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#e aim of this study is to determine the necessary and sufficient condition for any AH subset to be a full ideal in a neutrosophic
ring R(I) and to be a nil ideal too. Also, this work shows the equivalence between Kothe’s conjecture in classical rings and
corresponding neutrosophic rings, i.e., it proves that Kothe’s conjecture is true in the neutrosophic ring R(I) if and only if it is true
in the corresponding classical ring R.

1. Introduction

It was Zadeh [1]who introduced the notion of fuzzy sets to knob
the uncertainties. Since then, the fuzzy set has been pragmatic in
many commands such as medical diagnosis [2], decision
making [3], and pattern recognition [4]. Keeping in view the
prominence of fuzzy sets, many generalizations of fuzzy sets
have been familiarized like rough sets [5], soft sets [6], intui-
tionistic fuzzy set [7], linear Diophantine fuzzy sets [8], bipolar
valued fuzzy sets [9], bipolar soft sets [10, 11], picture fuzzy set
[12], and spherical and T-spherical fuzzy sets [13]. Although all
these generalizations have their own benefits, the notion of the
neutrosophic set [14] has expanded much more responsiveness
from the researchers as compared to the others [15].

Neutrosophy is a new branch of philosophy founded by
Smarandache [16] to deal with indeterminacy in real life and
scientific actions. It became a useful tool in many areas such
as topology [17, 18], statistics [19], probability [20], and
algebra [21–23].

Introducing neutrosophic algebras began with Smar-
andache and Kandasamy [24], where they presented con-
cepts such as neutrosophic groups and neutrosophic rings
and loops by inserting the indeterminacy element I into
classical algebraic structures.

In [25–27], we find two generalizations of neutrosophic
rings, refined and n-refined neutrosophic rings, respectively.
Many interesting properties of these kinds were discussed

such as AH ideals, equations [28, 29], AH homomorphisms
[30], and idempotency [31].

Neutrosophic rings were applicable in other algebraic
structures, where neutrosophic modules, matrices [32–35],
and AH spaces [36] can be built over these rings in a similar
way to classical cases.

In [37], Abobala has proved that every neutrosophic ring
is a homomorphic image of the corresponding refined
neutrosophic ring. A similar relationship was proven in [38]
for n-refined neutrosophic rings.

Recently, the structure of maximal and minimal full AH
ideals of n-refined neutrosophic rings was presented [39].
Since, every neutrosophic ring R(I) can be understood as
R(I) � R + RI � (a + bI); a, b ∈ R{ }.

#en, each AH subset of R(I) is defined to have the form
M � P + SI; P and S are the two subsets of R. We call P the
real part and S the neutrosophic part of M.

An important question arises here. #e question is
“When M is a neutrosophic ideal of R(I)?” In other words,
what conditions on the real part P and neutrosophic part S
make M be an ideal?

Also, it is clear that if Kothe’s conjecture about nil ideals
is true in R(I), then it is true in R. What about the inverse
relationship? In other words, if Kothe’s conjecture is true in
R, then is it true for R(I)?

#ese important questions motivate us to do this study,
where we try to give full description of their answers.
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2. Preliminaries

Definition 1. Let (R, +, ×) be a ring; then,
R(I) � a + bI ; a, b ∈ R{ } is called the neutrosophic ring,
where I is a neutrosophic element with the condition I2 � I.

If R is a field, then R(I) is called a neutrosophic field. A
neutrosophic field is not a field by the classical meaning,
since I is not invertible.

Definition 2. Let R be a ring and R(I) be the related neu-
trosophic ring, and P � P0 + P1I � a0 + a1I ; a0 ∈ P0 ,

a1 ∈ P1}; P0, andP1 are the two subsets of R; then, P is
called an AH subset.

(a) We say that P is an AH ideal if P0 andP1 are ideals in
the ring R

(b) We say that P is an AHS ideal if P0 � P1

Definition 3. Let R(I) be any neutrosophic ring, and P �

P0 + P1I be any AH subset. We say that P is a full ideal of
R(I) if it is an ideal by classical meaning.

Definition 4. #e element I can be split into two indeter-
minacies I1 and I2 with the following conditions:

I
2
1 � I1,

I
2
2 � I2,

I1I2 � I2I1 � I1.

(1)

Definition 5. If X is a set, then X(X(I1, I2) �

(a, bI1, cI2): a, b, c ∈ X  is called the refined neutrosophic
set generated by X, I1, and I2.

Definition 6. Let (R, +, ×) be a ring, and (R(I1, I2), +, ×) is
called a refined neutrosophic ring generated by R, I1, I2.

Theorem 1. Let (R(I1, I2), +, ×) be a refined neutrosophic
ring; then, it is a ring.

It is called a refined neutrosophic field if R is a classical
field.

2.1. Kothe Conjecture. If R is a ring, then the sum of any two
left nil ideals is nil again. For more equivalent forms of Kothe
conjecture, see [20].

3. Main Discussion

First of all, we determine the conditions of AH subsets to be
ideals in the neutrosophic rings with unity.

Theorem 2. Let R(I) be a neutrosophic ring with unity 1 and
M � P + SI be any AH subset of R(I); then, M is a neu-
trosophic ideal (full ideal) if and only if the following con-
ditions are true:

(a) P is an ideal on R

(b) P is contained in S
(c) S is an ideal of R

Proof. First, we assume that (a), (b), and (c) are true; we have
(M, +) is a subgroup of (R(I), +), that is, because if
a + bI, c + dI ∈M; a, c ∈ P, b, d ∈ S, we find

(a + bI) − (c + dI) � (a − c) +(b − d)I ∈M; a − c ∈ P, b − d ∈ S.

(2)

Now, suppose that a + bI ∈M and r � m + nI ∈ R(I),
we have r · (a + bI) � m · a + I[m · b + n · b + n · a]; by the
assumption, we regard that m · b + n · b ∈ S and n · a ∈ P≤ S;
thus, r · (a + bI) � m · a + I[m · b+ n · b + n · a] ∈ P + SI �

M, which means that M is a neutrosophic ideal of R(I).
Conversely, we suppose that M � P + SI is a neu-

trosophic ideal of R(I). Let a and c be two arbitrary elements
in P, and b and d be two arbitrary elements in S; we have
a + bI, c + dI ∈M; by using the assumption, we have M as
an ideal; hence, (a + bI) − (c + dI) � (a − c) + (b − d)

I ∈M � P + SI; thus,

a − c ∈ P,

b − d ∈ S,
(3)

and (P, +) and (S, +) are the two subgroups of (R, +).
For every r ∈ R, we have r � r + 0I ∈ R(I) and r·

(a + bI) � r · a + r · bI ∈M � P + SI; thus, r · a ∈ P and r·

b ∈ S; this means that P and S are the ideals in the classical
ring R.

Now, we prove that P is contained in S. We have
(1 − I) ∈ R(I), that is, because R(I) has a unity 1. On the
other hand, we can write (1 − I)(a + bI) � (a − aI)

∈M � P + SI, that is, because M is an ideal of R(I); hence,
− a ∈ S, and thus, a ∈ S; by regarding that a is an arbitrary
element of P, we get that P≤ S. □

Example 1. Let R � Z be the ring of integers, and R(I) �

Z(I) � a + bI; a, b ∈ Z{ } be the corresponding neutrosophic
ring, we have

(a) P � 〈2〉, Q � 〈4〉, and S � 〈3〉 are the three ideals of
R, with Q≤P

(b) M � Q + PI � 4m + 2nI; m, n ∈ Z{ } is an ideal of
R(I)

(c) N � P + SI � 2m + 3nI; m, n ∈ Z{ } is not a neu-
trosophic ideal, that is, because P is not contained
in S

Example 2. Let R � Z8 be the ring of integersmodulo 8, and
R(I) � a + bI; a, b ∈ Z8  be the corresponding neu-
trosophic ring. Consider the set M � 0, 4, 2I, 4I,{ 6I,

4 + 2I, 4 + 6I, 4 + 4I}. We have M as an ideal of R(I), that is,
because M � 〈4〉 + 〈2〉I and 〈4〉≤ 〈2〉.

Now, we show that #eorem 2 is not true in the case of
neutrosophic rings with no unity by the following counter
example.
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Example 3. Consider the ring R � 2Z � 2m; m ∈ Z{ }, and it
is clear that it has no unity.

Let Q0 � R and Q1 � 4n; n ∈ Z{ } be an ideal in R. It is
clear that Q0 is not contained in Q1. Now, we should check
the set Q � Q0 + Q1I if it makes an ideal of R(I) or not.

First of all, it is easy to see that Q is a subgroup with
respect to addition of the additive group (R(I), +).

On the other hand, we assume that x � 2n + 4mI ∈ Q

and r � 2d + 2cI is an arbitrary element of R(I)� 2Z(I). We
have

r · x � 4nd + I(8m d + 8mc + 4nc) � 2(2nd)

+ 4[2md + 2mc + nc]I ∈ Q.
(4)

Hence, Q is an ideal of R(I).
Now, we show that the necessary and sufficient condi-

tions on any AH subset P � P0 + P1I to be an ideal in R(I) if
R(I) has no unity.

Theorem 3. Let R be any ring without unity and R(I) be its
corresponding neutrosophic ring. 9en, the AH subset P �

P0 + P1I is an ideal of R(I) if and only if

(a) P0 andP1 are ideals of R
(b) For every x ∈ P0 and r ∈ R, we have rx ∈ P1

Proof. We suppose that P is a full ideal of R(I); hence,
P0 andP1 are the ideals of R by a similar proof of#eorem 2.
On the other hand, for every x0 + y0I ∈ P and r +

rI ∈ R(I),where r ∈ R, we have (r + rI)(x0 + y0I) ∈ P; thus
rx0 + I(ry0 + ry0 + rx0) ∈ P. #is means that rx0 ∈ P1, that
is, because y0 ∈ P1.

For the converse, we assume that conditions (a) and (b)
are true; hence, it is clear that (P,+) is a subgroup of (R(I),+).
Now, consider an arbitrary element x0 + y0I ∈ P and
any r � m + nI ∈ R(I); we have r(x0 + y0I) � (m + nI)

(x0 + y0I) � mx0 + I(my0 + nx0 + ny0); by the assumption
that (a) and (b) are true, we get nx0 ∈ P1; hence,
mx0 + I(my0 + nx0 + ny0) ∈ P, and P is an ideal of R(I).

#e following theorem describes the structure of nil AH
ideals in R(I). □

Theorem 4. Let R(I) be any neutrosophic ring, we have

(a) x + yI is nilpotent in R(I) if and only if x, x + y are
nilpotent elements in R

(b) If P � P0 + P1I is a full ideal of R(I), then P is nil-
potent if and only if P0, P1, and P0 + P1 are nilpotent

(c) If P � P0 + P1I is a right/left full ideal of R(I), then P
is nil if and only if P0, P1, P0 + P1 are nil

Proof

(a) First of all, we prove that (x + yI)n � xn+

[(x + y)n − xn]I, where n is any positive integer
For n� 1, it is clear. We suppose that it is true for
n� k, we shall prove it for k+ 1.

(x + yI)
k+1

� (x + yI)
k
(x + yI)

� x
k

+ (x + y)
k

− x
k

 I  · (x + yI)

� x
k+1

+ I x
k

· y +(x + y)
k

· y +(x + y)
k



· x − x
k

· x − x
k

· y

� x
k+1

+ I (x + y)
k+1

− x
k+1

 .

(5)

#us, it is true by induction
Now, we suppose thatx + yI is nilpotent in R(I);
hence, there is a positive integer n, such that
(x + yI)n � 0. By the previous statement, we get
xn � 0 and (x + y)n − xn � 0; thus, (x + y)n � 0.
#us, x and x + y are the nilpotent elements in R.
#e converse is clear.

(b) Let P � P0 + P1I be a nilpotent ideal of R(I); then,
there is a positive integer n, such that Pn � 0{ }. For
any element x ∈ P0, we have x ∈ P; hence, xn � 0{ }.
On the other hand, for any element y ∈ P1, we have
yI ∈ P1I≤P; hence, (yI)n � ynI � 0{ }, andyn � 0.
#is means that P0 andP1 are nilpotent. Also, we
have that (x + y)n � 0, as a direct result of the
equation (x + yI)n � xn + [(x + y)n − xn]I; hence,
P0 + P1 is nilpotent.
For the converse, we assume that P0, P1, andP0 +

P1 are nilpotent ideals of R; then, there are two
positive integers m and n, such that Pn

0 � (P0+

P1)
m � 0{ }. Hence, for every element x + yI ∈ P,

we have (x + yI)n+m � xn+m + [(x + y)n+m− xn+m]

I � 0. #is implies that Pn+m � 0{ }, that is, because
xn+m � (x + y)n+m � 0, and P must be a nilpotent
ideal.

(c) First of all, we assume that P � P0 + P1I is nil in R(I);
hence, P0 andP1I are nil as a direct result from the
inclusion P0 ≤P andP1I≤P; thus, P0 andP1 are nil
in R. To prove that the sum P0 + P1 is nil, we
consider two arbitrary elements x ∈ P0 andy ∈ P1;
hence, x + yI ∈ P, but P is nil; thus, there is a positive
integer n, such that (x + yI)n � 0; this implies that
xn � 0 and (x + y)n − xn � 0; thus, (x + y)n � 0, so
we get P0 + P1 is nil. For the converse, we suppose
that P0, P1, andP0 + P1 are nil ideals in R, and we
shall prove that P is nil.

Let x + yI be an arbitrary element of P; we have
x ∈ P0 andy ∈ P1. Under the assumption of theorem, we
can find two positive integers m and n, such that
xn � (x + y)m � 0. According to (a), we have (x + yI)n+

m � xn+m + [(x + y)n+m − xn+m]I � (x + y)n+mI � (x + y)n

(x + y)mI � 0. #us, P is a nil ideal of R(I).
#e following theorem shows the equivalence between

Kothe’s conjecture in the classical ring R and the corre-
sponding neutrosophic ring R(I). □

Theorem 5. Kothe’s conjecture is true in R(I) if and only if it
is true in R.
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Proof. According to #eorem 4, we have P � P0 + P1I is nil
in R(I) if and only if P0, P1, andP0 + P1 are nil in R. #us,
the sum of two left nil ideals P � P0 + P1I andQ � Q0 + Q1I,
say it is S � (P0 + Q0) + (P1 + Q1)I in R(I) is nil if and only if
the following three sums P0 + Q0, P1 + Q1, andP0 + Q0 +

P1 + Q1 are nil in R; hence, Kothe’s conjecture is true in R(I)
if and only if it is true in R. □

Theorem 6. If Kothe’s conjecture is true in the refined
neutrosophic ring R(I1, I2) or in the n-refined neutrosophic
ring Rn(I), then it is true in the ring R.

Proof. According to [37, 38], every neutrosophic ring R is a
homomorphic image of its corresponding refined neu-
trosophic ring R(I1, I2) and n-refined neutrosophic ring
Rn(I); thus, if Kothe’s conjecture holds in R(I1, I2), Rn(I),
then it holds in R. □

Remark 1. It is still unknown that if Kothe’s conjecture is
true in R, then it is true in R(I1, I2), Rn(I).

3.1. Open Questions. Two interesting open questions are
coming to light according to this work.#e first can be asked
as follows. If Kothe’s conjecture is true in the ring R, then is it
true in the corresponding refined neutrosophic ring
R(I1, I2). #e second is the following. If Kothe’s conjecture
is true in R, then is it true in the corresponding n-refined
neutrosophic ring Rn(I). #ese open questions maybe the
future of the study of Kothe conjecture in neutrosophic ring
theory.
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