*eorem 1. □

4. Numerical Example

In this section, we present the numerical example comparing
algorithm (8) which is given by Buong [2] and algorithm (15)
(new method) to solve the following test problem in [2]: find
an element x∗ ∈ Ω such that

Table 1: Computational results for Example 1 with different
methods.

10− 4 10− 6

Initial point
n s n s

(− 2, 1)T

Buong
method 29461 0.364595 2946204 31.362283

New
method 11784 0.241371 1178481 23.411679

(1, 3)T

Buong
method 30632 0.565431 3063343 33.468210

New
method 12252 0.324808 1225336 25.570356
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φ x
∗

( 􏼁 � min
x∈Ω

φ(x),

Ω � Ci ∩A
− 1

Qj ≠∅,
(25)

where φ is a convex function, having a strongly monotone
and Lipschitz continuous derivative φ′(x) on the Euclidian
space En, C � ∩N

i�1Ci and Q � ∩M
j�1Qj where

Ci � x ∈ En
: 􏽘

n

k�1
a

i
kxk ≤ bi

⎧⎨

⎩

⎫⎬

⎭, (26)

ai
k, bi ∈ (− ∞, +∞), for 1≤ k≤ n and 1≤ i≤N,

Qj � y ∈ Em
: 􏽘

m

l�1
yl − a

j

l􏼐 􏼑
2
≤R

2
j

⎧⎨

⎩

⎫⎬

⎭, Rj > 0, (27)

a
j

l ∈ (− ∞, +∞), for 1≤ l≤m and 1≤ j≤M, and A is an
n × m-matrix.

Example 1. We consider test problem (25), where
N � M � 1, n � m � 2, φ(x) � (1 − a)‖x‖2/2 for some fixed
a ∈ (0, 1), and

10–4

10–3

10–2

10–1

100

En

21 30 2.50.5 1.5
No. of iterations

Buong method
New method

×104

Figure 1: *e convergence behavior of En with the initial point (− 2, 1)T.

10–4

10–3

10–2

10–1

100

En

21 30 2.50.5 1.5
No. of iterations

Buong method
New method

×104

Figure 2: *e convergence behavior of En with the initial point (1, 3)T.

Table 2: Computational results for Example 2 with different
methods.

Initial point A1 A2 A3 A4

(− 2, 1)T n 28577 24264 28577 24264
s 1.491225 1.355074 1.534414 1.282528

(1, 3)T n 33407 31438 33407 31438
s 1.746868 1.693069 1.816897 1.690618
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A �
1 − 1

0 2
􏼢 􏼣. (28)

So, we have that F: � φ′ � (1 − a)I is a k-Lipschitz
continuous and η-strongly monotone mapping
with k � η � (1 − a). For each algorithm, we set
ai � (1/i, − 1), bi � 0, for all i � 1, . . . , N, and aj �

(1/j, 0), Rj � 1, for all j � 1, . . . , M. Taking a � 0.5, c � 0.3,
the stopping criterion is defined by En � ‖xn+1 − xn‖< ε
where ε � 10− 4 and 10− 6. *e numerical results are listed in
Table 1 with different initial points x1, where n is the number of

iterations and s is the CPU time in seconds. In Figures 1 and 2,
we present the graphs illustrating the number of iterations for
both methods using the stopping criterion defined as above
with the different initial points shown in Table 1.

10–4

10–3

En

(A1)
(A2)

(A3)
(A4)

0.5 1.5 2.521 3 3.5 40
No. of iterations ×104

Figure 3: *e convergence behavior of En with the initial point (− 2, 1)T.

10–4

10–3

En

(A1)
(A2)

(A3)
(A4)

0.5 1.5 2.521 3 3.5 40
No. of iterations ×104

Figure 4: *e convergence behavior of En with the initial point (1, 3)T.

Table 3: Computational results for Example 2 with different c.

c 0.1 0.2 0.3

(− 2, 1)T n 9675 19200 28577
s 0.669508 1.245136 1.666702

(1, 3)T n 11311 22447 33407
s 0.764536 1.372600 1.958486
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Remark 1. From the numerical analysis of our results in
Table 1 and Figures 1 and 2, we get that algorithm (15) (new
method) has less number of iterations and faster conver-
gence than algorithm (8) (Buong method).

Example 2. In this example, we consider algorithm (23) for
solving test problem (25), where N � 5 and M � 4. Let
Ci􏼈 􏼉

N

i�1, Qj􏽮 􏽯
M

j�1, φ, a, and A be as in Example 1. In the
numerical experiment, we take the stopping criterion
En < 10− 4. *e numerical results are listed in Table 2 with
different cases of P1 and P2. In Figures 3 and 4, we present
the graphs illustrating the number of iterations for all cases
of P1 and P2 using the stopping criterion as above with the
different initial points appeared in Table 2. Moreover, Ta-
ble 3 shows the effect of different choices of c.

Remark 2. We observe from the numerical analysis of Ta-
ble 2 that algorithm (23) has the fastest convergence when P1
and P2 satisfy (A4) and the slowest convergence when P1
and P2 satisfy (A3). Moreover, we require less iteration steps
and CPU times for convergence when c is chosen very small
and close to zero.
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