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-e proposed work is focused on the simultaneous quantification of 14 compounds in the medicinal plant Achillea millefolium
based on Near-Infrared Spectroscopy (NIR). -e regression model of single-compound models (SCMs) and multicompound
model (MCM) were created by partial least-squares regression (PLSR). Also, these models were calibrated by gas chromatographic
mass spectroscopy (GC-MS). -e results showed that the averaged standard errors of prediction (SEP) for the SCMs and MCM
were 0.49 and 0.62, respectively, and most of the 14 compounds were significantly correlated. 43 correlations were significant at
the 0.01 level (47.25% of the total), and 11 correlations were significant at the 0.05 level (12.09% of the total). -e first three
principal components (PCs) of principal component analysis (PCA) can explain >78% of the total variance. According to the
component matrix and the communality table, octadecanoic acid has the largest influence on PC 1 (extraction squared� 46.72%),
whose extraction was 0.932. -e communality of neophytadiene, Z,Z,Z-9,12,15-octadecatrienoic acid, and oleic acid was also
found to be large, whose extractions were 0.955, 0.937, and 0.859, respectively.-ese results indicate that if one compound shows a
linear relationship with the NIR absorbance signal (SCM) also, an MCM can be created due to the close interrelations of these
compounds. In this context, the present work highlights a suitable sample preparation technique to perform NIR analysis of raw
plant material to benefit from robust and precise calibrations. To sum up, this NIR spectroscopic approach offers a precise, rapid,
and cost-effective high-throughput analytical technique to simultaneously and noninvasively perform quantitative analysis of raw
plant materials.

1. Introduction

Currently, there is a growing need for the analysis of me-
dicinal plants because they contain a large number of ben-
eficial medicinal compounds. A. millefolium, a widely
distributed medicinal plant in Europe and Asia, is extensively
used as a folk medicine because of its multiple pharmaco-
logical activities, and its essential oils are important for the
anti-inflammatory activities of plants [1–3]. To quantitatively
determine one compound in a medicinal plant, often the
information about the remaining compounds is lost due to

the extraction of only one single compound, which, however,
may be the key for the therapy effect [4, 5]. Over the years,
these research studies were focused on fingerprint technology,
such as high-performance liquid chromatography (HPLC),
gas chromatography (GC), high-performance thin-layer
chromatography (HPTLC), capillary electrophoresis (CE),
and nuclear magnetic resonance (NMR), which are helpful to
give an overall understanding of the chemical active ingre-
dients [6–10]. In doing so, it has to be considered that fin-
gerprint techniques are commonly complex and very specific
for only one or few compounds which makes single-
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spectrum-based fingerprint techniques not only time con-
suming but also hard to standardize [11]. To simultaneously
determine multiple compounds, other analytical techniques,
oftentimes combined with multivariate techniques that
generate a series of fingerprint spectra, have to be applied.-e
near-infrared (NIR) region expands from 4000 to 12800 cm−1

(2500–780 nm), which covers the overtone and combination
transitions of the C-H, O-H and N-H groups. Compared with
midinfrared spectra, NIR absorption bands are weaker and
more difficult to identify due to the higher level of excitation
bonds [12]. -e molecular overtone and combination bands
in the NIR are typically broad and overlapping leading to
complex spectra mixes. Since it is very difficult to assign
characteristic features to specific chemical components,
multivariate analysis (MVA) techniques, e.g., regression
(PLSR), principal component regression (PCR), or multiple
linear regression (MLR), are often employed to extract the
desired chemical information and to bring out hidden data
structures. -ese days, an increasing number of research is
focused on the chemical assembly of the medicinal plants to
quantify the relevant compounds in the samples by NIRS [13,
14], for example,Cortex phellodendri [15],Magnolia officianlis
[16], Piper methysticum Forst. f. [17, 18], and American
ginseng [19]. -e noninvasive character of NIR spectroscopy
for determining medicinal relevant compounds shows many
advantages to other techniques, such as hardly any need for
sample preparation and the possibility to perform outdoor
analysis with commercially available hand-held instruments
[20,21]. Since NIRS is often combined with MVA and sta-
tistics, parameters such as the right choice of the calibration
set (training set) and the validation set (test set) samples, data
pretreatments, and statistic methods for constructing the
model play an important role for creating a suitable quan-
titative model [22–25]. Only few studies focus on the inter-
relation of the chemical active compounds which might be
one of the most important factors when talking about herbal
medicine. Most of the time, only one regression model for
each property, which can be called a single-compound model
(SCM), is used.-ismeans, to quantifymany compounds in a
medicinal plant, one has to build as many regression models
as there are compounds present in the sample. To simulta-
neously determine more than one compound, a multiple
compound model (MCM) has to be generated. Furthermore,
a MCM can reflect the interrelationship of all the compounds
in the samples by only one measurement. To sum up, the
main objective of this study was to quantify each of the 14
main compounds in A. millefolium by NIRS and to compare
the single-compound data with the multicompound data
evaluation technique. Diverse sample preparation procedures
are reviewed, and the different multivariate data evaluation
approaches are discussed in detail.

2. Materials and Methods

2.1. Sample Preparation of Achillea millefolium.
A. millefolium plants were collected around Innsbruck
(Austria, Europe). Each sample consisted of 5 individual
plants, 36 samples in total. Twelve samples were dried in an
oven at 40°C, and the remaining 24 were dried at room

temperature. After the drying process, flower heads were cut
off and grinded by using a roll cut machine (IKA/ULTRA
TURRAX/Tube drive, Staufen, Germany) to about 1mm. All
the grinded samples were stored in an exsiccator prior to
NIR analysis.

2.2. NIR Spectroscopy. NIR Fourier-Transform spectrome-
ters (FT-NIR; Büchi, Flawil, Switzerland) were used to
measure the NIR spectra (4000 to 10000 cm−1) of samples.
Spectra were recorded in the diffuse reflectionmode by using
an integrating sphere device (Büchi). Each of the 36 samples
was measured three times, leading to 108 NIR spectra, and
analyzed by Chemometric software NirCal 4.21 (Büchi).
-ese spectra were randomly divided into two parts, a
learning set (67%, c-set) and test set (33%, v-set). -e re-
flection spectra were transposed to the log (1/R) absorbance
spectra followed by various data pretreatments to correct for
offset effects due to an inhomogeneous particle size distri-
bution. Partial least-squares regression (PLSR) and principal
component regression (PCR) analysis were implemented to
build the models.

2.3. GC-MSAnalysis. -e dried flower heads were extracted
3 times with CH2Cl2 (1 :10w/v) and ultrasonicated for
10min. After evaporation of the solvent, the supernatant was
transferred to a volumetric flask; n-Heptanol was used as an
internal standard. -e extracted compounds were identified
by GC-MS using an Agilent 6890 Network GC system MSD
ChemoStation (Palo Alto, US). Column: MS quartz capillary
column (0.25mm I.D× 30m× 0.25 μm). Carrier gas: he-
lium, 2mL/min; split ratio: 1 :10; temperature program: 60°C
to 180°C at 5°C/min and 180°C to 280°C at 2.5°C/min.
Electron impact (EI) spectra were obtained at −70 eV. -e
search libraries were NIST02, Wiley7n, and Flavor2.

2.4. Quantitative Data Analysis

2.4.1. NIRS Model Evaluation. -e optimum number of
factors for building the models was obtained by the pre-
dicted residual error sum of squares (PRESSs) function given
as

PRESS �  xn − yn( 
2
, (1)

where xn is for predicted values and yn for reference values.
-e optimum regression models were evaluated by the

following calculated values:

(i) Bias of the c-set and the v-set, which show the
deviation between the values of predicted and ac-
tual; it is naturally zero after bias correction.

BIAS �
1
N

 xn − yn( . (2)

(ii) -e c-set SEE and the v-set SEE (SEP), which show
the precision of the regression models for the c-set
and the v-set, respectively.
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BIAS �
1
N

 xn − yn( . (3)

(iii) Consistency, which shows the robustness of the
regression models; it should approach 100. Con-
sistency� SEE/SEP× 100.

(iv) Regression coefficient (R2) of the c-set and the v-set,
which will show the relation of the predicted values
to the actual values; R should approach 1.

(v) Regression intercepts and slopes of the c-set and the
v-set.

2.4.2. Comparison of the PLS Models. A paired t-test was
conducted to compare the difference between the SCM
regression models and the MCM. ANOVA was used to
compare the differences of the varying sample preparations
(air-and-oven-dried, oven-dried and air-dried). -e ho-
mogeneity of the variances was tested by Levene statistic,
and multiple comparisons were conducted by LSD when the
equal variance was assumed to be equal and by Tamhane in
case of nonequal variance. Pearson bivariate correlation,
principal component analysis (PCA),, and hierarchical
cluster analysis were conducted to find the inner relationship
among the 14 compounds.

3. Results and Discussion

Comparison of the single-compound models (SCMs) and
the multiple compound model (MCM).

44 compounds were identified by GC-MS (data not
showed here), whereas those 14 which seem to be of par-
ticular interest in herbal medicine were used for creating the
PLS models (Table 1).

-e 108 log (1/R) NIR spectra (Figure 1) were used for
creating the 17 PLSRmodels (Table 2, Figures 2(a) and 2(b)),
including the 14 models for each single compound 1 to 14

and the three models for air-dried samples, oven-dried
samples, and oven-and-air-dried samples, respectively.

As can be gathered fromTable 2, varying wavelengths, data
pretreatments, calibration methods, and factors were used to
build the best and most specific regression model for each
single compound. Wavelengths for different compounds did
not vary much; most of them focus on a broad wavenumber
range from 4596 to 9000 cm−1. MSC was used as a data
pretreatment for 9 of the 17 models to suppress unwanted
scatter effects due to different particle sizes present in samples.
Since PLS is well suited for coupling digital filtering [24], it was
indicated that the NIRS data show a collinear relationship to
some extent. Coupling digital led to a low consistency in all
cases, which is needed for MSC as a data pretreatment. MSC
turned out to reducing the calibration factors, or simplifying
the regression model, and increasing the consistency (ro-
bustness) of the models. [26]. -e average number of factors
after the MSC data pretreatment was 6, which is the lowest
amount of average factors for all data pretreatments applied.
-e PLS model evaluation showed an average SEE of 0.35 for
the SCM and 0.56 for the MCM whereas the average SEP
showed 0.49 and 0.62, respectively. -e average consistencies
of the line from regression for the SCM and the MCM are
69.01 and 92.34. -e average R2 for the c-set for the SCM and
theMCM is 0.93 and 0.83, while the average R2 of the v-set for
the SCM and theMCM is 0.89 and 0.82, respectively (Table 3).
It was shown that both the SCM and the MCM have high R2
and low SEE and SEP, which is an indication for the high
prediction abilities of the individual SCMs and the simulta-
neous determination by means of the MCM. -e paired t-test
showed significant differences between each parameter for the
SCM and the MCM, except the bias, although both the SCM
and the MCM are well suited for the prediction of unknown
samples. -e SEE and SEP of the 14 compounds calibrated by
the SCMwere lower than those obtained by theMCM, and the
R2 of both the c-set and v-set of the 14 compounds calculated
by the SCM was higher than that by the MCM. In detail, from
the SCM to the MCM, the SEE increased at 0.22 (p< � 0.01)

Table 1: 14 selected compounds in A. millefolium which were used for building the NIR regression models.

Compound Rt
(min) Name Molecular

formula
Molecular
weight

Match
quality

Relative
content (mean

%)
SE SD

C1 20.4 n-Decanoic acid C10H20O2 172.15 98 1.17 0.1 0.6
C2 23.9 2,5-bis (1,1-Dimethylethyl)-phenol C14H22O 206.17 91 1.17 0.2 1.1
C3 31.1 cis,cis-7,10,-Hexadecadienal C16H28O 236.21 99 0.80 0.1 0.6
C4 33.2 Neophytadiene C20H38 278.3 99 2.44 0.4 2.6
C5 36.5 n-Hexadecanoic acid C16H32O2 256.24 98 4.97 0.3 2.1

C6 41.2
3a,5,5a,9,9a,9b-Hexahydro-9-hydroxy-5a,9-
dimethyl-3-methylene-naphtho[1,2-b]furan-

2,6(3H,4H)-dione
C15H18O4 262.12 94 1.42 0.1 0.9

C7 41.7 (Z,Z)-9,12-octadecadienoic acid C18H32O2 280.24 99 2.17 0.2 1.1
C8 41.8 (Z,Z,Z)-9,12,15-octadecatrienoic acid C18H30O2 278.23 90 2.47 0.4 2.2
C9 42.0 Oleic acid C18H34O2 282.26 97 3.07 0.2 1.3
C10 42.1 2-Methyl-Z,Z-3,13-octadecadienol C19H36O 280.28 93 2.40 0.2 1.1
C11 42.3 Z,E-2,13-octadecadien-1-ol C18H34O 266.26 99 1.34 0.1 0.6
C12 42.8 Octadecanoic acid C18H36O2 284.27 99 2.17 0.2 1.0
C13 56.0 gamma-Sitosterol C29H50O 414.39 99 3.72 0.4 2.6
C14 70.5 Stigmastan-3,5-dien C29H48 396.38 98 2.50 0.2 1.4
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Figure 1: NIR absorbance spectra of the grinded A. millefolium plants.

Table 2: Comparison of the optimized parameters for developing the NIR single-compound regression models (SCM) and the multiple
compound regression model (MCM).

Sample
preparation1 Model Compound n2 Wavenumber

(cm−1) Data pretreatment Method Factors

Sair SCM

C1 52/
26 4008–9996 MSC PLS 5

C2 52/
26 4008–9996 MSC PLS 6

C3 52/
26 4008–9996 MSC PLS 7

C4 52/
26 4596–9996 MSC PLS 6

C5 52/
26 4008–9996 MSC PLS 7

C6 52/
26 4008–9996 MSC PLS 11

C7 52/
26 4008–9996 Smoothing (Savitzky–Golay, 9 points) PLS 8

C8 52/
26 4596–9996 MSC PLS 6

C9 52/
26 4440–9000 First derivative (Savitzky–Golay, 9 points);

normalization to unit length PLS 11

C10 52/
26 4440–9000 First derivative (Savitzky–Golay, 9 points);

normalization to unit length PLS 5

C11 52/
26 4440–9000 First derivative (BCAP); normalization by closure PLS 11

C12 52/
26 4008–9996 MSC PLS 6

C13 52/
26 4008–9996 MSC PLS 6

C14 52/
26 4596–9996 Log (1/R); normalization by closure; second

derivative (Savitzky–Golay, 9 points) PLS 12

Sair

MCM

C1–14 52/
26 4008–9996 MSC PLS 8

Soven C1–14 24/
12 4596–9996 First derivative (BCAP); normalization by closure PLS 5

Sair-and-oven C1–14 76/
38 4008–9996 Normalization by closure PCR 12

1Sair � air-dried A. millefolium; Soven � oven-dried A. millefolium; Sair-and-oven �mixture of air-dried and oven-dried A. millefolium, 2sample number in the
calibration set/sample numbers in the validation set.
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and the SEP at 0.12 (p< � 0.01). -e consistency increased at
23.33 (p< � 0.05) while the R2 decreased at 0.10 and at 0.07
for the c-set and the v-set, respectively. -ese results denote
that the MCM, representing 14 compounds, shows, on one
hand, a higher robustness of the regression model but reduces
the precision and prediction ability on the other hand. In other
words, one has to decide whether to perform simultaneous,
fast, and robust but not very precise analysis (MCM) or to
perform very precise single-compound analysis by imple-
menting a single-compound model.

3.1. Influence of the Sample Sets on the Regression Models.
PLS models of the 14 compounds for different sample
pretreatments were built and compared to the MCMs

(Table 2). -e Sair-oven models showed a higher SEE
(average� 0.85), SEP (average� 0.87), consistency
(average� 98.04), and intercept for the c-set and the v-set
(average� 1.13 and 1.16), but a lower v-set bias
(average� 0.02), R2 (v-set� 0.72, c-set� 0.73), and slopes (v-
set� 0.54, c-set� 0.53) than both Soven and Sair (Tables 3 and
4). For the Soven and the Sair regression line, there were no
significant differences between most of the parameters ex-
cept the consistency, which is higher in Sair (92.34) than in
Soven (61.98) (p< � 0.01) and the v-set R2 of Sair (0.83) and
Soven (0.92) (p< � 0.05). -e conducted ANOVA showed
most parameters of the v-set (except v-set bias) were not
significantly different with the other parameters. -at means
that many samples with great variations can increase the
robustness of the regression models, but reducing the R2 and

Validation spectra f (x) = 0.6924 x + 0.2841, r = 0.85
Calibration spectra f (x) = 0.7223 x + 0.2511, r = 0.84
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Validation spectra f (x) = 0.5699 x + 0.4206, r = 0.73
Calibration spectra f (x) = 0.5387 x + 0.3765, r = 0.76
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Figure 2: PLS regression lines of the SCM (a) and the MCM (b) model for determining the n-decanoic acid content in A. millefolium.
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the precision as a consequence. All the regression models
were almost equal in the prediction ability since there were
no differences in the v-set evaluation. One thing that has to
be considered is that all the 16 regression models (14 SCMs,
Sair and Soven) were employed by PLS, and only the Sair-oven
showed significantly better regression parameters by
employing PCR, which maybe relevant to the greater var-
iation but lower collinearity in the calibration set of Sair-oven.

3.2. Interrelation of the 14 Main Compounds in Achillea
millefolium. Our research brought up the following ques-
tion: why can 14 compounds with different properties be
quantified by only one NIR regression model?

It is implied that there have to be some internal rela-
tionships between the 14 compounds. In order to expose

these, Pearson bivariate correlation, PCA, and hierarchical
cluster analysis were conducted on the 14 compounds.
Pearson bivariate correlation analysis showed that most of
the 14 compounds were significantly correlated. 43 corre-
lations were significant at the 0.01 level (47.25% of the total),
11 correlations were significant at the 0.05 level (12.09% of
the total), and 37 correlations were not significant (40.66% of
the total) as can be seen in Table 5.

-e PCA showed that 3 PCs explain >78% of the total
variance of the 14 compounds. According to the component
matrix and communality tables (not shown here), octadecanoic
acid (C12) is mainly related to principal component (PC) 1
(extraction squared is 46.72%), whose communality extraction
is 0.932. -e communalities of C4 (neophytadiene), C8
((Z,Z,Z)-9,12,15-octadecatrienoic acid), and C9 (oleic acid)
were also high, whose extractions were 0.955, 0.937, and 0.859,

Table 4: Comparison of the regression parameters for the SCMs obtained by different sample treatments.

Sample1 Compounds n2
Bias SEE SEP Consistency4

R2 Intercept Slope
c-set3 v-set c-set v-set c-set v-set c-set v-set c-set v-set

Soven

C1 24/12 0 −0.06 0.09 0.21 43.94 0.98 0.92 0.06 0.63 0.97 0.69
C2 24/12 0 −0.11 0.4 0.46 87.43 0.79 0.72 0.99 1.76 0.62 0.39
C3 24/12 0 −0.01 0.15 0.22 68.76 0.96 0.94 0.07 0.28 0.93 0.75
C4 24/12 0 −0.05 0.23 0.36 64.41 0.92 0.84 0.22 0.6 0.85 0.62
C5 24/12 0 −0.33 0.4 0.87 45.93 0.96 0.81 0.44 3.47 0.93 0.51
C6 24/12 0 −0.16 0.47 0.69 69.14 0.8 0.55 0.66 1.66 0.64 0.23
C7 24/12 0 −0.18 0.33 0.51 63.81 0.94 0.88 0.3 1.07 0.87 0.63
C8 24/12 0 −0.11 0.44 0.62 71.83 0.92 0.88 0.37 1.02 0.85 0.65
C9 24/12 0 −0.02 0.31 0.6 51.48 0.97 0.88 0.24 1.31 0.93 0.65
C10 24/12 0 −0.35 0.67 0.84 80.15 0.85 0.86 0.79 2.09 0.73 0.43
C11 24/12 0 −0.1 0.23 0.37 62.43 0.92 0.85 0.25 0.94 0.84 0.47
C12 24/12 0 −0.17 0.21 0.37 56.16 0.97 0.93 0.17 1.22 0.94 0.64
C13 24/12 0 −0.08 0.61 2.67 22.73 0.99 0.72 0.16 3.78 0.97 0.36
C14 24/12 0 0.08 0.65 0.82 79.51 0.86 0.77 0.86 1.38 0.74 0.59

Sair-oven

C1 76/38 0 0.03 0.35 0.35 98.94 0.81 0.81 0.41 0.39 0.65 0.65
C2 76/38 0 0.01 0.34 0.34 97.44 0.95 0.95 0.11 0.1 0.9 0.9
C3 76/38 0 0.02 0.36 0.37 96.14 0.77 0.76 0.32 0.3 0.59 0.59
C4 76/38 0 −0.14 1.05 1.15 91.54 0.91 0.9 0.42 0.59 0.83 0.82
C5 76/38 0 0.05 1.69 1.71 98.93 0.57 0.59 3.35 3.32 0.32 0.32
C6 76/38 0 0.02 0.5 0.47 105.94 0.81 0.84 0.5 0.5 0.65 0.64
C7 76/38 0 0.01 0.91 0.95 96.12 0.5 0.48 1.62 1.66 0.25 0.23
C8 76/38 0 −0.16 0.98 1.08 90.85 0.89 0.87 0.52 0.69 0.79 0.78
C9 76/38 0 0.01 1.08 1.11 97.46 0.49 0.49 2.33 2.37 0.24 0.23
C10 76/38 0 0 0.76 0.76 100.48 0.69 0.72 1.24 1.32 0.48 0.46
C11 76/38 0 −0.01 0.48 0.5 97.06 0.57 0.57 0.91 0.96 0.32 0.29
C12 76/38 0 0.04 0.74 0.73 100.28 0.63 0.66 1.3 1.28 0.4 0.39
C13 76/38 0 0.11 1.84 1.83 100.34 0.7 0.72 1.91 1.91 0.48 0.46
C14 76/38 0 −0.02 0.79 0.79 101.05 0.8 0.82 0.89 0.84 0.64 0.67

Sair Mean — 0 −0.08a 0.56ab 0.62 92.34A 0.83Ab 0.82 0.62ab 0.78 0.70Aa 0.66

Soven
Mean — 0 −0.12Aa 0.37b 0.69 61.98B 0.92Aa 0.83 0.40b 1.52 0.84Ab 0.54
SD — 0 0.12 0.18 0.61 17 0.07 0.11 0.3 1.02 0.12 0.15
SE — 0 0.03 0.05 0.16 4.54 0.02 0.03 0.08 0.27 0.03 0.04

Sair-oven

Mean — 0 0.00Bb 0.85a 0.87 98.04A 0.72B 0.73 1.13a 1.16 0.54B 0.53
SD — 0 0.07 0.47 0.48 3.85 0.15 0.15 0.91 0.9 0.22 0.22
SE — 0 0.02 0.12 0.13 1.03 0.04 0.04 0.24 0.24 0.06 0.06
F — ‡‡‡ 5.971 7.159 1.007 43.655 12.007 3.065 5.059 2.525 12.168 2.336
Sig — — 0.0056 0.0026 0.375 06 06 0.058 0.0115 0.093 06 0.11

1Sair-and-oven � samples including both air-dried and oven-dried A millefolium, Soven � oven-dried A millefolium; Sair � air-dried A millefolium; 2sample
numbers in the calibration set/sample numbers in the validation set; 3a test of variances cannot be performed for c-set bias because the sum of weights is zero;
4consistency� (SEE/SEP)∗ 100; 5the mean difference is significant at the 0.05 level; 6the mean difference is significant at the 0.01 level.
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respectively (Table 6).-ese results corresponded to the cluster
analysis in Figure 3, which showed that C1, C2, C3, C5, C6, C7,
and C1 were close to C9 and C12, but far from C4 and C8. In
other words, C4, C8, C9, and C12 represented the main
variances of the 14 compounds.

3.3. Choosing the Right Sample Sets. It is a fact that different
sample sets lead to different NIR regression models. Each of
them may have different characteristics even if they all

work well [27]. Large sample varieties and numbers can
help building high robust models. In contrast, a suitable
sample pretreatment procedure leads to homogenous
sample sets that result in higher-precision calibration
models. Careful preparation of the validation set before
analysis leads to much more precise predictions and
minimizes the need for spectral data pretreatment. -e
more homogenous the c-set and the v-set samples, the
better the model and the predictions will be. Careful

Table 5: Correlation analysis between the 14 compounds (Table 1) in A. millefolium.

Compound Parameters 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 R2 1 — — — — — — — — — — — — —
Sig — — — — — — — — — — — — —

2 R2 0.70∗∗ — — — — — — — — — — — — —
Sig 0 — — — — — — — — — — — — —

3 R2 0.75∗∗ 0.18 — — — — — — — — — — — —
Sig 0 0.29 — — — — — — — — — — — —

4 R2 −0.41∗∗ −0.28 −0.27 — — — — — — — — — — —
Sig 0.01 0.09 0.1 — — — — — — — — — — —

5 R2 0.67∗∗ 0.60∗∗ 0.32∗ −0.02 — — — — — — — — — —
Sig 0 0 0.05 0.88 — — — — — — — — — —

6 R2 0.14 0.52∗∗ −0.28 −0.18 0.21 — — — — — — — — —
Sig 0.41 0 0.09 0.28 0.21 — — — — — — — — —

7 R2 0.57∗∗ 0.27 0.49∗∗ −0.38∗ 0.71∗∗ 0.2 — — — — — — — —
Sig 0 0.1 0 0.02 0 0.24 — — — — — — — —

8 R2 −0.09 0 −0.04 0.92∗∗ 0.25 −0.12 −0.14 — — — — — — —
Sig 0.59 0.98 0.81 0 0.12 0.48 0.41 — — — — — — —

9 R2 0.72∗∗ 0.34∗ 0.64∗∗ −0.19 0.71∗∗ −0.01 0.74∗∗ 0.1 — — — — — —
Sig 0 0.04 0 0.24 0 0.95 0 0.57 — — — — — —

10 R2 0.53∗∗ 0.58∗∗ 0.1 −0.02 0.75∗∗ 0.37∗ 0.46∗∗ 0.23 0.56∗∗ — — — — —
Sig 0 0 0.55 0.91 0 0.02 0 0.16 0 — — — — —

11 R2 0.67∗∗ 0.33∗ 0.51∗∗ −0.14 0.69∗∗ −0.09 0.58∗∗ 0.14 0.87∗∗ 0.67∗∗ — — — —
Sig 0 0.04 0 0.4 0 0.6 0 0.4 0 0 — — — —

12 R2 0.88∗∗ 0.59∗∗ 0.62∗∗ −0.37∗ 0.80∗∗ 0.15 0.76∗∗ −0.05 0.83∗∗ 0.72∗∗ 0.79∗∗ — — —
Sig 0 0 0 0.02 0 0.37 0 0.76 0 0 0 — — —

13 R2 0.55∗∗ 0.56∗∗ 0.21 −0.31 0.48∗∗ 0.35∗ 0.37∗ −0.12 0.53∗∗ 0.45∗∗ 0.54∗∗ 0.53∗∗ — —
Sig 0 0 0.22 0.06 0 0.03 0.02 0.48 0 0.01 0 0 — —

14 R2 0.18 0.55∗∗ −0.34∗ 0.04 0.34∗ 0.39∗ −0.1 0.17 0.13 0.40∗∗ 0.22 0.15 0.43∗∗ 1.00
Sig 0.28 0 0.04 0.81 0.04 0.02 0.55 0.32 0.42 0.01 0.19 0.36 0.01 —

∗∗Correlation significant at the 0.01 level (2-tailed); ∗correlation significant at the 0.05 level (2-tailed).

Table 6: PCA of the 14 compounds and total explained variance.

Factor
Initial eigenvalues Extraction sum of the loadings

Total % of explained
variance

Cumulative % of explained
variance Total % of explained

variance
Cumulative % of explained

variance
1 6.54 46.72 46.72 6.54 46.72 46.72
2 2.35 16.76 63.48 2.35 16.76 63.48
3 2.1 14.96 78.44 2.1 14.96 78.44
4 0.85 6.06 84.5 0 0 0
5 0.72 5.17 89.67 0 0 0
6 0.5 3.56 93.23 0 0 0
7 0.35 2.51 95.75 0 0 0
8 0.27 1.92 97.66 0 0 0
9 0.1 0.72 98.38 0 0 0
10 0.08 0.59 98.97 0 0 0
11 0.07 0.47 99.43 0 0 0
12 0.05 0.33 99.76 0 0 0
13 0.02 0.18 99.94 0 0 0
14 0.01 0.06 100.00 0 0 0
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development of the c-set and v-set samples is crucial for
near-infrared spectroscopic analysis for quantifying me-
dicinal plants with varying compounds.

4. Conclusions

Both one regression model for one compound (SCM) or one
regression model for multiple compounds (MCM) can be
used to quantify the chemical compounds in A. millefolium.
-e former approach showed a higher R2 for the c-set and the
v-set and lower SEE and SEP than the later approach that, in
contrast, showed a higher consistency than the former ap-
proach. It seemed that although the R2 decreased and the SEE
and the SEP increased, the MCM with many compounds
brings out some internal relations of the compounds present
in the samples. -e MCM showed an increased robustness
whereas the precision decreased. In our opinion, a combined
use of a SCMs and a MCM is well suited to quantitatively
analyse A. millefolium as well as other medicinal plants. -is
method has some similarity to chemical fingerprint methods,
but presents itself simpler in operation than the other
methods [28]. -eoretically, the MVA-supported NIR tech-
nique could merge data arising from different chemical
methods, such as GC-MS, HPLC/HPLC−MS, HPCE, and
TLC, to create a big complex model, which would look like a
multidimensional fingerprint. Generally, the construction of
an MCM needs large sample amount, the more, the more
robust, but as soon as it is established, it can help save much
time and make working more cost effective.

Data Availability

-e data used to support this study are available from the
corresponding author upon request.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Lan-Ping Guo and Jian Yang contributed equally to this
work.

Acknowledgments

-is research was supported by the National Key R & D
Program of China (no. 2017YFC1700701), National Natural
Science Foundation of China (nos. 81891014 and 81603241),
and the Fundamental Research Funds for the Central Public
Welfare Research Institutes (no. ZZXT201906).

References

[1] A. R. Moghadam, “GC/MS analyses for detection and ideti-
fication of antioxidant constituents of Achillea millefolium L,”
essential oil,” Bangladesh Journal of Botany, vol. 46, no. 4,
pp. 1317–1321, 2017.

[2] M. S. Howyzeh, S. Aslani, and O. Pooraskari, “Essential oil
profile of an Iranian yarrow (Achillea millefolium),” Journal of
Essential Oil Bearing Plants, vol. 22, no. 1, pp. 295–300, 2019.

[3] T. Berramdane, N. Gourine, I. Bombarda, and M. Yousfi,
“New chemotype of essential oil of Achillea santolina
L. collected from different regions of Algeria,” Journal of Food
Measurement and Characterization, vol. 12, no. 3, pp. 1–8,
2018.

[4] Y. Tao, X. Gu, W. Li, H. Wu, B. Cai, and B. Zhang, “Tech-
niques for biological fingerprinting of traditional Chinese
medicine,” TrAC Trends in Analytical Chemistry, vol. 97,
pp. 272–282, 2017.

[5] W. Liu, Y. Zhang, J. He et al., “Transition-metal-free three-
component reaction: additive controlled synthesis of sulfo-
nylated imidazoles,”<e Journal of Organic Chemistry, vol. 84,
no. 17, pp. 11348–11358, 2019.

[6] M. A. Hawrył, K. Skalicka-Woźniak, R. Świeboda et al., “GC-
MS fingerprints of mint essential oils,” Open Chemistry,
vol. 13, no. 1, pp. 1326–1332, 2015.

[7] X. He, J. Li, W. Zhao, R. Liu, L. Zhang, and X. Kong,
“Chemical fingerprint analysis for quality control and iden-
tification of ziyang green tea by HPLC,” Food Chemistry,
vol. 171, pp. 405–411, 2015.

[8] V. Pedan, C. Weber, T. Do, N. Fischer, E. Reich, and S. Rohn,
“HPTLC fingerprint profile analysis of cocoa proanthocya-
nidins depending on origin and genotype,” Food Chemistry,
vol. 267, pp. 277–287, 2018.

[9] L. Xu, R. Chang, M. Chen et al., “Quality evaluation of Guan-
Xin-Ning injection based on fingerprint analysis and simul-
taneous separation and determination of seven bioactive
constituents by capillary electrophoresis,” Electrophoresis,
vol. 38, no. 24, pp. 3168–3176, 2017.

[10] Z.-Y. Li, Z.-Z. Zhang, G.-H. Du, and X.-M. Qin, “Comparative
analysis of danggui and european danggui using nuclear
magnetic resonance-based metabolic fingerprinting,” Journal
of Pharmaceutical and Biomedical Analysis, vol. 103, pp. 44–
51, 2015.

[11] R. Shulammithi, M. Sharanya, R. Tejaswini, and M. Kiranmai,
“Standardization and quality evaluation of herbal drugs,”
Journal of Pharmaceutical and Biological Sciences, vol. 11,
pp. 89–100, 2016.

[12] C. J. G. Colares, T. C. M. Pastore, V. T. R. Coradin et al., “Near
infrared hyperspectral imaging and MCR-ALS applied for
mapping chemical composition of the wood specie Swietenia

4
8
1

12
9

11
5
7

10
13

2
3

14
6

Num
0 5 10 15 20 25

Rescaled distance cluster combine

Figure 3: Dendrogram of the 14 compounds using average linkage
(within group), z scores standardized.

Journal of Analytical Methods in Chemistry 9



Macrophylla King (Mahogany) at microscopic level,”
Microchemical Journal, vol. 124, pp. 356–363, 2016.

[13] K. N. Basri, M. N. Hussain, J. Bakar, Z. Sharif, M. F. A. Khir,
and A. S. Zoolfakar, “Classification and quantification of palm
oil adulteration via portable NIR spectroscopy,” Spectrochi-
mica Acta Part A: Molecular and Biomolecular Spectroscopy,
vol. 173, pp. 335–342, 2017.

[14] W. Xinhong, W. Xiaoguang, and G. Yuhai, “Rapidly simul-
taneous determination of six effective components in cis-
tanche tubulosa by near infrared spectroscopy,” Molecules,
vol. 22, no. 5, p. 843, 2017.

[15] Y. Huang, M.-J. Gou, K. Jiang et al., “Recent quantitative
research of near infrared spectroscopy in traditional Chinese
medicine analysis,” Applied Spectroscopy Reviews, vol. 54,
no. 8, pp. 653–672, 2019.

[16] Z. Zhang, X. Qiu, Y. Guan et al., “Determining moisture
content of Traditional Chinese Medicines using a near-in-
frared LED-based moisture content sensor with spectrum
analysis,” Optical and Quantum Electronics volume, vol. 51,
p. 133, 2019.

[17] M. Gaub, C. Roeseler, G. Roos, and K.-A. Kovar, “Analysis of
plant extracts by nirs: simultaneous determination of kava-
pyrones and water in dry extracts of piper methysticum forst,”
Journal of Pharmaceutical and Biomedical Analysis, vol. 36,
no. 4, pp. 859–864, 2004.

[18] P. Lasme, F. Davrieux, D. Montet, and V. Lebot, “Quantifi-
cation of kavalactones and determination of kava (piper
methysticum) chemotypes using near-infrared reflectance
spectroscopy for quality control in Vanuatu,” Journal of
Agricultural and Food Chemistry, vol. 56, no. 13, pp. 4976–
4981, 2008.

[19] Y. W. Huang, J. H. Wang, J. S. Jacqueline, L. Lei, and
D. H. Han, “Determination of total main ginsenosides con-
tents in american ginseng and Chinese ginseng using near
infrared spectroscopy,” Chinese Journal of Analytical Chem-
istry, vol. 39, no. 3, pp. 377–381, 2011.

[20] Y. Hui and H. W. Siesler, “Quantitative analysis of a phar-
maceutical formulation: performance comparison of different
handheld near-infrared spectrometers,” Journal of Pharma-
ceutical and Biomedical Analysis, vol. 160, pp. 179–186, 2018.
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