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Background. Left ventricular hypertrophy (LVH) is common in hemodialysis (HD) patients. It predicts poor prognosis. Several
inhibitors regulate Wnt canonical pathways like Dickkopf-related protein-1 (Dkk-1) and sclerostin. Objectives. To investigate the
relationship between serum sclerostin, Dkk-1, left ventricular mass (LVM), and LVM index (LVMI) in HD patients.Methods.)is
is a cross-sectional study including 65 HD patients in our HD unit. Patients were divided into two groups according to LVMI
(group 1 with LVMI< 125 gm/m2 (N� 29) and group 2 with LVMI> 125 gm/m2 (N� 36)). Echocardiographic evaluation of the
LVM, aortic, and mitral valves calcification (AVC andMVC) was done. Serum levels of sclerostin and Dkk-1 and patients’ clinical
and biochemical data were recorded. Results. Group 2 showed significantly higher age, blood pressure, AVC, and MVC and
significantly lower hemoglobin, sclerostin, and Dkk-1 levels. LVM and LVMI had a significant linear negative correlation to both
serum sclerostin and Dkk-1 (r� −0.329 and −0.257, P � 0.01 and 0.046 for LVM; r� −0.427 and −0.324, P � 0.001 and 0.012 for
LVMI, resp.). Serum Dkk-1 was an independent negative indicator for LVM and LVMI in multiple regression analyses (P � 0.003
and 0.041 with 95% CI� −0.963 to −0.204 and −0.478 to −0.010, resp.). Conclusion. Serum sclerostin and Dkk-1 were significantly
lower in HD patients with increased LVMI> 125 gm/m2, and both had a significant linear negative correlation with LVM and
LVMI. Dkk-1 was a significant negative independent indicator for LVM and LVMI in HD patients.

1. Introduction

Left ventricular hypertrophy (LVH) is common structural
remodeling in patients with end-stage renal disease, and its
presence predicts a poor prognosis [1]. Echocardiographic
diagnosis of LVH is based on cutoff values developed from
formula formed from population-based studies which
indexed the left ventricular mass (LVM) to the body surface
area (BSA) [2].

Wnt/β-catenin signaling pathway is an essential positive
regulated signaling network for cardiovascular diseases [3].
β-Catenin increases the expression of target genes associated

with cell adhesion and involves the regulation of angio-
genesis and atherosclerosis [4].

In addition, β-catenin plays a crucial role in heart failure
caused by afterload-induced cardiac hypertrophy [5]. It
interacts with the transforming growth factor-β (TGF-β)
signaling pathway to exacerbate cardiac fibrosis and ag-
gravate chronic heart failure [6].

Several inhibitors regulate the Wnt canonical pathway,
among them Dickkopf-related protein-1 (Dkk-1) and scle-
rostin (Scl) [7]. Sclerostin is a 190-residue glycoprotein,
which is expected to contain a cysteine-knot motif and
belongs to the DAN/Cerberus family of proteins [8].
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)e secreted glycoprotein Dkk-1, a member of the
Dickkopf family, is known to antagonizeWnt/β-signaling by
interaction with the LRP5/6 (low-density lipoprotein re-
ceptor-related protein 5/6). )e Wnt/β-catenin signaling
pathway is an important mediator in cardiovascular disease
and influences inflammation and vascular calcification [9].

Serum sclerostin levels significantly vary with age and are
higher in male patients with stage 3b and 4 CKD than in
females with the same stages [10]. Previous studies showed
that the expression of Wnt/β-catenin signaling inhibitors
such as sclerostin and Dkk-1 may attenuate further vascular
calcification [11, 12].

We aimed to define the relationship between serum
sclerostin, Dkk-1, left ventricular mass (LVM), and LVM
index (LVM/BSA) in maintenance hemodialysis (HD)
patients.

2. Subjects and Methods

2.1. Study Design. )is is a cross-sectional study involving
patients on regular HD in MNDU during the period Jan
2016–Jan 2017. 65 patients were recruited. )e patients were
grouped according to the presence or absence of left ven-
tricular hypertrophy (LVH) calculated by LVM/BSA
(LVMI) into two groups, group 1 with LVMI< 125 gm/m2

and group 2 with LVMI> 125 gm/m2, and the cut point that
indicated LV hypertrophy was 125 gm/m2 [13]. All patients
were undergoing HD three times/week, 4 h/session using
bicarbonate-based dialysate with calcium concentrations of
1.5mmol/L. Exclusion criteria were age <18 or >75 years,
HD duration less than 6 months, patients who had a
rheumatic valvular disease or underwent prosthetic valve
replacement, and cardiomyopathic patients with EF< 40%.
All patients were subjected to history taking with stress on
age, smoking state, HD duration, cause of ESRD, drug
history and current treatment, associated comorbidities,
diabetes mellitus, hypertension, chronic liver disease, CVD,
surgical history especially previous renal transplantation,
and parathyroidectomy. Estimated glomerular filtration
rates (eGFRs) were calculated using the Modification of Diet
in Renal Disease (MDRD) equation [14]. Physical exami-
nation including weight, height, waist, midarm circumfer-
ence, blood pressure, edema of lower limb, chest, heart, and
abdomin, and AV fistula examination was done.

2.2. Laboratory. Fasting blood samples were obtained prior
to midweek dialysis sessions for measurement of bio-
chemical data and serum sclerostin and serum Dackkopf-1
(Dkk-1) levels. We measured serum sclerostin using the kit
that uses a double-antibody sandwich enzyme-linked im-
munosorbent assay (ELISA) (SunRed ELISA Kit) (PELO-
BIOTECH GmbH-Am Klopferspitz 19-82152 Planegg,
Germany, catalog number 201-12-5418 (96 tests). )e
sensitivity was 0.175 ng/ml, with a range of assay being
0.2 ng/ml–60 ng/ml. )e serum Dkk-1 was measured using
double-antibody sandwich enzyme-linked immunosorbent
assay kits (SunRed ELISA Kit supplied by PELOBIOTECH
GmbH, Planegg, Germany, catalog number 201-12-0631).

)e sensitivity of kits was 0.412 ng/mL, with a range of assay
being 0.5–150 ng/ml.

Biochemical data including complete blood count, se-
rum albumin, corrected serum calcium, phosphorus, iPTH,
serum iron, TIBC, serum ferritin, total cholesterol, total
triglycerides, high-density lipoprotein (HDL), and serum
LDL-c concentration were obtained. Predialysis urea and
postdialysis urea were recorded; Kt/v was calculated using
the Daugirdas formula [15].

2.3. Radiology Assessment

2.3.1. 2D Echocardiography. An expert echocardiographer,
who was unaware of the patients’ data, performed echo-
cardiographic measurements according to the recommen-
dations of the American Society of Echocardiography [16].
Patients were examined prior to the HD session lying in a left
lateral position in a semidark room; a two-dimensional
assessment of the aortic valve and mitral valve was done
using Medison SonoAce X6 device. Scoring of mitral cal-
cification was done according to the Wilkins calcification
[17] and grading of the aortic valve was done according to a
previous study by Tenenbaum et al. [18].

LVM was determined by Devereux’s formula (LV mass
(ASE)� 0.8 (1.04 ([LVIDD+PWTD+ IVSTD] 3-[LVIDD]
3)) + 0.6 g. (LVIDD� left ventricular internal diameter in
diastole, PWTD� posterior wall thickness in diastole, and
IVSTD� interventricular septum thickness in diastole)) [19]
and then divided by body surface area (BSA), in order to
obtain LVM index [20] expressed in g/m [2]. LVH was
defined as increased LVMI [13].

2.4. Calculation of LV Myocardial Performance Index (MPI).
MPI was calculated using (ICT+ IRT)/ET formula. )e
mean normal value of the Tei index is 0.39± 0.05 for the LV
[20]. Mitral inflow was recorded by conventional pulsed
Doppler and tissue Doppler to reveal the left ventricular
diastolic function bymeasuring E (early diastolic) velocity, A
(late diastolic) flow velocity, also E1 (early diastolic) annular
velocity, and A1 (late diastolic) annular velocity and calculate
E/A ratio and E1/A1ratio, respectively.

2.5. Statistical Analysis. )e normality of data was first
tested with the Shapiro–Wilk test. Qualitative data were
presented by frequency tables (frequency and percentages).
Quantitative variables were presented by central indices
(mean± standard deviation) for normally distributed vari-
ables and median (minimum-maximum) for nonnormally
distributed variables. Pearson’s correlation was used to
correlate continuous normally distributed data while
Spearman’s correlation was used to correlate ordinal and
nonnormally distributed data. We compared nonnormally
distributed and ordinal variables between qualitative groups
using the Mann–Whitney U test and Kruskal–Wallis H test.
All statistical analyses were performed using SPSS version 24
(IBM Corp., Armonk, NY, USA). A P value ≤ 0.05 was
considered statistically significant.
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3. Results

Table 1 shows the demographic, clinical, and laboratory
characteristics of the whole study (mean age (years)
(46.14± 16.201), gender (male 55.6% and female 44.4%), dry
weight (kg) (73.16± 15.89), midarm circumference (cm)
(29.52± 4.25), waist circumference(cm) (98.21± 16.43), BMI
(26.53± 5.31), BSA (1.82± 0.23)). Regarding smoking, cur-
rent smokers were 6 (18.8%), ex-smokers were 6 (18.8%), and
nonsmokers were 20 (62.4%). )e HD duration was 35
months (6.00–168). Hypertensive patients were 85.2%, di-
abetic patients were 13.1%, and coronary artery disease was
present in 9.8%. Kt/v was 1.13± 0.28, serum albumin (g/dl)
was 3.72± 0.44, serum calcium (mg/dl) was 8.3± 0.92, serum
phosphorus (mg/dl) was 4.93± 1.58, iPTH (pg/ml) was 49
(16–221), alkaline phosphatase was 145 (11–2152), and HB
(gm/dl) was 9.38± 1.65.

Table 2 shows a comparative analysis of some demo-
graphic and echocardiographic data among the studied two
subgroups, which shows a significant increase inmean age in
the second group (with LVM/BSA> 125 gm/m2) compared
with the first subgroup (with LNM/BSA< 125 gm/m2)
(37.61± 14.47 versus 51.74± 14.93; P value �0.001), a sig-
nificant increase in systolic blood pressure and diastolic
blood pressure in the second subgroup compared with the
first subgroup (P< 0.05), and a highly significant increase in
aortic valve calcification (AVC) andmitral valve calcification
(MVC) in the second subgroup compared with the first
subgroup (P value <0.001; <0.01). )ere are no significant
changes in BMI, BSA, HD duration, DM, HTN, midarm
circumference, waist circumference, dry weight, E/A, mitral
E wave deceleration, E1/A1, IVRT, IVCT, ET, and MPI
between the studied subgroups.

Table 3 shows a comparative analysis of some laboratory
data among the studied two subgroups, which shows a
highly significant decrease in the serum hemoglobin con-
centration (gm/dl) in the second subgroup compared with
the first subgroup (10.096± 1.43 versus 8.92± 1.633; P value
�0 .006) and significant a decrease in the serum sclerostin
(ng/ml) and Dkk-1 (pg/ml) in the second subgroup com-
pared with the first subgroup (35.25 (3.40–59.3) versus 7.70
(2.10–60.4) and 63 (12.00–132) versus 33 (13.00–112); P

value < 0.05 for both), respectively. )ere are no significant
differences in iron, TSAT%, TIBC, albumin, alkaline
phosphatase, cholesterol, TGs, HDL, LDL, Kt/V, Ca, PO4,
and iPTH between the studied subgroups.

Table 4 shows the correlation between LVM and LVM/
BAS and some demographic and laboratory parameters
among the studied subgroups, which shows a significant
negative correlation between s. sclerostin, serum Dkk-1, and
serum HDL with LVM (Rho� −0.329, −0.427 and −0.268; P

value �0.010, 0.001, and −0.036, resp.), a significant positive
correlation of age, BSA, hypertension, aortic valve calcifi-
cation, mitral valve calcification, and dry weight with LVM
(with P value � 0.001, 0.027, 0.019, 0.036, 0.001, 0.02, and
0.028, resp.), and a nonsignificant correlation of the other
parameters with LVM (P> 0.05). Also, there is a significant
negative correlation between s. sclerostin, serum Dkk-1,
BSA, hemoglobin concentration, serum albumin, midarm

circumference, and dry weight with LVMI with LVM
(Rho� −0.257, −0.324, −0.305, −0.299, −0.294, −0.423, and
−0.286, resp.; P value < 0.05 and 0.01), a significant positive
correlation of age, aortic valve calcification, and mitral valve
calcification with LVM (with P value � 0.007, < 0.001, and
0.004), respectively, and a nonsignificant correlation of the
other parameters with LVM (P> 0.05).

Table 5 shows a linear regression analysis of age, HTN,
HDL, AVC, MVC, s. sclerostin, and Dkk-1 as independent
predictors for LVM, which shows that hypertension is a
positive predictor for LVM (with P value <0.01 and con-
fidence interval (CI)� 10.70 to 70.50) and shows also that
HDL and s. Dkk-1 are independent negative predictors for
LVM (with P value < 0.05 and < 0.01) and CI� −2.33 to
−0.117 and −0.963 to −0.204, resp.).

Table 6 shows a linear regression analysis of age, HTN,
HDL, AVC, MVC, s. sclerostin, and Dkk-1 as independent
predictors for LVMI, which shows that hypertension is a
positive predictor for LVMI (with P value �0.050 and
CI� −0.025 to 36.80), while serum Dkk-1 was an inde-
pendent negative predictor for LVMI (with P value < 0.05
and CI� −0.478 to −0.010).

Table 7 shows that iPTH showed a nonstatistically sig-
nificant weak positive correlation with both sclerostin and
Dkk-1 (P> 0.05). It showed a significant positive correlation
to phosphorus (r� 0.41, P � 0.001). Both AVC and MVC
showed a significant positive correlation with age (r� 0.55,
P< 0.0001 and r� 0.38, P � 0.003, resp.). MVC was sig-
nificantly negatively correlated to total cholesterol and LDL
(r� −0.27, P � 0.04 and r� −0.28, p� 0.03, resp.). Both AVC

Table 1: Some demographic, clinical, and laboratory characteristics
of the whole cohort.

Parameter Study group (n� 65)
Age (years) 46.14± 16.201

Gender Male 55.6%
Female 44.4%

Dry weight (kg) 73.16± 15.89
Midarm circumference (cm) 29.52± 4.25
Waist circumference (cm) 98.21± 16.43
BMI 26.53± 5.31
BSA 1.82± 0.23

Smoking
Current smoker 6 (10%)

Ex-smoker 6 (10%)
Nonsmoker 51 (80%)

HD duration (months) 35 (6.00–168)
Hypertension 85.2%
Diabetes 13.1%
Coronary artery disease 9.8%
Kt/v 1.13± 0.28
Serum albumin (g/dl) 3.7262± 0 .43928
Serum calcium (mg/dl) 8.3000± 0.92718
Serum phosphorus (mg/dl) 4.9344± 1.58481
iPTH (pg/ml) 49 (16–221)
Alkaline phosphatase 145 (11–2152)
HB (gm/dl) 9.3820± 1.65081
kg: kilogram; cm: centimeter; BMI: body mass index; BSA: body surface are;
Kt/v: kinetic time over volume; gm/dl: gram/deciliter; mg/dl: milligram/
deciliter; iPTH: intact parathyroid hormone; pg/ml: picogram/millimeter;
HG: hemoglobin.
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and MVC showed a significant negative correlation with
sclerostin (r� −0.47, P≤ 0.0001 and r� −0.27, P � 0.04,
resp.) but they were not significantly correlated to Dkk-1,
hemoglobin, iron, TSAT, TIBC, ferritin, albumin, calcium,
BP, and dialysis duration (P> 0.05).

Table 8 shows that both Dkk-1 and sclerostin did not
show a significant correlation with different types of hy-
perparathyroidism treatment, Kt/v, calcium, phosphorus,
ALP, TSAT, TIBC, iron, and ferritin. Dkk-1 showed a
significant negative correlation with erythropoietin (EPO)
treatment (r� −0.372, P � 0.003) while sclerostin showed a
nonsignificant negative correlation to EPO treatment.

Figure 1 shows a linear negative correlation between left
ventricular mass and serum sclerostin level. Figure 2 shows a
linear negative correlation between left ventricular mass and
serum Dickkopf-related protein-1. Figure 3 shows a linear
negative correlation between left ventricular mass index and
serum sclerostin level. Figure 4 shows a linear negative
correlation between left ventricular mass index and serum
Dickkopf-related protein-1. In Figure 5, ROC analysis be-
tween LVMI and Dkk-1 showed an AUC� 0.71 and
P � 0.005. )e cutoff value for Dkk-1 was 38.5, at which
sensitivity was 70% and specificity was 70%.

4. Discussion

)e accumulated data allow us to consider the disturbances
in the FGF-23-Klotho-sclerostin ratio as one of the early
markers of CKD advancement, disorders of mineral meta-
bolism developing, and cardiovascular prognosis [21]. Al-
teration in the ratio of FGF-23, serum Klotho, and serum
sclerostin can be regarded as an independent early marker of
cardiovascular morbidity and overall prognosis of patients
with CKD [22].

55.6% of our patients were men with a mean age of
46.1± 16.2 years. )e majority of them were hypertensive,
while diabetes and CAD were present in 13% and 10% of
them, respectively. HB concentration was 9.38± 1.65mg/dl.
Serum albumin, calcium, and phosphorus were within
normal ranges in most patients.

With regard to the comparative analysis of the studied
groups, we found a significant increase in age, AVC, and
MVC in the second subgroup (with LVM/BSA> 125 gm). A
significant increase in systolic and diastolic blood pressures
was noted in subgroup 2 despite the nonsignificant differ-
ence in the percentage of hypertensive patients in the studied
groups which may be attributed to better control of blood
pressure and adherence to treatment in group 1 and it also
indicates that the second group was subjected to a greater
afterload burden. )ere was a nonsignificant decrease in (E/
A ratio) by conventional Doppler study in the subgroup 2
versus subgroup 1 (P � 0.069; Table 2) denoting more di-
astolic dysfunction and more increase in the preload in
subgroup 2 patients. When tissue Doppler was used, the E1/
A1 ratio decreased in group 1 denoting that the tissue
Doppler study revealed more patients with diastolic dys-
function in subgroup 1 patients, yet statistically nonsignif-
icant. None of the studied patients in our study had AF.
)ere was a significant increase in hemoglobin concentra-
tion in subgroup 1 versus subgroup 2, denoting more
malnutrition in subgroup 2.

Also, serum sclerostin and Dickkopf-1 (Dkk-1) levels
were significantly lower in subgroup 2 (with
LVMI> 125 gm/m2) than subgroup 1 (with LVMI< 125 gm/
m2) which may denote a myocardial protective role for these
proteins. On the contrary, Yongqiang Ji et al. reported that
high levels of sclerostin in CKD patients (stage 3–5ND) were
associated with more valvular calcification [23].

One possible explanation is the start of hemodialysis as it
has been reported that, in patients on hemodialysis, the high
sclerostin level was negatively correlated with the risk of
cardiovascular death and Ji et al. did not include such pa-
tients. Chen et al. followed up 84 hemodialysis patients for
(12–60 months) and concluded that patients with low
baseline serum sclerostin undergoing MHD showed better
survival and less CIMT [24]. Zou et al. found no correlation
between sclerostin and CVEs in MHD patients [25]. )ese
contradictory results may be attributed to different ethnic
groups, different follow-up period, different assessment and
measurement of sclerostin, and different primary endpoints.
It is known that PTH suppresses the expression of sclerostin
and/or Dkk-1 decreasing their levels [26] in contradiction to
our results where it displayed a nonsignificant positive

Table 2: Comparative analysis of some demographic and echo-
cardiographic data among the studied two subgroups.

Parameter Subgroup 1 Subgroup 2 P value
Age (years) 37.61± 14.47 51.74± 14.93 0.001∗∗
BMI 27.018± 5.88 26.23± 4.99 0.573
BSA 1.835± .239 1.816± .220 0.754
HD duration
(month)

31.00
(6.00–168)

35.50
(6.00–144) 0.318

DM 8.3% 16.2% 0.462
HTN 75.0% 87.2% 0.136
Midarm circ (cm) 30.50± 4.89 28.89± 3.71 0.150
Waist circ (cm) 97.71± 14.54 98.54± 17.74 0.849
Dry weight (kg) 74.04± 17.32 72.58± 15.11 0.729
Systolic BP
(mmhg) 134.58± 16.41 144.05± 14.036 0.019∗

Diastolic BP
(mmhg) 82.92± 9.55 87.84± 7.124 0.025∗

E/A 0.905 (.52–1.62) 0.760 (.35–1.65) 0.069
E_ declaration (m
sec) 154.17± 37.13 164.04± 37.95 0.316

E1/A1 0.7900
(.36–1.88) 0.640 (.40–1.83) 0.237

IVRT (m sec) 76.75± 11.97 76.82± 9.98 0.980
IVCT (m sec) 71.13± 9.72 72.36± 9.04 0.611
ET (m sec) 285.17± 20.74 285.10± 17.37 0.990
MPI 0.517± .0463 0.523± .045 0.576

AVC (0–2) (0–4) <
0.001∗∗

MVC (0–2) (0–4) 0.005∗
∗Significant at P≤ 0.05. ∗∗Highly significant at P≤ 0.001. BMI: body mass
index; BSA: body surface area; HD: hemodialysis; DM: diabetes mellitus;
HTN: hypertension; circ: circumference; cm: centimeter; kg: kilogram; E/A:
early diastolic mitral inflow velocity/late diastolic mitral inflow velocity; E1/
A1: early diastolic mitral annular velocity/late diastolic mitral annular
velocity; IVCT: isovolumetric contraction time; m sec: millisecond; IVRT:
isovolumetric relaxation time; MPI: myocardial performance index; AVC:
aortic valve calcification; MVC: mitral valve calcification.
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correlation with both. )is could be due to increased
extraosseous production of sclerostin and Dkk-1 and
hyperphosphatemia, increased calcitonin exposure, and
absent renal clearance of both molecules [27, 28].

Bothmolecules did not correlate significantly to different
treatments of HPT in our study (calcium supplement, active
vitamin D and analogs, cinacalcet, sevelamer HCl, and
parathyroidectomy) in contradiction to Kuczera et al., 2016,
who reported an increase in sclerostin level (in 42 patients
out of 58 included in their study) after cinacalcet therapy and
related that to the decrease in PTH levels, but actually, the
other 16 patients whose PTH levels did not decrease showed
an increase in their sclerostin level over their study period
[29] which means that further larger RCT are needed to
clarify this dilemma.

In our study, sclerostin and Dkk-1 did not correlate
significantly to Kt/v, calcium, phosphorus, ALP, iron, TSAT,
TIBC, and ferritin. Both molecules correlated negatively to
EPO treatment but only Dkk-1 showed significance
(r� −0.372, P � 0.003). )is finding is overlooked and rarely
found in the literature. Sharba and Al Zahid, 2016, found a
positive correlation between EPO and sclerostin in their
study on 21 male patients (12 on dialysis and 9 not on di-
alysis; duration of dialysis 20.9± 3.25 months) [30]. More
detailed studies are needed to explore this interesting issue.

A study done by Stróżecki and colleagues concluded that
patients with vascular calcification (VC) were older and had
higher LVMI and no significant differences were found with
respect to PTH, phosphorus calcium which is in accordance
with our results. VC coexists with hypertrophy of the left

ventricle especially when both valves are calcified. Even short-
lived incidents involving increased product Ca x P can lead to
cardiovascular calcification [31, 32].

LVH has a prevalence of approximately 40% in patients
with chronic kidney disease (CKD), and it progressively
increases with CKD progression up to 75% in ESRD patients
[33, 34]. Foley et al. followed 596 patients on hemodialysis
with no previous history of heart disease to determine
whether the frequency of LVH correlates with the length of
the dialysis. After 18 months of dialysis, the author recorded
that 62% of patients had an increased LV mass index and
49% had developed LV failure [35]. CKD patients are faced
with both pressure and volume overload states; however,
sustained overload in combination with CKD-associated
factors such as SHPT, RAAS activation, and anemia may
result in maladaptive LVH until the final picture of uremic
cardiomyopathy ensues [36–39].

Our results reveal that there was a significant negative
correlation of sclerostin and Dkk-1 with left ventricular mass
(LVM). LVM had a significant negative correlation with
HDL, while it showed a significant positive correlation with
age and a significant positive correlation with BSA, hy-
pertension, AVC, MVC, and dry weight.

With linear regression analysis for LVM as a dependent
factor, there was a nonsignificant prediction of age, serum
sclerostin, aortic valve calcification, and mitral valve calci-
fication for LVM; on the other hand, hypertension had a
significant positive independent prediction for LVM, while
serum HDL and serum DDK-1 were negative significant
independent indicators for LVM.

As regards correlations with LVM/BSA (LVMI), there
was a significant negative correlation of serum sclerostin and
Dkk-1 with LVMI and a significant negative correlation with
hemoglobin, albumin, midarm circumference, and dry
weight with LVMI, while there was a highly significant
positive correlation with age, AVC, and MVC with LVMI.
With linear regression analysis for LVMI, there was a
nonsignificant prediction of age, HDL, MVC, and serum
sclerostin for LVMI; on the other hand, serum DDK-1 was a
significant negative indicator for LVMI and hypertension
was a weak significant positive predictor for LVMI (P value
� 0.05).

Our results are in disagreement with Brovko and col-
leagues, 2018, who had done a study on 131 CKD Russian
patients (stages 1–5, average age 42.4± 13.7 years) and
revealed that, with univariate analysis, serum sclerostin
levels correlated positively with LVM index (r� 0.545;
P< 0.01) but with multivariate regression, it was negatively
correlated to CVC and suggested that it may protect the
heart and vessels against calcification with CKD advance-
ment [40].

It is well known that Wnt-β-catenin signaling pathway
inhibition by sclerostin and Dkk-1 protects against cardiac AV
and MV calcifications and both have a significant negative
correlation with both valves’ calcification [41, 42]. Our study
revealed that AVC and MVC had a significant negative cor-
relation with sclerostin but a nonsignificant negative correlation
with Dkk-1 which coincides with Yang et al., 2015, who re-
ported that circulating sclerostin but not Dkk-1 is inversely

Table 3: Comparative analysis of some laboratory data among the
studied two subgroups.

Parameter Subgroup 1 Subgroup 2 P value
HB (gm/dl) 10.096± 1.43 8.92± 1.633 0.006∗
Iron (µg/dl) 82.5 (36.00–202) 72 (35.00–222) 0.087
TSAT% 38 (13.00–85.00) 32 (17.00–91.00) 0.111
TIBC 225.83± 36.58 221.08± 45.195 0.668
S. albumin (gm/dl) 3.85± .295 3.64± .498 0.066
Alk_phosph (IU/
L) 131 (11.00–2152) 168 (64.00–1003) 0.209

S. chol. (mg/dl) 162 (93.0–243) 130 (79.0–375) 0.140
S. TG (mg/dl) 135.5 (48.0–232) 112 (45.0–276) 0.438
S. HDL (mg/dl) 25 (16.0–63.0) 23 (11.0–56.0) 0.169
S. LDL (mg/dl) 104 (29.8–159.8) 87.4 (39.8–332.2) 0.232
Kt/V 1.12± .34 1.13± .23 0.877
S. Ca (mg/dl) 8.47± .976 8.19± .89 0.250
S. PO4 (mg/dl) 4.92± 1.45 4.95± 1.69 0.945
iPTH (pg/ml) 648 (10.60–1900) 576 (27.00–2000) 0.790

Sclerostin (ng/ml) 35.25
(3.40–59.3) 7.70 (2.10–60.4) 0.013∗

Dkk-1 (pg/ml) 63 (12.00–132) 33 (13.00–112) 0.011∗
∗Significant at P≤ 0.05. ∗∗Highly significant at P≤ 0.001. HB: hemoglobin;
gm/dl: gram/deciliter; µg/dl: microgram/deciliter; TSAT: transferrin satu-
ration, Alk_phosph: alkaline phosphatase; IU/L: international unit/liter;
S. chol.: serum cholesterol; S. TG: serum triglycerides; S. HDL: serum high-
density lipoprotein; S. LDL: serum low-density lipoprotein; Kt/V: kinetic
time/volume; S. Ca: serum calcium; S. PO4: serum phosphorus; iPTH: intact
parathyroid hormone; pg/ml: picogram/milliliter; ng/ml: nanogram/
milliliter.
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associated with aortic calcifications and future cardiovascular
events [43]. Krishna et al. reported that sclerostin decreases the
expression of genes involved in matrix degradation and cal-
cification and thereby inhibits atherosclerosis; it is likely that
sclerostin could function as an inhibitor of vascular calcification
[44].

On the contrary, other studies showed that elevated
serum sclerostin levels were seen in patients with aortic
valve calcification with increased upregulation of scle-
rostin mRNA [45]. Several elements could have con-
tributed to these conflicting results. Studies investigated
the presence of vascular calcification at different ana-
tomical locations and used different statistical analyses
(by adjusting for different potential confounding factors).
In addition, differences in the time period between ad-
ministration of enoxaparin (or other low molecular
weight heparins that are used as anticoagulants) and
blood collection could also be important, since enox-
aparin stimulates the release of sclerostin into the cir-
culation. )is also implies that the heterogeneity of study
populations—patients at different CKD stages, with or
without dialysis treatment, whether or not they receive
low molecular weight heparins—contributes to the ob-
served inconsistency. Lastly, it is known that there are
large discrepancies between sclerostin assays. )e

antibodies that are used in the distinct assays bind dif-
ferent epitopes; therefore, some antibodies will capture
only the intact sclerostin molecule, while others might
also bind to sclerostin fragments [46].

In our study, sclerostin and Dkk-1 had a significant
negative correlation with LVM and LVM/BSA. Moreover,
Dkk-1 appeared to be an independent indicator of LVM and
LVM/BSA and they may be acting as protectors against LV
hypertrophy or may be only associated with LV hypertrophy
in CKD patients.

Van de Schans and colleagues demonstrated that in-
terruption of Wnt signaling in the mice lacking the Dvl-1
gene delays the onset of pressure overload-induced cardiac
hypertrophy. )erefore, the Wnt/Frizzled pathway may
provide novel therapeutic targets for antihypertrophic
therapy [47].

Because Wnt signaling is very complex and its effects may
be quite varied according to the cell system, specific ligands/
receptors involved, and timing of any interventions which
presents a challenge to investigators, but it offers rich possi-
bilities for new insights into cardiac pathophysiology and the
identification of new therapeutic targets [48].

Limitations of this study include the relatively small
population studied in a single-center and the cross-sec-
tional design. However, to our knowledge, there are only

Table 4: Correlation between LVM and LVM/BSA and some demographic and laboratory parameters among the studied subgroups.

LVM LVMI
r P r P

S. sclerostin (ng/ml) −0.329 0.010∗ −0.257 0.046∗
S. Dkk-1 (pg/dl) −0.427 0.001∗∗ −0.324 0.012∗
Age (years) 0.409 0.001∗∗ 0.352 0.007∗
BMI 0.219 0.085 −0.199 0.118
BSA 0.278 0.027∗ −0.305 0.015∗
HD_duration −0.153 0.264 0.015 0.979
Gender −0.112 0.380 0.153 0.232
HTN 0.300 0.019∗ 0.247 0.054
HB (gm/dl) −0.245 0.057 −0.299 0.019∗
S. albumin (gm/dl) −0.229 0.076 −0.294 0.021∗
Syst_BP (mmhg) 0.243 0.059 0.249 0.053
Diast BP (mmhg) 0.251 0.051 0.211 0.103
S. cholesterol −0.126 0.334 −0.205 0.112
S. TG (mg/dl) −0.024 0.855 −0.179 0.166
S. HDL (mg/dl) −0.268 0.036∗ −0.161 0.214
S. LDL (mg/dl) −0.076 0.563 −0.158 0.225
AVC 0.417 0.001∗∗ 0.464 < 0.001∗∗
MVC 0.297 0.02∗ 0.360 0.004∗
Mid_arm_circ (cm) 0.067 0.609 −0.423 0.001∗∗
Waist_circ (cm) 0.204 0.115 −0.128 0.326
Dry_weight (kg) 0.282 0.028∗ −0.286 0.026∗
Kt/V −0.046 0.723 0.183 0.158
S. Ca (mg/dl) −0.085 0.514 −0.074 0.573
S. PO4 (mg/dl) 0.242 0.060 −0.028 0.831
iPTH (pg/dl) 0.023 0.787 −0.035 0.861
Spearman’s correlation used. ∗Significant at P≤ 0.05; ∗∗highly significant at P≤ 0.001. LVM: left ventricular mass; LVM/BSA: left ventricular mass/body
surface area; S. Dkk-1: serum Dickkopf-1; BMI: body mass index; BSA: body surface area; HD: hemodialysis; HTN: hypertension; HB (gm/dl): hemoglobin
concentration (gram/deciliter); Syst_BP: systolic blood pressure; Diast BP: diastolic blood pressure; mmhg: millimeter Mercury; S. TG; serum triglyceride;
S. HDL: serum high-density lipoprotein; S. LDL: serum low-density lipoprotein; AVC: aortic valve calcification; MVC: mitral valve calcification; circ:
circumference; Kt/V: kinetic time/volume; S. Ca: serum calcium; S. PO4: serum phosphorus; iPTH: intact parathyroid hormone; mg/dl: milligram/deciliter;
pg/dl: picogram/deciliter; ng/dl: nanogram/deciliter.
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Table 5: Linear regression analysis of LMV with some parameters among the studied subgroups.

Parameter
Unstandardized
coefficients Standardized coefficients

P value∗
95.0% confidence interval for B

B Std. error Beta Lower bound Upper bound
S (constant) 214.80 27.39 < 0.001 159.72 269.88
Age 0.73 0.408 0.216 0.079 −0.088 1.55
HTN 40.65 14.89 0.279 0.009 10.70 70.50
HDL −1.22 0.550 −0.232 0.031 −2.33 −0.117
AVC 9.62 6.287 0.227 0.132 −3.015 22.268
MVC 1.94 6.00 0.043 0.748 −10.13 14.014
S. sclerostin 0.049 0.325 0.018 0.882 −0.605 0.703
Dkk-1 −0.58 0.189 −0.354 0.003 −0.963 −0.204
Dependent variable: LVM. ∗Significant P≤ 0.05. LVM: left ventricular mass; HTN: hypertension; HDL: high-density lipoprotein; AVC: aortic valve cal-
cification; MVC: mitral valve calcification; Dkk-1: Dickkopf-1.

Table 6: Linear regression analysis of LMV/BSA with some parameters among the studied subgroups.

Parameter
Unstandardized
coefficients Standardized coefficients

P value∗
95.0% confidence interval for B

B Std. error Beta Lower bound Upper bound
S (constant) 114.11 16.88 < 0.001 80.16 148.06
Age 0.189 0.251 0.101 0.455 −0.316 0.694
HTN 18.43 9.18 0.229 0.050 −0.025 36.80
HDL −0.436 0.339 −0.150 0.205 −1.118 0.246
AVC 7.638 3.876 0.326 0.055 −0.155 15.430
MVC 2.320 3.701 0.092 0.534 −5.121 9.761
S. sclerostin 0.079 0.201 0.053 0.695 −0.324 0.482
DKK −0.244 0.116 −0.268 0.041∗ −0.478 −0.010
Dependent variable: LVM/BSA. ∗Significant at P≤ 0.05. LVM/BSA: left ventricular mass/body surface area; HTN: hypertension; HDL: high-density li-
poprotein; AVC: aortic valve calcification; MVC: mitral valve calcification; Dkk-1: dickkopf-1.

Table 7: Correlation between AVC, MVC, iPTH, and some clinical and chemical variables.

AVC MVC iPTH
r P r P r P

Age 0.55 <0.0001∗ 0.38 0.003∗ −0.05 0.72
HD duration 0.23 0.1 0.01 0.95 0.24 0.08
Ferritin −0.09 0.48 −0.05 0.69 −0.006 0.96
Hemoglobin −0.22 0.09 −0.18 0.16 0.22 0.09
Iron −0.1 0.47 −0.08 0.5 0.12 0.35
TIBC 0.04 0.78 −0.13 0.33 −0.01 0.93
TSAT −0.09 0.5 −0.05 0.72 0.08 0.55
Albumin −0.15 0.24 −0.17 0.2 0.18 0.16
Syst. BP 0.12 0.35 0.04 0.75 0.06 0.66
Diast. BP 0.1 0.47 0.08 0.54 −0.01 0.93
Cholesterol −0.17 0.19 −0.27 0.04∗ 0.03 0.82
HDL 0.06 0.65 0.09 0.5 0.04 0.78
LDL −0.17 0.19 −0.28 0.03∗ 0.02 0.86
Kt/v −0.01 0.91 −0.12 0.36 0.03 0.82
Calcium −0.02 0.89 0.09 0.52 0.03 0.8
Phosphorus −0.09 0.48 −0.04 0.75 0.41 0.001∗
Sclerostin −0.47 <0.0001∗ −0.27 0.04∗ 0.15 0.24
Dkk-1 −0.15 0.25 −0.16 0.21 0.03 0.8
iPTH −0.18 0.18 −0.03 0.85
Spearman’s correlation used. ∗Significant when P< 0.05.
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Table 8: Correlation between Dkk-1, sclerostin, and some clinical chemical variables.

Dkk-1 Sclerostin

HPT_ttt r 0.041 0.024
P 0.754 0.854

Kt_V r 0.155 0.158
P .233 0.224

S. Ca r 0.023 0.106
P 0.857 0.415

S. PO4
r −0.089 −0.005
P 0.494 0.971

Alk_phosphatase r 0.001 0.108
P 0.994 0.408

TSAT r 0.059 0.197
P 0.654 0.128

TIBC r −0.029 −0.105
P 0.825 0.420

Iron r 0.020 0.091
P 0.880 0.484

S. ferritin r 0.109 0.174
P 0.401 0.180

Erythropoietin r −0.372 −0.134
P 0.003∗ 0.303

Spearman’s correlation used. ∗Significant when P< 0.05. HPT_ttt� hyperparathyroidism treatment. TIBC� total iron-binding capacity.
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Figure 1: Linear negative correlation between the left ventricular mass and serum sclerostin level.
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Figure 2: Linear negative correlation between the left ventricular mass and serum Dickkopf-related protein-1.
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limited studies addressing the relationship between Wnt
pathway inhibitors and LVMI. More studies are needed to
ascertain the obtained results.
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