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To effectively develop the rare earth elements resources from the geothermal waters, it is essential to understand the volumetric
properties of the aqueous solution system to establish the relative thermodynamic model. In this study, densities of YCI; (aq) at the
molalities of 0.08837-1.60639 mol-kg™"' from 283.15K to 363.15K at 5K intervals and ambient pressure were measured ex-
perimentally by an Anton Paar digital vibrating-tube densimeter. Based on experimental data, the volumetric properties including
apparent molar volume (V) and the coefficient of thermal expansion of the solution (&) of the binary systems (YCl; + H,0) were
derived. The 3D diagram (m;, T, V) of apparent molar volumes against temperature and molality was plotted. On the basis of the
Pitzer ion-interaction model of electrolyte, the Pitzer single-salt parameters (8{°x, B\, and C}x) for YCI; and temperature-
dependence equation F(i, p, T)=a;+a,In(T/298.15) + a5(T-298.15) + a4/(620-T) + as(T-227) as well as their coefficients a;
(i=1-5) in the binary system were obtained for the first time. The values of Pitzer single-salt parameters of YCl; agree well with the
calculated values corresponding to the temperature-dependence equations, indicating that single-salt parameters and tem-
perature-dependent formula obtained in this work are reliable.

1. Introduction

Rare earth elements (REEs) are vital ingredients of modern
technologies, especially in energy, environmental protection,
digital technology, the nuclear industry, and medical ap-
plications. REEs are also an integral part of electronic devices
serving as magnets, catalysts, and superconductors, owing to
their chemical, catalytic, electrical, magnetic, and optical
properties [1-7]. What is more, in nuclear medicine, many
radioisotopes such as yttrium have been used in diagnostic
or therapeutic procedures to treat a wide range of diseases,
including cancer [8]. The continuously increasing demand

for yttrium has led to the high economic importance of
yttrium. Tibet is one of the famous geothermally active
regions, and the geothermal water resources with high
concentrations of rare earth elements are distributed widely
[9]. It is well known that thermodynamic properties such as
solubilities of phase equilibria and apparent molar volumes
at wide temperatures are essential to explore novel methods
for more effective and efficient extraction of yttrium and
provide information about the ion interactions. Therefore,
revealing the ion-interaction to construct a thermodynamics
model at multitemperatures for the binary system
(YCl; + H,O) is of great importance.
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TasLE 1: Comparison between the experimental (p®P) and the literature values (p™) for pure water at 101.325 kPa®,
T/K pP/g:cm ™’ p"/g-em™ [17] A (p)%"
279.15 0.99997 0.99994 0.0030
289.15 0.99896 0.99894 0.0020
299.15 0.99680 0.99678 0.0020
309.15 0.99369 0.99369 0.0000
319.15 0.98979 0.98979 0.0000
329.15 0.98520 0.98521 0.0010
339.15 0.97999 0.98001 0.0020
349.15 0.97422 0.97424 0.0021
359.15 0.96796 0.96796 0.0000

“Standard uncertainties u are u(T)=0.01 K, u(p)=5kPa, and u(p) for p is 1.4 mg-cm>. bA(p)%= 100 x llp “*P/p lie_qy),

As to the volumetric behaviors of YCI; aqueous so-
lutions, data reported in the literature [10, 11] were mainly
focused on 298.15K, even using the traditional pycno-
metric measurement method [11]. With the progress of
technology, the density measurement for the aqueous
solution at multiple temperatures with a vibrating-tube
densimeter is more convenient and accurate than that of
the pycnometric measurement [12-14]. However, up to
now, there are no data reported on the apparent molar
volumes at temperatures from 283.15K to 363.15K and
101.325 kPa. Hence, studying the volumetric properties of
the binary system (YCl; +H,0) at multitemperatures is
essential for utilizing rare earth elements from geothermal
water resources.

In this study, densities of YCl; aqueous solutions in
the range of 0.08837-1.60639 molkg ' from 283.15 to
363.15K and 101.325kPa were measured by an Anton
Paar digital vibrating-tube densimeter. The derived
properties of apparent molar volumes (Vy), partial molar
volumes (V ), and the coeflicients of thermal expansion of
the solution («) for YCl; aqueous solutions were obtained,
and their variation tendency against temperature and
molality have been discussed in detail. The Pitzer single-
salt parameters of YCl; at multitemperatures and tem-
perature-dependence equations were also obtained for the
first time.

2. Experimental

2.1. Materials. Extra pure reagent YCl;-6H,O (CAS:
10025-94-2) in 0.99999 in the mass fraction was obtained
from Aladdin Industrial Co., Ltd., without any further
purification. The fresh CO,-free doubly deionized water
(DDW) was produced by ULUP-II-10T (Chongging
Jiuyang Co., Ltd., China), with a conductivity less than
1x107*S:m™", and pH =6.60 at 298.15K was used in the
whole study.

2.2. Apparatus and Procedure. Stock solutions of YCl; were
prepared in the glove box filled with nitrogen gas (UNIlab
Plus, MBraun, Germany), in which precise YCl;-6H,0 and
DDW were weighted using the analytical balance (Mettler
Toledo, Swiss) with an uncertainty 0.2mg, followed by
vigorous shaking of the solution and then filtering through a
prewashed 0.2uym Nylon “low extractable” membrane

filtering unit. The stock solution concentration of YCl;
expressed in molality was determined by titrimetric analysis
using mercuric nitrate with uncertainty within 0.003 in the
mass fraction [15]. The concentration of Y>* can be obtained
via ion balance and evaluated through measurement by an
inductively coupled plasma optical emission spectrometer
(ICP-OES, Prodigy, Leeman Corporation, America) with an
uncertainty of +0.005 in mass fraction. Moreover, all the
aqueous solutions employed in experimental measurements
were prepared by mass dilution of the stock solution in the
nitrogen glove box and stored in glass bottles at 4°C in the
refrigerator.

All the density measurements for each solution were
completed within two days after the stock solution was
prepared. Densities of these solutions were measured
using an Anton Paar digital vibrating-tube densimeter
(DMA4500, Anton Paar Co., Ltd., Austria) with an un-
certainty of +1.4mg-cm™, and the densimeter has a
heating attachment (Anton Paar) that keep the temper-
ature fluctuations within +0.01 K. Before the measure-
ment, the densimeter was calibrated during each series of
measures with dry air and freshly DDW at 293.15 K under
atmospheric pressure. The results were 0.00120 g-cm ™ for
dry air and 0.99820g-cm™> for DDW, which agree well
with the values in the literature [16]. The reliability of the
density data was ascertained by making measurements of
DDW using the calibrated apparatus at a 10K interval
from 279.15 to 369.15 K and atmospheric pressure, and the
density values of pure water are given in Table 1, which
agree well with the data in the literature [17]. The max-
imum relative deviation is less than 0.003%. Finally, all
measurements for the densities of YCl; (aq) were con-
ducted at temperature intervals of 5K from 283.15 to
363.15K and atmospheric pressure.

3. Results and Discussion

3.1. Densities. Densities of YCl; aqueous solution against
molality and temperature were determined in triplicate, and
the results are given in Table 2.

Based on the experimental data in Table 2, a 3D diagram
of the density for the YCl; aqueous solution against tem-
perature and molality is shown in Figure 1. It was clearly
seen that the densities of YCl; aqueous solutions decreased
with the increasing temperature at constant molality.
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FiGgure 1: 3D diagram of the density of YCl; aqueous solution against temperature and molality at 101.325 kPa.

Nevertheless, at the same temperature, the density values of
YCl; aqueous solutions are increased indistinctively with the
increase of YCl; molality. The clear changing trend for
density data may be caused by the rise in solvent-solvent and
solute-solvent interactions. As the temperature increases,
the volume of the aqueous solutions increases, and the
density decreases. The density values at constant molality
have been fitted against (T'—273.15) by the least-squares
method.

p=A,+A0+A0 + AL, (1)

where p is the density (gcm™) of the solution;
0=(T-273.15)K, T is the absolute temperature, and A; is
the empirical constant. The relevant parameters and the
correlation coeflicients r related to the density-temperature
fit obtained by applying equation (1) are given in Table S1
(Supplementary Materials). The values of the correlation
coefficients (r) are close to 1.

According to the definition [18], the coefficient of
thermal expansion of the solution is expressed with the
following equations.

1oV 1(0p
“'V(a—T)p,m-‘;(a—T)Pm’ @
)
(a§>m = A, +24,0 + 3A,6%, 3)
1(0p 1 2
=— (L) =--{a,+24 A,0°)
a p<8T>pm P{ |+ 24,0 + 3A,6°} (4)

Based on the calculation using equation (4), the thermal
expansion « (K') values of YCl; aqueous solutions with
various molalities at different temperatures were calculated
and are given in Table 3. According to the calculated data,
the relation diagram of the thermal expansion coefficient («)
and the molality at temperature intervals of 5K from 283.15

to 363.15K is shown in Figure 2. It can be seen that the
thermal expansion coeflicient of YCI; aqueous solution is
increased with the increase of temperature at the constant
molality. With the rising of molality, the thermal expansion
coeficient increased obviously at T=(283.15-303.15) K,
almost unchanged at T=308.15K, and then decreased
slightly at T'=(313.15-363.15) K.

3.2. Apparent Molar Volumes. The apparent molar volumes
can be derived from the measured densities of pure water
and YCl; aqueous solutions. Their values are calculated with
the following equation [19]:

_ IOOOX(Pw_P)+%

V_ >
P (mixpyxp)  p

(5)
where p,, and p are the densities (g-cm™>) of the pure water
and YCl; aqueous solutions, respectively; m; is the molality
(m01~kg_1) for YCI; aqueous solution, and M, is the molar
mass (g-mol™') of YCls. The calculated apparent molar
volumes are given in Table 4, and the 3D surfaces (m;, T, V)
are shown in Figure 3. It can be seen that the apparent molar
volumes of YCl; aqueous solutions increased with the in-
crease of molality at the constant temperature. With the
increasing temperature, the apparent molar volumes in-
crease when the temperature is varied within
283.15-308.15K, and the variation tendency is opposite
when the temperature is higher than 308.15K. It can be
concluded that the ionic association of yttrium and chlorine
ions is strong at low temperatures [20].

3.3. Partial Molar Volumes of Solute. The relationship be-
tween the apparent molar volume, V,, (m;,, T), and the partial
molar volume can be expressed.

Vy=Vs+m; Ve , (6)
¢ ¢ i\ om o

i
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FIGURE 2: The coefficient of thermal expansion of YCl; aqueous solutions against temperature and molality at 101 kPa.

where V, refers to the apparent molar volume (cm®mol™),
m; is the molality (mol‘kg’l) for YCls, and (8V¢/ami) pr€an
be obtained from equations (7) and (8).

V= By+Bym]”* + Bym; + Bym]” + Bym},  (7)
oV 1 3
¢ -1/2 12
(a—,-)pj = EBlmi +B, + EB3mi +2B,m;, (8)

where B; is the empirical constant for fitting apparent molar
volume and molality at invariable temperature by the least
squares, and the values of the parameters with the corre-
lation coeflicients r are presented in Table S2.

Substitution of the above equation into equation (6)
yields

_ v,
V¢ =V¢+mi a—rnl o1

1 3
=V, + EBlm}’2 +B,m; + E133m§’2 +2B,m’.

(9)

The calculated values for partial molar volumes of solute
are given in Table 5 and shown in Figure 4. It shows that the
partial molar volumes of YCI; are increased with the increase
of molality at the constant temperature.

3.4. Pitzer Parameters of YCI3. Pitzer’s electrolyte solution
theory was developed based on ion-interaction and statis-
tical mechanics, and it can accurately express the thermo-
dynamic properties of the aqueous electrolyte solution [21].
The apparent molar volumes of YCl; were calculated using
the following Pitzer equation [22].

\% AY
V= % - ‘;—":' + v|zMzX|<%>
In{(1+6I'")/(1+ b))} + 2v v RT

: {miBzvv[x (m;) —m, By (m,) + VMZMCJV\/IX(””;'2 - mi)}

(10)

In the case of B} y (m;), the ionic strength dependence
of a solution can be imposed as follows.

By = i + Bk 9 (aVT), (11)
g(t):z[l—(l+:2)exp(—t):|, (12)

where M and X are Y>* and CI™, m; is the molality (mol-kg’l)
of the aqueous YCl; solutions, given in Table 4, v, is the
volume of 1kg pure water, v(,, , is the volume of m,, in which
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FIGURE 3: Apparent molar volumes of YCl; aqueous solutions against temperature and molality.

m,=1.00molkg"', n,=1.00mol, which is the number of
moles of solute in this quantity of solution, z,, and zy are the
number of ionic charges of the positive and negative ion in
electronic units, for YCl; (zp;=3 and zx=1), v),; and vy are
the numbers of M and X ions formed by stoichiometric
dissociation of one molecule of MX, and v = v, + vy, for
YCl; (vyy =1, v =3, and v = 4), A" is the Debye-Hiickel
limiting law slope for the apparent molar volume [23, 24],
ag, =2.0kg"*mol"?, b=1.2kg"*>mol '3 I is the total ionic
strength given by I= (1/2) Y m;z2, R=8.314472 cm”MPa
K 'mol™! is the gas constant, T is a temperature in
K. Pitzer’s parameters B}y (m;) account for short-range
interactions between M and X, and the third virial coefficient
C}x means for triple ion interactions.

The Pitzer ion-interaction parameters are expressed as
functions F (i, p, T).

O = F(0, p, T), (13)
W =F(1,p,T), (14)
Cux = F(2,p,T), (15)

with F (i, p, T) represented as [23]

. T
F(l, p, T) =a;ta, ln<m> +a; (T - 29815)
(16)
4 as

+ + ,
620-T T —227

where T is a temperature in Kelvin, p is a pressure in kPa,
and g; are the polynomial coefficients for equation (16). All
parameters were calculated by the IJAPWS-95 for the ther-
modynamic properties of water and the international for-
mulation for the dielectric properties of water [25].

The available experimental data were fitted by the least-
squares method to evaluate single-salt parameters by Pitzer
ion-interaction theory. Based on the apparent molar vol-
umes for (YCl; + H,O) from 283.15 to 363.15K in Table 4,
the single-salt parameters for YCI; at each temperature were
fitted based on equations (10)-(12) and are given in Table 6.
The multiple correlation coefficients (r) were almost equal to
1, and the mean standard deviations (o) were within
+0.0359. The temperature correlation coefficients (a;) were
fitted based on equations (13)-(16) and are given in Table 7.
The deviation of single-salt parameters (8%, BLY, and
C}x) for YCI; between all parameterization data obtained by
the Pitzer model and temperature-dependence data obtained
by equation (16) is within +0.022, which indicated that the
temperature-dependence equation (16) and the temperature
correlation coefficients fitted in this work are reliable.

4. Conclusions

The volumetric properties of the (YCl;+H,0) aqueous
solution system from 283.15K to 363.15K at 101 kPa are
investigated for the first time. Apparent molar volumes (V),
partial molar volumes (V), and the coefficient of thermal
expansions of the solution («) of YCI; aqueous solution were

derived. In addition, the Pitzer single-salt parameters (ﬁlf,([))){,
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FIGURE 4: Partial molar volumes of the solute of YCl; aqueous
solutions against temperature and molality.

TaBLE 6: Pitzer single-salt parameters of YCl; at different
temperatures®.

T/K 10489 108" 105CO r o

283.15  2.5838  —2.4825  0.0482  1.0000  —0.0067
28815  2.0774  -22300 02620  1.0000  —0.0066
29315 17398  -2.4362 04361  1.0000  —0.0067
298.15  1.5464  -2.6843  0.4685  1.0000  —0.0060
30315  1.2550  -2.7437  0.6637  1.0000  —0.0019
30815  1.0743  -2.8596  0.7479  1.0000  —0.0011
31315 09199  -3.0562  0.8190  1.0000  —0.0010
31815 07690  —3.2449 09133  1.0000  —0.0039
32315  0.8249  -3.7780  0.7544  1.0000  0.0044
32815 07931  —-4.0840  0.7145  1.0000  0.0042
33315 0.7999  -4.5500  0.6488  1.0000  0.0168
33815 07361  -4.7809  0.6639  0.9999  0.0128
34315 07180  -52664  0.6541 09999  0.0119
34815  0.6875  -57358  0.6704  0.9999  0.0359
35315  0.6592  —6.0450  0.6629  0.9999  0.0328
35815 05329  —6.2335 07707  0.9999  0.0329
36315 01450  -5.9579 11769  0.9999  0.0310

“r, multiple correlation coefficient; ¢, mean standard deviation.

TaBLE 7: The temperature-dependence correlation coeflicients of
Pitzer parameters of YCl,.

Parameters Correlation coefficients
a, a, 10° as ay as
©v 0.03237 -0.10714 0.43830 -10.07712 -0.06494
[3(1)" —0.62129 2.17081 -8.73039 189.98924 2.02242
CcOw -0.00371 0.01234 -0.05029 1.15291  0.00969

Journal of Chemistry

B, and C}x) of YCI; were parameterized from the Pitzer
ion-interaction model, the temperature-dependence equa-
tion was established, and its correlation coefficients (a;) were
obtained for the first time.
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