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*e maturity affects the yield, quality, and economic value of tobacco leaves. Leaf maturity level discrimination is an important
step in manual harvesting. However, the maturity judgment of fresh tobacco leaves by grower visual evaluation is subjective,
whichmay lead to quality loss and low prices.*erefore, an objective and reliable discriminant technique for tobacco leaf maturity
level based on near-infrared (NIR) spectroscopy combined with a deep learning approach of convolutional neural networks
(CNNs) is proposed in this study. To assess the performance of the proposed maturity discriminant model, four conventional
multiclass classification approaches—K-nearest neighbor (KNN), backpropagation neural network (BPNN), support vector
machine (SVM), and extreme learning machine (ELM)—were employed for a comparative analysis of three categories (upper,
middle, and lower position) of tobacco leaves. Experimental results showed that the CNN discriminant models were able to
precisely classify the maturity level of tobacco leaves for the above three data sets with accuracies of 96.18%, 95.2%, and 97.31%,
respectively. Moreover, the CNN models with strong feature extraction and learning ability were superior to the KNN, BPNN,
SVM, and ELM models. *us, NIR spectroscopy combined with CNN is a promising alternative to overcome the limitations of
sensory assessment for tobacco leaf maturity level recognition. *e development of a maturity-distinguishing model can provide
an accurate, reliable, and scientific auxiliary means for tobacco leaf harvesting.

1. Introduction

Harvesting plays an important role in tobacco production.
*e maturity largely determines the yield, quality, and
economic value of tobacco leaves. Fresh tobacco leaves with
optimal maturity levels have harmonious internal chemical
compositions and high grade and value after flue-curing. In
general, harvesting often starts two months after the
transplantation of tobacco seedlings. As tobacco leaves are
collected at intervals as they reach the ripe level, the maturity
evaluation for tobacco leaves is manually operated [1, 2].
Accurately grasping the maturity level of tobacco leaves and
timely harvesting can ensure quality production as well as
better returns [3]. However, traditional maturity discrimi-
nation and harvesting of tobacco leaves based only on the
appearance of tobacco leaves and experience of growers are
laborious, inefficient, and quite error-prone. *us, there is

an urgent need for a reliable, rapid, and accurate auto-
matically analyzing technique to help growers assessing the
maturity levels of tobacco leaves.

In recent years, nondestructive analysis technologies
have been widely used in the tobacco industry as they are fast
and environment-friendly, which can significantly improve
the detection speed, reduce the labor, and improve the
production efficiency. Near-infrared (NIR) spectroscopy is
the representative one, which can be employed to the
measurements of the quality and safety attributes of tobacco
and tobacco products. It has been used to determine in-
trinsic main chemical constituents—including total sugar,
reducing sugar, nicotine, total nitrogen [4], starch, moisture,
protein, K2O, total chlorine, heavy metals [5], ammonia,
total alkaloids [6], polyphenols [7], nitrosamines, and total
nitrate [8]—in tobacco leaves. In addition, numerous studies
on the identification of tobacco varieties [9], tobacco parts

Hindawi
Journal of Analytical Methods in Chemistry
Volume 2021, Article ID 9912589, 11 pages
https://doi.org/10.1155/2021/9912589

mailto:binjun2009@gmail.com
https://orcid.org/0000-0001-5218-1251
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9912589


[10], tobacco grades [11–13], aroma styles [14], and planting
areas [15, 16] using NIR spectroscopy techniques have also
been carried out. More specifically, the distinguishing ability
of NIR spectroscopy has been evaluated to determine the
maturity levels of avocados [17–20], tomatoes [21, 22], ly-
chees [23], pomegranates [24], dates [25], table grapes [26],
watermelons [27], cotton bolls [28], truffles [29], white teas
[30], and peaches [31]. Despite the increasing number of
applications of NIR spectroscopy in crop and fruit quality
assessments, there are still only a few reports regarding the
use of this technique to classify the maturity levels of fresh
tobacco leaves.

Machine vision technique has been reported to rapidly
evaluate the maturity levels of tobacco leaves [3, 32]. Nev-
ertheless, the classification accuracy could be still improved.
*eoretically, tobacco leaf ripening includes the mature
appearance characteristics and coordination of internal
chemical components [33]. *e machine vision technique
can be used to assess the external quality of tobacco leaves
according to the color and texture features extraction, but it
is challenging to correctly reflect the changes in chemical
substances inside of tobacco leaves, which results in mun-
dane recognition accuracy. In particular, it is not possible to
identify a premature tobacco leaf whose appearance is very
similar to that of a ripe tobacco leaf, but its internal chemical
compositions do not meet the requirements of ripe tobacco
leaves. NIR spectroscopy can provide more comprehensive
internal and external quality information of tobacco leaves,
which can be exploited for maturity classification. Hence, it
is feasible to apply NIR spectroscopy to determine the
quality and maturity of tobacco leaves.

Deep learning [34] is a revolutionary development of
neural networks that can be used to create powerful pre-
diction models based on multilayer abstraction to represent
concepts or features. Recently, it has attracted increasing
attention in various fields. As the most widely used deep
learning method, convolutional neural networks (CNNs)
[35, 36] with a high capability for representative feature
extraction and model construction has been successfully
employed to manage vibrational spectroscopic data [37–39].
Several attempts have been made, in recent years, to dem-
onstrate the validity and feasibility. A one-dimensional
convolutional neural network (1D-CNN) coupled with NIR
spectroscopy has been developed to distinguish aristolochic
acids analogues [40], multimanufacturers of drugs [41],
waste textiles [42], peach variety [43], softwood species [44],
pesticide residues on the Hami melon surface [45], the
geographical origin of T. hemsleyanum [46], and tobacco
origin [16]. *e above applications achieved better dis-
crimination results than those of shallow models.

In this study, the potential of NIR spectroscopy coupled
with a deep learning method to classify the maturity levels of
fresh tobacco leaves was investigated. To improve the dis-
criminant accuracy and practical application, a 1D CNNwas
designed to extract more detailed features of the spectro-
scopic data. Specifically, the performance of the CNN
classification model was assessed and compared with those
of the K-nearest neighbor (KNN), backpropagation neural
network (BPNN), support vector machine (SVM), and

extreme learning machine (ELM) methods. *e proposed
method is a promising alternative to traditional methods for
maturity level classification of tobacco leaves, which may
provide an auxiliary means for objectively distinguishing the
maturity levels and enhancing the quality of tobacco leaves.

2. Experimental Methods

2.1. Materials. Nicotiana tabacum “K326” was used in the
experiment that was conducted in Dali Autonomous Pre-
fecture, Yunnan Province, China, in 2019. *e test began
when the lower leaves were green and ended after the upper
leaves were overmature. Since different growth positions of
leaves on the same tobacco plant have obviously different
internal and external quality characteristics, tobacco leaves
can be divided into lower, middle, and upper leaves for
harvesting. A total of 3354 representative tobacco leaf
samples of the three positions were collected. *e maturity
of tobacco leaves was manually assessed at five lev-
els—unripe, mature, ripe, mellow, and overmature—by
several professional experts according to the rules for the
curing technique of flue-cured tobacco of China (GB/T
23219-2008). *e characteristics of the maturity levels of
fresh tobacco leaves are shown in Table 1. Because different
positions of tobacco leaves have different requirements of
maturity for harvesting, the corresponding discrimination
models should be established for different positions of to-
bacco leaves. *erefore, upper, middle, and lower tobacco
leaves were separated into a training set (70%) and testing set
(30%) using the Kennard–Stone method and modeled in-
dependently. Detailed sample information is presented in
Table 2.

2.2. NIR Spectral Acquisition. All spectra of the tobacco
leaves were collected by OceanView spectroscopy software
in the reflectance mode using a portable extended-range
near-infrared spectrometer NIRQuest256-2.5 (Ocean Op-
tics, Inc., Dunedin, FL, USA) equipped with a linear InGaAs
array detector and a standard diffuse reflection probe. *e
spectrometer was warmed 30min before the sample was
scanned. For each sample, six testing points were selected,
avoiding leaf veins in the line of sight, evenly distributed on
the tobacco leaf. *e spectrum was acquired using the probe
to scan tobacco leaves vertically, and the distance between
them was maintained at 0.5 cm. Each spectrum was obtained
through 32 scans and automatically averaged. *e inte-
gration time was smaller than 200ms. Each spectrum
consisting of 512 wavelength points was obtained at intervals
of 3.125 nm in the region of 900–2500 nm. *e final spec-
trum of each tobacco leaf sample was obtained by averaging
the six collected spectra. Figure 1(a) shows an example of the
collected spectra for the five maturity levels of tobacco
leaves.

2.3. Convolutional Neural Networks (CNNs). CNN is an
efficient deep learning method proposed to minimize the
preprocessing requirements of multidimensional data by
sharing weights and restricting local parameters. It can
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autonomously learn the essential connections within the
multidimensional array data through layer-by-layer feature
extraction and uses four key designs to utilize the attributes
of natural signals: local connection, weight sharing, pooling,
and multilayer networks. As nonlinear algorithms, the CNN
and BPNN have the same training method. However, the
main difference is that CNN has a special structure, such as
convolution and pooling, to extract and learn the internal
characteristics of input data. In addition, the CNN effectively
reduces the training weight and error attenuation of the
network through local connection and weight sharing, so

that the advantages of a multilayer neural network can be
reflected.

In addition to the input, the first two stages of a typical
CNN structure consist of a convolutional layer and pooling
layer, which are then fully connected with the traditional
multilayer perceptron (MLP), and finally the output is ob-
tained. *e elements in the convolutional layer are organized
in the feature map. Each unit is connected to the local part of
the upper layer through a set of weights called filters.*e local
weighted sum is activated by a nonlinear function. *erefore,
the kth feature graph of the convolution is defined by

Table 1: *e characteristics of fresh tobacco leaves in five maturity levels.

Maturity
levels Characteristics description of fresh tobacco leaf

Unripe Leaf color is dark green without any yellow, the main vein and branches are all green, and pubescence is not fallen off.

Mature Leaf color is light green with litter yellow, about 2/3 main vein turns white, and the branches are green with a small amount
of pubescence shedding.

Ripe Leaf color is yellow-green, the main vein is all white, about 1/3 branches turn white, pubescence partly falls off, and the leaf
tip is slightly hung down.

Mellow
Leaf color is yellow, the main vein is all white and bright, about 2/3 branches turn white, pubescence is basically or mostly
shed off, the leaf surface is covered with macula, the leaf tip and leaf edge turn white, slightly withered, and the leaf tip is

scorched and hooked down.

Overmature *e main vein and branches are all white and bright, and leaf color is yellow-white. Most of pubescence fall off, the leaf ear
is yellow with withered sharp and scorched edge.

Table 2: *e detail of tobacco leaves data sets.

Data sets Total samples Training set Testing set Unripe Mature Ripe Mellow Overmature
Upper leaves 1128 790 338 219 225 226 229 229
Middle leaves 1085 760 325 216 222 218 219 210
Lower leaves 1141 799 342 232 227 235 228 219

1000 1500 2000
Wavelength (nm)

0

0.5

1

1.5

2

2.5

A
bs

or
ba

nc
e

Unripe
Mature
Ripe

Mellow
Overmature

(a)

1000 1500 2000
Wavelength (nm)

–0.02

0

0.02

0.04

0.06

Pr
ep

ro
ce

ss
ed

 ab
so

rb
an

ce

Unripe
Mature
Ripe

Mellow
Overmature

(b)

Figure 1: *e NIR spectra of five maturity levels of upper tobacco leaves: (a) raw spectra and (b) preprocessed spectra.
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+ bk􏼒 􏼓, (1)

where hk
ij(x) is the activation value of the unit in the feature

map,Wk is the local connection weight, bk is the offset value,
andf(z) is the nonlinear activation function. All units in the
same feature map share the same filter.

*e pooling layer subsamples the local features extracted
from the convolutional layer, reduces the free parameters of
the network, and improves the robustness of the feature
data. *e pooling layer is defined by

xk
sl � f βk

l d xk
cl􏼐 􏼑 + bk

l􏼐 􏼑, (2)

where xk
sl represents the pooled output of xk

cl, d(z) is the
subsampled function, and βk

l and bk
l are multiplicative and

additive biases, respectively.
Finally, the feature map output from the pooling layer

was rasterized and fully connected to the MLP. *e network
parameters are estimated by solving the minimization
problem of the network loss function. *e weights of all
filters were trained using a backpropagation algorithm.

2.4. Conventional Classification Techniques for Comparison.
Four widely used classification algorithms—KNN [47],
BPNN [48], SVM [49, 50], and ELM [51, 52]—were applied
to comparatively evaluate the performance of the CNN
discriminant model. *e general principles of these methods
are briefly described.

*e KNN algorithm is a nonparametric method widely
used for classification in pattern recognition. *e main
principle of KNN is that the category of a data point is
determined according to the classification of its nearest
neighbors. *e algorithm operates as follows:

(1) Compute the Euclidean or Mahalanobis distances
from the target plot to those that were sampled

(2) Sort the samples according to the calculated
distances

(3) Choose a heuristically optimal k-nearest neighbor
based on the root mean square error obtained from
the cross-validation

(4) Calculate an inverse distance-weighted average using
the k-nearest multivariate neighbors

BPNN, the most widely used neural network, is a type of
multilayer feedforward neural network trained according to
the error backpropagation algorithm. It has the abilities of
arbitrary complex pattern classification and excellent mul-
tidimensional function mapping, which solves the exclusive
or (XOR) and some other problems that cannot be solved by
a simple perceptron. In terms of structure, the BP network
has an input layer, hidden layer, and output layer. *e BP
algorithm uses the square of the network error as the ob-
jective function and gradient descent method to calculate the
minimum value of the objective function. *e calculation
process of the BPNN consists of (1) a forward calculation
process and (2) reverse calculation process.

SVM is a fast and reliable linear classifier based on the
statistical learning theory proposed by Vapnik and Burges,
which can solve high-dimensional problems, machine
learning problems with small samples, and nonlinear feature
interaction. *e basic idea is to map the data from the
original feature space to the high-dimensional feature space
(Hilbert space) through a kernel function and make the
linear inner product operation nonlinear. *e optimal hy-
perplane is then established to maximize the classification
interval in this space and realize the identification of un-
known samples based on the hyperplane. Moreover, the
SVM has strong regularization properties.

ELM is a type of single-hidden layer feedforward neural
network learning algorithm according to function approx-
imation in a finite training set, proposed by Huang and
Babri. During the execution of the algorithm, the input
weights of the network and bias of hidden layer neurons can
be automatically adjusted, which leads to a high learning
speed, good generalization performance, and unique opti-
mal solution.

For a given training set, an excitation function, and the
number of hidden layer nodes, the steps of the ELM algo-
rithm are as follows:

(1) Provide any given input weight and hidden layer bias
(2) Compute the hidden layer output matrix
(3) Calculate the output weight

2.5. Model Evaluation and Software. For actual imple-
mentation, the performance of the classification model was
evaluated by calculating the discriminant accuracy (NER). A
higher NER implies a higher classification capability of the
model. *e discriminant accuracy can be calculated by

NER �
􏽐

G
g�1 ngg

n
× 100%, (3)

where G denotes the number of categories, n denotes the
number of samples, and ngg indicates that the samples with
real class g are predicted to be class g.

All data preprocessing, KNN, BPNN, SVM, and ELM,
calculations were performed using the chemometrics soft-
ware Matlab 2018a (MathWorks, Inc., Natick, MA, USA).
*e LIBSVM (version 3.24) package was used to perform the
SVM computations. In addition, the training and validation
of the CNN models were implemented in Python (v3.8.2)
using the Keras library (v2.4.3) and TensorFlow (v2.4.0)
backend. All simulations were carried out on a laptop
computer with an Intel Core 1.8GHz CPU, 8GB of RAM,
and Windows operating system.

3. Results and Discussion

3.1. Spectral Preprocessing. Traditionally, because the NIR
spectrum may contain substantial noise from the environ-
ment and instrument, preprocessing is helpful for the ex-
traction and analysis of useful information. Different
preprocessing methods lead to different prediction results.
*erefore, to analyze the impacts of different pretreatment
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methods on the model construction, the four classical
pretreatment methods first derivation, second derivation,
standard normal variable transformation (SNV), and mul-
tivariate scattering correction (MSC) coupled with Savitz-
ky–Golay smoothing and normalization were used for a
comparative analysis. A total of 450 samples randomly se-
lected from the training set of upper tobacco leaf samples
were divided at a ratio of 2:1 to choose the appropriate
pretreatment method. *e experiment was randomly re-
peated five times, and the mean values were taken as the
experimental results, which are shown in Table 3. Inspection
of the table reveals that the discriminant accuracy after
spectra processed by derivation, SNV, and MSC is improved
compared with the results of the raw spectra. Relatively
speaking, spectral data processed by first derivation can
achieve better classification results. *us, it was selected as
the preprocessing method for the spectra of the upper,
middle, and lower tobacco leaves in the subsequent classi-
fication experiments. *e spectra before and after the pre-
treatment are shown in Figure 1. Notably, different
preprocessing methods have small effects on the classifi-
cation results of the CNN models. *is indicates that the
CNN method used to develop the NIR model is less de-
pendent on preprocessing than other methods.

Principal component analysis (PCA) was used to cluster
the spectral data of each maturity level of tobacco leaves. A
PCA score plot for the five maturity levels of upper tobacco
leaves is illustrated in Figure 2. It can be found that the
projections of the five maturity-level samples overlap sig-
nificantly and cannot be separated. In addition, the first
three principal components contain only approximately 70%
of the sample information. *is could be explained as PCA
treats all samples as a whole to find an optimal linear
mapping projection with the smallest mean square error and
ignores the category attribute, which may contain important
separability information. *us, it is necessary to develop a
more powerful multiclassification method to discriminate
different maturity levels of tobacco leaves. *e CNN may be
a good choice considering its strong feature extraction and
learning ability.

3.2. CNN Discriminant Models Construction. Based on the
properties of the NIR spectra, a modified LeNet-5 CNN
model was designed, which was suitable for the 1D data
identification scene in this study. *e basic architecture of
the CNN was mainly structured into an input layer, con-
volutional layer, pooling layer, flatten layer, fully connected
layer, and output layer. A schematic diagram of this process
is shown in Figure 3. One can be observed that there are two
convolutional layers.*e weights of the convolutional kernel
are initialized by the Xavier normal initializer. After con-
volution, a batch normalization mechanism is used to
restandardize the activation value of the previous layer in
each batch and enlarge the original reduced activation value
to prevent the gradient disappearance. *e pooling layer is
immediately behind each convolutional layer, which can
reduce the output size and risk of overfitting. *e role of the
global maximum pooling layer is to pool the feature map of

the last layer as a whole to form a feature point, which is
mainly used to solve the problem of limiting the size of the
input dimension and too many parameters in the fully
connected layer. *e flatten layer used to flatten the mul-
tidimensional input data to 1D data is always employed as
the transition from the convolutional layer to the fully
connected layer. *e fully connected layer is then applied to
expand the feature map obtained by the last convolutional
layer into a 1D vector and provide an input for the classifier.
*e number of neurons in the output layer is the number of
maturity levels. By connecting the softmax classifier, the
classification probability of the NIR data is calculated. *e
parameter settings of the CNN model for tobacco leaf NIR
data sets are presented in Table 4.

3.3. Parameter Optimization for the CNNModel. To obtain a
high discriminant accuracy, several key parameters should
be adjusted for CNN model training. *e sizes of con-
volutional kernel, batch size, and epoch size were investi-
gated. 150 samples were randomly selected from the training
sets of upper, middle, and lower leaf data sets as the vali-
dation sets, and the rest were used as the calibration sets for
parameter adjustment, respectively. *is ensured that all
samples of training sets can be used for the training model.
*e experiment was randomly repeated five times to obtain
more reliable results.

3.3.1. Size of Convolutional Kernel. At first, the influence of
the size of convolutional kernel on the CNN discriminant
model was examined. *e discriminant accuracies with the
sizes of 5, 9, 13, 17, and 21 are shown in Figure 4(a), as can be
seen that the size of convolutional kernel has a small effect on
the CNN discriminant result. When the convolutional
kernel size is set to 13, the corresponding classification
accuracy of calibration and validation sets reach the max-
imum values. *erefore, the size of convolutional kernel was
set to 13 in the CNN model construction.

3.3.2. Batch Size. Since the training of the entire data set into
the neural network and calculation of the gradients for a
huge data set are difficult and time-consuming, batch
progress is employed to divide the data set to quickly update
the parameters. An appropriate batch size is helpful for a
smooth model learning process. *us, several batch sizes of
16, 32, 64, 128, and 256 were set for the experimental
comparison. Discriminant results are presented in
Figure 4(b). It can be seen when the batch size is 64, the
highest discriminant accuracy for the validation set can be
achieved. Consequently, the batch size was set to 64.

3.3.3. Epoch Size. *e epoch size is an important parameter
in CNN model construction. If the epoch size is too small,
the generalization ability of the model is not high. If the
epoch size is too large, the model can easily overfit and
requires a large training time. To evaluate the influence of
the epoch size on the performance of the model, the dis-
criminant results of the CNN model with epoch sizes of 50,

Journal of Analytical Methods in Chemistry 5



Table 3: Discriminant accuracy (%) of different preprocessing methods.

Preprocessing methods KNN BPNN SVM ELM CNN
Raw 55.33 77.05± 3.61 87.33 72.4± 3.25 92.35± 2.61
First derivation 85.33 88.32± 2.69 93.33 82.46± 4.44 95.84± 1.25
Second derivation 84.67 85.1± 2.54 92.67 80.24± 5.91 94.55± 1.65
SNV 74 86.67± 2.91 94 85.03± 3.43 94.36± 1.24
MSC 74 86.5± 2.52 93.33 84.49± 1.66 93.38± 1.42
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Figure 2: PCA score plot of the variance in NIR spectra of five maturity levels for upper tobacco leaves.
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Table 4: Parameter settings of the convolutional neural networks for upper, middle, and lower leaves data sets.

Layers Model parameters Output shape
Input layer NIRS data of 454×1 dimension
Conv1D (C1) 128 convolutional kernels of the size 13×1, the Relu function and BN mechanism, stride� 1 450×128
MaxPooling1D (S2) Maxpooling, pooling size� 2×1, stride� 1 225×128
Conv1D (C3) 64 convolutional kernels of the size 13×1, the Relu function and BN mechanism, stride� 1 221× 64
MaxPooling1D (S4) Maxpooling, pooling size� 1× 1, stride� 1 221× 64
Flatten (F5) Flatten the feature vector of the S4 layer into 1 vector 14144×1
Dense (F6) 100 output neurons fully connected to all neurons in layer F5, the Relu function 100×1
Dense (F7) 5 output neurons consistent with the number of maturity levels 5×1
Output layer *e softmax function
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100, 150, 200, 300, 500, 750, and 1000 are shown in
Figure 4(c). When the epoch size is small, the model is
insufficiently trained with a lower classification accuracy.
*e classification accuracy increases with the epoch size.
When the epoch size is larger than 300, the discriminant
results do not significantly change and tend toward stability.
*us, the epoch size was set to 300 for the CNN modeling.

*e accuracy and the value of the loss function of the
training set and testing set are displayed in Figures 5 and 6.
As can be observed, the CNN models run stably with high
accuracy. *e experiment was repeated 10 times, and the
mean values were taken as the final evaluation results. All
experimental results are shown in Tables 5 and 6. *e ac-
curacies of the training sets of the three categories of tobacco
leaf models are approximately 100%. *e prediction accu-
racies of the three testing sets are higher than 95%.*us, the
use of the CNNmethod to classify and analyze NIR data sets
can achieve satisfactory results. *e standard deviations of
the prediction results obtained by running 10 times are quite
small, which indicates that the CNN models are very robust.
Furthermore, CNN models can solve the discriminant
problem of upper, middle, and lower tobacco leaf data sets
without adjustment parameters. *is suggests that the
designed convolutional network has a good robustness and
high generalization ability for NIR data of tobacco leaves
with the help of depth networks and multiple iterations.

3.4. Comparative Model Analysis. To demonstrate the per-
formance of the CNN model, KNN, BPNN, SVM, and ELM
models were established for a comparative analysis in this
study. A key parameter should be tuned to build a KNN
classification model. A 10-fold cross-validation was used to
select the appropriate number of neighbors. In the BPNN
model construction, the sigmoid activation function was
employed and the learning rate was set to 0.0001. *e

numbers of hidden layer nodes selected by BPNN running
10 times were 8, 29, 12, 24, 26, 26, 25, 21, 6, and 19 for the
upper leaf data set; 28, 23, 28, 23, 8, 23, 29, 28, 24, and 19 for
the middle leaf data set; and 23, 25, 3, 22, 20, 1, 1, 21, 26, and
21 for the lower leaf data set. To establish the SVM model,
the radial basis function (RBF) was used as the kernel
function, while the sigmoid function was selected as the
excitation function. Furthermore, a grid search algorithm
was used to optimize the penalty parameter and kernel
function parameter. In addition, the numbers of hidden
layer nodes selected by ELM running 10 times were 196, 179,
194, 131, 193, 166, 129, 124, 151, and 148 for the upper leaf
data set; 92, 153, 124, 162, 181, 124, 148, 195, 126, and 154 for
the middle leaf data set; and 121, 73, 171, 117, 93, 98, 194,
185, 186, and 142 for the lower leaf data set. All optimal
parameters of these four models are listed in Table 7.

*e classification accuracies of the three tobacco leaf data
sets predicted by the KNN, BPNN, SVM, and ELMmethods
are listed in Table 6. *e CNN models outperform the other
methods in terms of the maturity level judgment of tobacco
leaves. *e prediction accuracies of the CNN models for the
upper, middle, and lower tobacco leaf data sets are increased
by 14.47%, 12.11%, and 8.4% compared with those of the
KNN models, respectively. Compared with those of the
BPNN models, the classification accuracies of the CNN
models are jumped by 44.87%, 18.73%, and 12.1%, re-
spectively. *e prediction accuracies are largely improved,
which reflects the powerful feature extraction and learning
ability of the CNN model. Compared with those of the SVM
models, the classification accuracies of the CNN models for
the upper, middle, and lower tobacco leaf data sets are up by
4.86%, 6.69%, and 4%, respectively. In addition, SVM
models achieve better prediction accuracies than those of the
other three methods, possibly as the SVM maps input
vectors to the feature space and builds a hyperplane to
accomplish classification using a kernel function. What is
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Figure 4: Parameters tuning of CNN model: (a) convolutional kernel size, (b) batch size, and (c) epoch size.
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Figure 6: Loss function across epochs of CNN model: (a) upper leaf, (b) middle leaf, and (c) lower leaf.
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Figure 5: Discrimination accuracy across epochs of CNN model: (a) upper leaf, (b) middle leaf, and (c) lower leaf.

Table 5: *e prediction results (%) of convolutional neural networks running 10 times.

Data sets Sample sets Discriminant accuracy

Upper leaves Training set 99.75, 99.87, 99.75, 99.75, 100, 100, 100, 100, 100, 100
Testing set 95.86, 95.86, 96.15, 96.45, 95.86, 96.15, 96.45, 96.15, 96.45, 96.45

Middle leaves Training set 100, 99.87, 100, 99.74, 99.61, 99.08, 98.95, 99.34, 99.61, 99.34
Testing set 95.38, 94.77, 94.46, 94.77, 95.69, 95.69, 95.38, 95.69, 95.08, 95.08

Lower leaves Training set 99.12, 99.75, 99.75, 99.62, 100, 99.75, 99.75, 99, 99.5, 99.75
Testing set 96.49, 97.08, 97.37, 98.54, 97.66, 97.95, 96.2, 96.49, 97.37, 97.95
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more, the prediction results of the CNN models are better
than those of the ELM models with the classification ac-
curacies for the upper, middle, and lower leaf data sets
improved by 9.83%, 9.79%, and 5.19%, respectively. Overall,
the analysis and comparison confirm the excellent classifi-
cation ability of the CNNmodel to discriminate the maturity
levels of tobacco leaves. *is reveals that the superiority of
deep learning models with a high ability for feature ex-
traction and learning over shallow learning models.

4. Conclusions

In this study, the potential of NIR spectroscopy coupled with
a deep learningmethod to classify thematurity levels of fresh
tobacco leaves was investigated. NIR spectroscopy is a useful
tool to determine the internal and external qualities of to-
bacco leaves precisely and nondestructively. A simple 1D
CNN-based classification method with two convolutional
layer structures was designed to establish a discriminant
model for the spectroscopic data of fresh tobacco leaves.
Results of experimental analysis indicated that the CNN
models yielded high discriminant accuracies of 96.18%,
95.2%, and 97.31% for the upper, middle, and lower leaf data
sets, respectively, superior to those of the KNN, BPNN,
SVM, and ELM models. *e CNN method, which has a
strong feature extraction and learning ability, has a beneficial
effect on the classification accuracy. *us, CNN is a
promising alternative to traditional methods for maturity
level classification of tobacco leaves based on NIR spec-
troscopy.*e developed technique can provide discriminant
results without sample preparation procedures, which can
significantly help growers in terms of decisions regarding the
proper harvest time in the field. Further studies should be
carried out before the application on tobacco leaves har-
vested from a complex agricultural environment.
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