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Assessing the ecotoxicity of pharmaceuticals is of urgent need due to the recognition of their possible adverse effects on nontarget
organisms in the aquatic environment. The reality of ecotoxicity data scarcity promotes the development and application of
quantitative structure activity relationship (QSAR) models. In the present study, we aimed to clarify whether a QSAR model of
ecotoxicity specifically for pharmaceuticals is needed considering that pharmaceuticals are a class of chemicals with complex
structures, multiple functional groups, and reactive properties. To this end, we conducted a performance comparison of two
previously developed and validated QSAR models specifically for pharmaceuticals with the commonly used narcosis toxicity
prediction model, i.e., Ecological Structure Activity Relationship (ECOSAR), using a subset of pharmaceuticals produced in China
that had not been included in the training datasets of QSAR models under consideration. A variety of statistical measures
demonstrated that the pharmaceutical specific model outperformed ECOSAR, indicating the necessity of developing a specific
QSAR model of ecotoxicity for the active pharmaceutical contaminants. ECOSAR, which was generally used to predict the
baseline or the minimum toxicity of a compound, generally underestimated the ecotoxicity of the analyzed pharmaceuticals. This
could possibly be because some pharmaceuticals can react through specific modes of action. Nonetheless, it should be noted that
95% prediction intervals spread over approximately four orders of magnitude for both tested QSAR models specifically
for pharmaceuticals.

1. Introduction

It is evident that humans benefit a lot from pharmaceuticals,
a class of active chemicals that can interact with biological
receptors in humans. However, also because of their reactive
property [1], the dark side of the coin is that they could pose
potential ecological threats to nontarget organisms after use
and release into the environment [2, 3] because nontarget
species like fishes could share similar biological receptors to
drugs to humans [4-8]. Demonstrating and assessing the
ecotoxicological relevance of the presence of pharmaceuti-
cals as emerging contaminants in the environment is of
increasing concern during recent years [2, 9-13].

To help understand the potential risk of pharmaceuticals
to nontarget organisms, the first step is to determine their
occurrence levels in various environmental matrices. Owing

to the development of analytical technology for the detection
of extremely low concentrations of pharmaceuticals, in-
tensive monitoring has been conducted worldwide especially
during recent decades [14-19]. While there is still a need for
extensive monitoring practices considering the various
temporal and spatial scales [14], it is a more urgent demand
of a high amount of measured ecotoxicological data that are
equivalently salient to assess the environmental risk of the
identified and potential pharmaceutical contaminants.
Unfortunately, these kinds of ecotoxicity data for
pharmaceuticals are highly scarce at present because the tests
for assessing chemical ecotoxicity are usually costly, labor-
intensive, and time-consuming. When the measured data
are not available, Quantitative Structure Activity Relation-
ship (QSAR) models could offer an effective alternative
[20-22]. The QSAR model generally describes the
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relationship between structural features and a toxicity
endpoint, which is developed and validated by a rigorous
procedure using the existing measured data [23, 24]. With a
validated QSAR model, the toxicity of a chemical without
measured data can be predicted. QSAR models have been
extensively employed to estimate the hazard of pharma-
ceuticals, especially under the context of ranking and pri-
ority screening of highly risky candidates for further study
and monitoring [25-30].

In the existing applications of QSAR models, the
Ecological Structure Activity Relationships (ECOSAR)
model was among the most commonly used one for esti-
mating the ecotoxicity of pharmaceuticals [10]. ECOSAR is
a well-established modelling tool based on the octanol-
water partition coefficient (log Kow) by United States
Environmental Protection Agency. This log Kow-based
QSAR model worked well for predicting nonspecific nar-
cosis toxicity that is a function of the tendency to dissolve
into membranes. However, it could be a problem for
pharmaceuticals. On the one hand, pharmaceuticals are
complex chemicals with multiple functional groups, which
will lead to uncertainty when designing an appropriate
chemical class [21]. On the other hand, pharmaceuticals are
always thought to cover a wide range of toxic mechanisms.
Hence, specific modes of action (MOA) could be expected
when they interact with nontarget organisms [10, 31],
possibly making the narcotic toxicity prediction model
inaccurate. Madden et al. [32] pointed out that toxicity
predictions by ECOSAR for pharmaceuticals should be
explained with caution, and the applicability domain (AD)
should be evaluated carefully, considering the fact that
ECOSAR was developed based on a dataset consisting of
mainly industrial chemicals of simple structure with only a
single functional group.

Recently, some authors argued that it is of necessity to
develop the QSAR model of ecotoxicity specifically for
pharmaceuticals as a substitute to ECOSAR, considering
their special properties. As a result, some of QSAR
models have been reported in literature [33-36]. In
particular, Tugcu et al. [34] developed a QSAR model
(hereafter called the “Tugcu’s model”) specifically for
pharmaceuticals to estimate the acute toxicity to fish
using multiple molecular descriptors. They concluded
that their model could provide better predictions of
toxicity than ECOSAR. In another study conducted by
Sangion and Gramatica [33], QSAR models (hereafter
called the “Sangion’s model”) of acute toxicity to three
trophic levels of aquatic organisms were developed. The
comparison of their model results with predictions ob-
tained by using ECOSAR showed that ECOSAR was also
outperformed. Nonetheless, their comparisons were
limited to a small subset of pharmaceuticals, and more
work should be done to further verify whether the better
performance of QSAR models specifically for pharma-
ceuticals is solid.

The aim of the present study is further to clarify whether
a specific QSAR model is indispensable for the accurate
prediction of the ecotoxicity of pharmaceuticals. To this end,
we predicted the ecotoxicity of a totally new set of
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pharmaceuticals for which the measured data are available,
by using two externally validated QSAR models (i.e., Tugcu’s
model and Sangion’s model) and ECOSAR. And then, the
predictive ability of each pharmaceutical specific QSAR
model was compared with that of ECOSAR, respectively, to
demonstrate the goal of the present study. Possible factors
affecting the performance of QSAR models were also
discussed.

2. Methods

2.1. Description of QSAR Models Specifically for
Pharmaceuticals. Two validated QSAR models, specifically
for pharmaceuticals (i.e., Sangion’s model and Tugcu’s
model), were selected for the comparison of predictive
ability with ECOSAR. Sangion’s model was integrated in a
well-defined and user-friendly software package, QSARINS
(v.2.2.2) [37, 38]. It was developed for toxicity prediction of
pharmaceuticals in three different endpoints, and species
were selected: growth rate inhibition at 72h (EC50) in
Pseudokirchneriella subcapitata, immobilization at 48h
(EC50) in Daphnia magna, and mortality at 96 h (LC50) in
Pimephales promelas. Tugcu’s model was developed to
predict the lowest 96-hour mortality (LC50) in various
freshwater fish species. Details of the description for both
models can be found in Sangion and Gramatica [33] and
Tugcu et al. [34].

2.2. Collection of Measured Ecotoxicity Data. An initial list
containing 663 compounds was compiled that consists of
pharmaceuticals produced during 2011-2015 in China
[39-43], by excluding vitamins, electrolyte solution addi-
tives, biochemical pharmaceuticals, as pharmaceuticals
with a molecular weight over 2000 Da. The organometallics
and inorganic compounds were also excluded in the initial
list. Basic information was collected, including the
Chemical Abstract Service Register Number (CASRN),
molecular weight, molecular form, and therapeutic group.
The CASRN and name of pharmaceuticals were cross
validated by searching in multiple sources, including
PubChem (https://pubchem.ncbi.nlm.nih.gov/) and Sci-
Finder (https://scifinder.cas.org/), to assure the accurate
citation of the CASRN. We searched measured ecotoxicity
data in the ECOTOX database (https://cfpub.epa.gov/
ecotox/) for the 663 pharmaceuticals in terms of
CASRN, endpoints, and species following the purpose of
this study. For the Tugcu’s model, measured data of LC50
for various freshwater fish species were collected. In case of
multiple measured toxicity values for the same specific
endpoint, the lowest value was selected to maintain con-
sistency with the data selection criteria used in model
development.

To make an independent evaluation, pharmaceuticals
that have measured toxicity data but had not been in-
cluded in the training set of the tested QSAR models were
selected. For comparison of predictive ability of Sangion’s
model with ECOSAR, a total of 41 toxicity data were
identified, including 10 EC50s of Pseudokirchneriella
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subcapitata, 27 EC50s of Daphnia magna, and 4 LC50s of
Pimephales promelas. Regarding the case of Tugcu’s
model versus ECOSAR, we identified 43 LC50s of various
fish species that can be used for comparison. All the data
were compiled in Tables S1 and S2. The negative logarithm
of the measured LC50 or EC50 values (pT) was calculated
on a molar basis and used for comparison with the
predicted ones.

2.3. Generation of Predicted Ecotoxicity Data. Regarding
Sangion’s model, the structures of pharmaceuticals with
measured data were sketched using Spartan 16 (v 2.0.7) and
geometrically optimized by the semiempirical AM1 method.
The predicted ecotoxicity data were generated by using
QSARINS, in which the theoretical molecular descriptors
were calculated by the PaDEL-Descriptor software (v 2.21).
The leverage approach was used to check whether a given
compound is within the scope of AD on the basis of the
molecular descriptor space defined according to the training
set during model development. The leverage value was
automatically calculated by the QSARINS.

In the case of Tugcu’s model, the structures of phar-
maceuticals were also drawn using the Spartan 16 software.
The conformation was optimized at the lowest energy by
employing the semiempirical PM3 method. The molecular
descriptors were calculated using the Dragon software (v
7.0.10), the same one as that by Tugcu et al. [34]. The
predicted pTs were calculated using the established linear
model with the reported molecular descriptors. The leverage
approach was used to determine if a tested pharmaceutical is
within the scope of AD of the developed model.

ECOSAR incorporated in EPI Suite (v 4.11) was run for
the narcotic toxicity prediction by using CASRN or SMILES
as inputs. As pharmaceuticals are not a traditional class of
structurally or functionally similar compounds, ECOSAR
would allocate some pharmaceuticals to more than one class,
and consequently, there is more than one result for each of
them. We took baseline toxicity predictions that handled
pharmaceuticals as neutral organic, considering the goal of
the present study. The tested pharmaceuticals were manually
checked if they are inside the AD by checking log Kow
values. The results showed that all the tested pharmaceuticals
were in the AD of ECOSAR.

2.4. Measure of Predictive Ability. To demonstrate whether
the predictive ability of the tested QSAR models, a series of
summary statistics were calculated for comparison: Pearson
correlation coefficient, differences between predicted and
measured pT (referred as minimum, mean, and maximum
absolute residual, root of mean squared residual (RMSE),
and calculated as equations (1)-(4)), and the percentage of
pharmaceuticals with differences between predicted and
measured pT was less than factors of 2, 5, 10, 100, and 1000.
A linear regression analysis of predicted and measured pT
was conducted, and the 95% prediction intervals were also
calculated. The statistical analysis was accomplished in
Microsoft Excel 2016.

minimum absolute residual (log units) = min|pT; — fﬁ“i|,

(1)

1 & —
mean absolute residual (log units) = ” Z | pT; - pT,-|, (2)
i1

maximum absolute residual (log units) = max|pT; — ﬁi|,
(3)

n

1 — \2
RMSE =~ Y (pTi-pT), (4)
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where pT; and pT; are the measured and predicted values for
negative logarithm of the LC50 or EC50.

3. Results

3.1. Sangion versus ECOSAR Model. Statistics characterizing
the predictive ability of Sangion’s and ECOSAR models are
summarized for comparison in Table 1. It is evident that the
pharmaceutical specific model, Sangion’s model, was more
able to predict the toxicity trend than the generalized
narcotic toxicity prediction model. The predictive ability of
Sangion’s model significantly surpassed ECOSAR no matter
which parameter was used as a metric. Sangion’s model,
which is specific for pharmaceuticals, can give a prediction
with uncertainty lower than two orders of magnitude for
over 80% of the tested pharmaceuticals, outperforming that
of ECOSAR (approximately 60%). If considering only
pharmaceuticals in AD, this variable was further improved
to around 95%.

For predictions produced by ECOSAR, high RMSE (2.7
log unit, Table 1) was observed in the present study, which is
in accordance with [33]. However, our application of San-
gion’s model to a new set of pharmaceuticals showed an
RMSE of 1.4 log unit (Table 1) that is significantly higher
than that (0.6 log unit) applied to the prediction set during
model development. This could be attributed to a few in-
fluence factors that will be discussed later.

The better performance of Sangion’s model is also clearly
demonstrated in Figure 1. Narrower 95% prediction inter-
vals were found for Sangion’s model, while the 95% pre-
diction intervals were approximately eight orders of
magnitude wide for ECOSAR. Furthermore, the regression
analysis showed that Sangion’s model in general under-
estimated the toxicity of the most toxic pharmaceuticals
(Figure 1(a)), while the baseline toxicity model tended to
underestimate the toxicity of most pharmaceuticals
(Figure 1(b)).

3.2. Tugcu versus ECOSAR Model. Similarly, the results
showed that Tugcu’s model outperformed ECOSAR, al-
though a slightly higher Pearson correlation coefficient was
obtained for ECOSAR than Tugcu’s model (Table 2).
Nonetheless, rest of the statistics clearly indicated the su-
periority of Tugcu’s model to ECOSAR. In this application,
only three pharmaceuticals that have measured toxicity data
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TABLE 1: Summary statistics for performance comparison of Sangion’s model versus ECOSAR.

Sangion’s model

Measure of predictive ability ECOSAR
Whole dataset In AD

Number of pharmaceuticals 41 36 41
Pearson correlation coefficient 0.422 0.483 0.272
Root mean square error, RMSE (log units) 1.630 1.422 2.744
Mean absolute residual (log units) 1.190 1.008 1.825
Minimum absolute residual (log units) 0.025 0.025 0.084
Maximum absolute residual (log units) 5.023 5.023 9.858
% pharmaceuticals <factor of 2 12.2 13.9 19.5
% pharmaceuticals <factor of 5 36.6 41.7 341
% pharmaceuticals <factor of 10 51.2 58.3 48.8
% pharmaceuticals <factor of 100 85.4 94.4 61.0
% pharmaceuticals <factor of 1000 92.7 94.4 85.4

Predicted pT (log mmol/L)

Measured pT (log mmol/L)
(a)

-4 -2 0 2 4 6 8

Predicted pT (log mmol/L)

-5 -3 -1 1 3 5 7 9
Measured pT (log mmol/L)
(b)

FIGUure 1: QSAR model predictions versus measured toxicity. The best-fit linear regression and 95% prediction intervals are shown.

(a) Sangion’s model and (b) ECOSAR.

TABLE 2: Summary statistics for the performance comparison of Tugcu’s model versus ECOSAR.

Tugcu’s model

Measure of predictive ability ECOSAR
Whole dataset In AD

Number of pharmaceuticals 43 40 43
Pearson correlation coeflicient 0.345 0.386 0.442
Root mean square error, RMSE (log units) 1.600 1.608 2.486
Mean absolute residual (log units) 1.144 1.133 1.694
Minimum absolute residual (log units) 0.031 0.031 0.088
Maximum absolute residual (log units) 5918 5918 8.983
% pharmaceuticals <factor of 2 20.9 20.0 14.0
% pharmaceuticals <factor of 5 46.5 47.5 30.2
% pharmaceuticals <factor of 10 55.8 57.5 41.9
% pharmaceuticals <factor of 100 83.7 82.5 76.7
% pharmaceuticals <factor of 1000 95.3 95.0 88.4

were out of the AD of Tugcu’s model. No obvious im-
provement in model performance was observed by
restricting the dataset to include only pharmaceuticals in the
AD.

Using the mean absolute residue (MAR) as a metric,
Tugcu et al. [34] found in their application that their model
and ECOSAR had MAR of 0.348 and 0.872, respectively,
indicating that average difference between predicted and
measured toxicity was less than one order of magnitude for
both models. In contrast, in the present application, the

pharmaceutical specific model had a MAR of 1.14, indicating
that the mean difference was slightly more than one order of
magnitude (Table 2).

The better performance of Tugcu’s model over ECOSAR
was also demonstrated by the significantly narrower 95%
prediction intervals as shown in Figure 2. Again, the 95%
prediction intervals for predictions of ECOSAR were spread
nearly eight orders of magnitude. It is also found from
Figure 2 that Tugcu’s model underestimated the toxicity for
the most toxic compounds but overestimated the toxicity for
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FIGURE 2: QSAR model predictions versus measured toxicity. The best-fit linear regression and 95% prediction intervals are shown.

(a) Tugcu’s model. (b) ECOSAR.

the least toxic compounds. And, the underestimation still
existed for most pharmaceuticals when using ECOSAR to
predict fish toxicity.

It should be noted that Tugcu’s model was developed
using ecotoxicity data of all fish species, which could in-
fluence the accuracy of model predictions. And, this was
demonstrated to some extent when we did an intercom-
parison between the two pharmaceutical specific models. It
is obvious that the predictive ability of Sangion’s model was
little better than that of Tugcu’s model (Tables 1 and 2)
although the intercomparison is not totally reasonable as
they are applied to different pharmaceuticals.

4. Discussion

Our results clearly demonstrated that a better performance
was observed for either Sangion’s or Tugcu’s model and the
QSAR model specifically for pharmaceuticals, compared to
the generalized baseline toxicity prediction model of
ECOSAR. The present study further adds evidence that we
need a QSAR model of ecotoxicity specifically for
pharmaceuticals.

Not surprisingly, the model with more descriptors and
sophisticated statistical methodology had a better overall
performance. ECOSAR have been proved to be a valid tool
for the prediction of ecotoxicity of the relatively simpler
chemicals, but it could be problematic when being applied to
predict the toxicity of chemicals with complex structures and
functional groups as those of pharmaceuticals. In other
words, the use of too simple equations cannot deal with the
complexity of the phenomenon. Assigning a pharmaceutical,
which is chemically complex, to one chemical class, means
that only one functional subgroup is considered as re-
sponsible of the activity, and this can even be false. Modern
QSAR models developed and trained on multiclass chem-
icals are by definition better able to work with more
functional groups.

In the present study, the toxicity was generally
underestimated by ECOSAR (Figures 1(b) and 2(b)). To
further illustrate the predictive ability of ECOSAR, we also

considered the lowest predictions in ECOSAR (worst
case) in both comparisons. While the average difference
between predicted and measured toxicity decreased by
approximately 0.3 log unit, the ECOSAR still under-
estimated the toxicity for nearly half of the tested phar-
maceuticals (Figures S1 and S2 in the Supplementary
Materials).

The underestimation could be due to that the baseline
toxicity, also known as the minimum toxicity, could not
reflect the real ecotoxicity, and a specific MOA could exist
for those reactive pharmaceuticals [44, 45]. Some authors
pointed out that a specific MOA for pharmaceuticals could
be indicated by the poor correlation between the acute
toxicity and log K, [10, 31]. However, others have argued
that log K, is a good predictor for most pharmaceuticals,
indicating that they are the narcotic [46]. Sanderson and
Thomsen [47] further concluded that a nonspecific MOA
was suggested by the acute to chronic ratio (ACR) lower
than 25 for nearly 70% of analyzed pharmaceuticals.
However, it is complicated to recognize the true MOA of
pharmaceuticals at present, especially for chronic MOA.
The accuracy of using ACR to help determine the MOA of a
compound heavily relied on the accurate determination of
chronic toxicity. However, lacking high quality chronic
data is indisputable, and therefore, high ACRs may also
indicate a narcosis and conversely low ACRs may not
necessarily indicate a nonspecific MOA [48]. Moreover, the
standardized tests are designed for tests of mortality, which
may overlook the sublethal effects even if there is any [46].
We have derived the threshold for two pharmaceuticals in
different therapeutic groups and found that the traditional
endpoints related to population mortality could not be the
most sensitive one [49]. Adverse effects may occur via a
possibly specific MOA that an organism would die from for
a long run. It is found that, over two years, chronic ex-
posure to 17a-ethylestradiol at extremely low concentra-
tions (about 5ng/L) led to a collapse of fathead minnow
populations in a lake [44]. Further complicating this is that
even for the same compound, MOAs may vary between
organisms, at different life stages and at different exposure



concentrations [50], all of which would lead to uncer-
tainties in ACRs’ calculation.

Although the pharmaceutical specific QSAR models
outperformed that of ECOASR, it should be noted that the
95% prediction intervals were approximately four orders of
magnitude wide for both Sangion’s and Tugcu’s models
(Figures 1 and 2).

Moore et al. [21] evaluated the performance of six QSAR
packages that predict acute toxicity to fish for industrial
chemicals and found even the best package which produced
variation of four orders of magnitude, as our assessment for
pharmaceuticals’ toxicity prediction by the specific QSAR
models. It is unclear if this is a systematic error that is caused
by the existing uncertainty in measured toxicity data. We
made a perfect assumption for the measured toxicity values
that they are accurate, precise, and unbiased reflection of the
true toxicity of pharmaceuticals to the aquatic organisms.
Nonetheless, this is impossible considering that the mea-
sured toxicity data were determined under different testing
protocols. Therefore, large residuals can be partly attributed
to uncertainty that inherently exists in measured data.

On the other hand, it should also be kept in mind that no
perfect model has ever been established. We examined the
outlier substances that were defined as those substances that
had differences between model predictions and measured
values greater than 100 folds. Regarding Sangion’s model, two
outlier substances were identified: doramectin and niclosa-
mide. They are both anticestodals that were not included in the
training set of Sangion’s model. Seven out forty-one substances
were identified as outliers for Tugcu’s model. The outlier
substances include the antineoplastic drug, the estrogen, and
the anticestodal drug. Again, they were rarely included in the
training set during model development. And, estrogen is a well-
proven contaminant that has specific MOA [51]. Therefore,
limited coverage of pharmaceuticals of different therapeutic
groups could be one of potential aspects influencing the
performance of the pharmaceutical specific model.

It should be noted that the outlier substances were in the
AD of the model, which means that the present molecular
descriptors integrated in the model could not totally explain
the toxicity variances for pharmaceuticals of different
therapeutic uses. The specific QSAR models are “average”
statistical results covering limited kinds of pharmaceuticals.
They are still MOA-mixed QSAR models considering the
fact that the pharmaceuticals of different therapeutic uses
could possess different MOAs. It is hard to foresee the
performance of a future developed model covering a wider
range of pharmaceuticals belonging to various therapeutic
groups. Either it will cover more predictors or will it be split
to different models based on MOA to improve the model
performance. The MOA-based QSAR has been advocated
for a long time [52, 53]. However, there are great challenges
to thoroughly understand the MOA of pharmaceutical’s
toxicity to nontarget organisms. As for pharmaceuticals, it
has been argued that the mammalian pharmacology data
could be potentially used to help understand their MOA
[54]. The MOA-based QSAR model specifically for phar-
maceuticals would be one of the approaches for an improved
ecotoxicity prediction of these chemicals.

Journal of Chemistry

5. Conclusions

QSAR models have been recognized the most common
tools for complementing the scarcity of toxicity data in
scientific research and management. Our results showed
that the generally used baseline toxicity prediction model,
ECOSAR, usually underestimated the toxicity of phar-
maceuticals in the present practice. The better perfor-
mance of both Sangion’s and Tugcu’s models clearly
demonstrated the necessity for QSAR models specifically
for pharmaceuticals with complex structures and multiple
functional groups. Modern QSAR models that are able to
work with more functional groups are urgently needed.
However, there is also a need for improving the perfor-
mance of the present pharmaceutical-specific QSAR
models either by covering a large pool of pharmaceuticals
in different therapeutic groups or finally by developing an
MOA-based model with the aid of existing pharmacology
data.
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