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Objectives. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) throughout the world, and the
identification of novel biomarkers via bioinformatics analysis could provide research foundation for future experimental
verification and large-group cohort in DN models and patients. Methods. GSE30528, GSE47183, and GSE104948 were
downloaded from Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs). The difference of
gene expression between normal renal tissues and DN renal tissues was firstly screened by GEO2R. Then, the protein-protein
interactions (PPIs) of DEGs were performed by STRING database, the result was integrated and visualized via applying
Cytoscape software, and the hub genes in this PPI network were selected by MCODE and topological analysis. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to determine the
molecular mechanisms of DEGs involved in the progression of DN. Finally, the Nephroseq v5 online platform was used to
explore the correlation between hub genes and clinical features of DN. Results. There were 64 DEGs, and 32 hub genes were
identified, enriched pathways of hub genes involved in several functions and expression pathways, such as complement binding,
extracellular matrix structural constituent, complement cascade related pathways, and ECM proteoglycans. The correlation
analysis and subgroup analysis of 7 complement cascade-related hub genes and the clinical characteristics of DN showed that
C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU may participate in the development of DN. Conclusions. We confirmed that
the complement cascade-related hub genes may be the novel biomarkers for DN early diagnosis and targeted treatment.

1. Introduction

Diabetic nephropathy (DN), the most common microvascu-
lar complication of diabetes, is becoming the leading cause of
ESRD worldwide [1]. The typical clinical features of DN con-
sist of the decreased glomerular filtration rate and persistent
proteinuria [2]. Currently, there are several pathways
reported to be involved in the pathogenesis of DN, including
the activation of polyol and protein kinase C (PKC) pathway
[3], the generation of advanced glycation end products
(AGE) [4], and intraglomerular hypertension caused by glo-

merular hyperfiltration [5]. In addition, microinflammation
and subsequent extracellular matrix (ECM) pathways are
also involved in the progression of DN [6]. Furthermore,
the complement system is reported to involve in the develop-
ment of DN but mostly focused on the lectin pathway [7, 8].
There are few studies aimed to explore the potential signifi-
cance of the classic and alternative complement pathways
in the pathogenesis of DN at the transcriptional level [9].
However, the reported studies of these complement path-
ways are not comprehensive and detailed and other pathways
of the complement system as well as their clinicopathological
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relevance with DN are still poorly understood. Taking
together, the pathogenic and molecular mechanisms of DN
have not been elucidated comprehensively yet, the prevalence
rate of DN is high, treatment is difficult, and prognosis is
poor [10, 11]. Therefore, new diagnostic biomarkers and
novel therapies of DN should be further studied that will be
beneficial for improving the clinical prognostic of DN.

Genome-wide transcriptome analysis using microarray
and bioinformatics technology enable the identification of
biomarkers for disease progression and gain insights into
the disease pathogenesis and molecular classification [12,
13]. With the wide application of genome transcriptome
analysis, a large amount of core slice data has been produced
and stored in a public database, including the GEO database
[14]. Recently, somemicroarray data analyses about DN have
been carried out, and numerous differentially expressed
genes (DEGs) have been identified. Researchers have used
microarray data from DN models of different species to
determine molecular mechanisms and genetic factors
involved in DN [15, 16]. Previous bioinformatics analyses
using human DN gene chip data (GSE47183) from the
GEO database found that the VSIG4, CD163, C1QA,

C1QB, MS4A6A, COL6A3, COL1A2, CD44, FN1, NPHS1,
WT1, PLCE1, TNNT2, TNNI1, and TNNC1 genes played
important roles in DN progression through ECM-receptor
interaction, PI3K-Akt signaling pathway, focal adhesion,
proteoglycans in cancer, and complement and coagulation
cascades [17]. Yang et al. [18] identified hub genes associated
with DN using GSE30528 chip data, including VEGFA,
ITGA3, ITGB5, COL4A3, COL4A5, CBLB, and CCL19. In
addition, the key miRNAs related to DN were predicted
based on the hub genes, including miR-200b/c, miR-
29a/b/c, miR-25, miR-27, miR-23, miR-181, miR-17, miR-
506, and miR-124a. All these genes were mainly enriched in
the ECM-receptor interaction and PI3K/Akt signaling path-
ways to initiate the pathogenesis of DN [18]. Liu et al. [19]
carried out a weighted gene coexpression network analysis
of GSE104948 chip data and discovered that FCER1G played
a crucial role in the pathogenesis of DN.

In this study, we reanalyzed three microarray datasets,
GSE30528, GSE47183, and GSE104948; key biomarkers were
identified by selecting the significant differentially expressed
genes (DEG) between DN and normal glomerular samples.
Then, biological processes and signaling pathways that
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Figure 1: A flow chart based on an integration strategy of multiple-microarray analysis.
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participated in DN will be explored on basis of DEGs. The
pathogenesis of DN was studied by GO and KEGG pathway
enrichment as well as PPI network analysis. Additionally, the
Nephroseq v5 online platform was used to analyze correla-
tions and to perform subgroup analysis among the hub genes
and clinical features of DN to further explore the pathogene-
sis, pathophysiological and molecular mechanisms involved
in DN. In conclusion, a total of 64 DEGs and 32 hub genes
were identified, which may be potential diagnostic bio-
markers and therapeutic targets for preventing the occur-
rence and development of DN; the flow chart of this study
is shown in Figure 1.

2. Methods and Materials

2.1. Microarray Data Analysis. We downloaded the datasets
including GSE30528 [9], GSE47183 [20], and GSE104948
[16] from GEO (http://www.ncbi.nlm.nih.gov/geo) [21], an
international public functional genomics data repository of
next-generation sequence, chips, and microarrays. The DEGs
in DN and normal renal tissues were firstly selected by the
GEO2R online tool [22] with ∣LogFC ∣ >1 and P < 0:05. Sub-
sequently, the overlap DEGs among the three datasets were
shown in the Venn diagram via using FunRich, a software
widely used for gene and protein functional enrichment
and interaction network analysis [23].

2.2. Protein-Protein Interaction (PPI) Network Construction,
Topological Analysis, and Hub Gene Identification. A PPI
network of overlapping DEGs was established based on the
STRING platform (https://string-db.org/) [24] to retrieve
nearly all functional interactions among the expressed
proteins. Protein interaction information derived from the
STRING database was imported into the Cytoscape software
where the interaction information was integrated and
visualized [25].

Then, the most significant modules in the PPI network
were selected by molecular complex detection (MCODE)
[26]; the parameters of clustering and scoring were MCODE
score ≥ 2, degree cutoff = 2, node score cutoff = 0:2, max
depth = 100, and k‐score = 2. At the same time, topological
analysis was performed by using NetworkAnalyzer in Cytos-
cape software and four topological features (degree, between-
ness centrality, average shortest path length, and closeness
centrality) were analyzed [27]. Subsequently, selecting nodes
with degrees higher than the average number, taking the
intersection of the topological analysis, and clustering analy-
sis result as the hub genes. If the LogFC < 0, the expression of
the hub gene was deemed to be downregulated, while
LogFC > 0, gene expression was deemed to be upregulated.
Additionally, a network of the hub genes and their coexpres-
sion network was performed by using FunRich software.

2.3. GO and KEGG Pathway Enrichment Analysis. GO is a
comprehensive and widely used database for the classifica-
tion of gene functions, consisting of biological process (BP),
molecular function (MF), and cell component (CC) [28].
KEGG (http://www.kegg.jp/) is an encyclopedia of genomes,
which links genomic information with higher-order func-

tional information to capture significantly enriched biologi-
cal pathways [29]. In our study, GO functional annotation
and KEGG pathway enrichment analysis were performed
through applying the clusterProfiler package of R software,
when P < 0:05 was deemed as a screening threshold.

2.4. The Association between Hub Genes and Clinical
Features of DN. Correlation analysis and subgroup analysis
between hub genes and clinical features were carried out
via the Nephroseq v5 online tool (http://v5.nephroseq.org)
[30] to confirm the potential functions of hub genes partici-
pated in DN.

2.5. Statistical Analysis. Pearson’s correlation analysis
between hub genes and glomerular filtration rate (GFR) in
patients with DN was conducted via applying Nephroseq
v5. Comparisons between two subgroups were carried out
via an unpaired Student’s t-test. All tests were two-tailed,
with a P value < 0.05 considered statistically significant.
The statistical analyses were performed by using GraphPad
Prism (version 7.0; GraphPad Software, La Jolla, California).

3. Results

3.1. Identification of DEGs in DN.We used the GEO database
to search the gene expression profiles of GSE30528,
GSE47183, and GSE104948 in DN and normal renal samples.
These three datasets contain 51 normally functioning human
glomerulus samples and 35 diabetic human glomerulus sam-
ples. These study samples were derived from healthy human
transplant donors, diagnostic renal biopsies, and tumor-
nephrectomy specimens. Then, the gene information obtained
from the database was analyzed by GEO2R. The cutoff criteria
were ½LogFC� > 1 and P < 0:05. We found 224, 687, and 365
DEGs in GSE47183, GSE30528, and GSE104948 datasets,
respectively. Subsequently, these DEGs from three datasets
were imported into FunRich to identify the common DEGs;
a total of 64 DEGs were detected (Figure 2).

3.2. PPI Network Analysis and Hub Gene Selection. A total of
64 common DEGs were imported into STRING online data-
base to construct the PPI network, the interaction network
was based on the selected targets with a medium confidence

GSE104948

154

63

550

11

65

84 64

GSE47183

GSE30528

Figure 2: Overlapping DEGs of multiple microarrays.
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Figure 3: The PPI network of overlapping DEGs of three microarray datasets. Each circular node represents a protein target, and the 3D
structure in the circular nodes shows the protein spatial structure. The lines among different nodes represent the association among
potential protein targets, while the width of lines was according to the action intensity.

Figure 4: PPI network visualization and analysis.
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score of 0.15, and finally, 652 edges and 64 key nodes were
embodied (Figure 3). PPI network of common DEGs was
visualized by Cytoscape (Figure 4), and the three most signif-
icant modules were recognized by the MCODE plug-in of
Cytoscape.

Among these three modules, a total of 41 DEGs were
identified (Table 1). In addition, the average node degree is
21.377 after the topological analysis of common DEGs, we
selected the genes higher than the average degree, taking
the intersection of the genes higher than the average degree,
and most significant clustering genes result as the hub genes.
The hub genes included 2 downregulated genes (ALB and
IGF1) and 30 upregulated genes (FN1, CD44, ITGB2,
CCL5, CD163, C1QA, C1QB, CYBB, TYROBP, LYZ,
CD48, IL10RA, CLEC10A, COL1A2, CLU, C3, IRF8, CD52,
TGFBI, ALOX5, CD53, VSIG4, CFB, IGFBP3, LAPTM5,
MS4A6A, LUM, VCAN, MS4A4A, and DOCK2), which are
exhibited in Table 2. Furthermore, the coexpression network

analysis of hub genes is displayed in Figure 5 and the heat
map of the hub gene expression in the three GEO datasets
is shown in Figure 6.

3.3. GO and KEGG Pathway Enrichment Analysis of Hub
Genes in DN. After applying the clusterProfiler package for
hub gene enrichment analysis, we selected the top 10 remark-
ably enriched BP terms for analysis, including regulation of
complement activation, neutrophil degranulation, neutrophil
activation involved in immune response, regulation of
humoral immune response, humoral immune response,
neuroinflammatory response, complement activation, regu-
lation of immune effector process, macrophage activation,
and synapse pruning. Besides, the top 10 CC terms were
screened, consisting of secretory granule lumen, cytoplasmic
vesicle lumen, vesicle lumen, blood microparticle, collagen-
containing extracellular matrix, endoplasmic reticulum
lumen, platelet alpha granule lumen, specific granule,

Table 1: The most significant clusters of common DEGs.

Cluster Network Nodes Edges Score Cluster genes

1 21 203 20.3

EVI2A, RNASE6, LAPTM5, LYZ, CD53,
CLEC10A, TYROBP, DOCK2, ALOX5, IL10RA,

C1QA, MS4A6A, CD52, C1QB, ITGB2,
MS4A4A, CD48, CD163, VSIG4, CYBB, IRF8

2 13 62 10.3
TGFBI, VCAN, THBS2, CFB, CLU,

COL1A2, IGFBP3, COL6A3, LUM, KRT19,
TNC, PROM1, TAGLN

3

CD44 SERPINF1

IGF1

CCL5
ALB

FN1

C3
7 21 7 CD44, ALB, FN1, CCL5, SERPINF1, IGF1, C3

The red nodes display the core genes of the cluster; the green nodes represent the normal cluster genes. Furthermore, the density of lines among different nodes
shows the interaction relationship between cluster genes.
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collagen trimer, and platelet alpha granule. Furthermore, the
top 10 MF terms were selected, containing collagen binding,
complement binding, extracellular matrix structural constit-
uent, integrin binding, opsonin binding, amyloid-beta bind-
ing, hyaluronic acid binding, extracellular matrix structural
constituent conferring compression resistance, chaperone
binding, and growth factor binding. These processes are of
great significance to further understand the hub genes that
participated in the progression of DN. The results of the
GO analysis are illustrated in Figure 7.

After the KEGG pathway enrichment analysis, a total of
16 significantly enriched pathways were selected out based
on the threshold of P < 0:05 (Figure 8). The results indicated

that these genes were mainly associated with regulation of
insulin-like growth factor (IGF) transport and uptake by
insulin-like growth factor binding proteins (IGFBPs), post-
translational protein phosphorylation, ECM proteoglycans,
complement and coagulation cascades, complement cascade,
initial triggering of complement, regulation of complement
cascade, human complement system, and complement
activation. The results prove that hub genes derived from
these three datasets may participate in the progression
and development of DN by regulating complement cas-
cade, insulin resistance, and inflammatory reaction.
Among them, complement cascade-related pathways were
most enriched.

Table 2: Hub genes of diabetic nephropathy.

Groups Gene symbol
GSE30528 GSE104948 GSE47183

LogFC P value LogFC P value LogFC P value

Up

FN1 1.540307 1:86E − 06 1.688679 6:53E − 14 1.411328 0.000115

CD44 1.410913 0.00288 1.154713 1:03E − 09 1.118944 0.004117

ITGB2 1.288601 0.000137 1.624558 1:71E − 09 1.176759 0.015233

CCL5 1.720493 0.000615 1.281747 1:58E − 08 1.010635 0.002817

CD163 1.973348 2:66E − 06 1.260515 4:52E − 05 2.25682 0.006126

C1QA 1.922276 3:04E − 08 2.469202 7:39E − 08 2.643819 0.002315

C1QB 2.204686 4:22E − 07 2.123409 8:65E − 08 2.331991 0.003483

CYBB 1.082376 2:88E − 05 1.559454 6:84E − 10 1.081369 0.01398

TYROBP 1.3831 0.000242 2.191158 1:95E − 08 1.720981 0.000578

LYZ 1.529532 0.00258 2.79008 2:08E − 08 1.693295 0.000448

CD48 1.736706 0.000071 2.1464 7:11E − 11 1.271107 0.002955

IL10RA 1.468163 0.000276 1.928371 3:65E − 09 1.340032 0.004027

CLEC10A 1.005234 6:1E − 06 1.197336 6:34E − 07 1.050224 0.032825

COL1A2 2.590987 9:18E − 06 2.656871 2:14E − 07 2.275034 0.005026

CLU 1.472253 0.000508 1.734574 1:59E − 06 1.912975 0.002851

C3 2.679961 0.000157 2.281075 3:84E − 06 2.430408 0.017567

IRF8 1.583247 0.000131 1.488973 1:09E − 06 1.493004 0.005593

CD52 2.232654 9:78E − 05 2.140349 6:98E − 13 1.169746 0.007569

TGFBI 1.32786 0.000642 2.396142 3:41E − 13 2.168562 3:43E − 05
ALOX5 1.673735 0.00568 1.450238 7:51E − 09 1.277775 0.001606

CD53 1.672055 5:65E − 05 1.74099 5:92E − 08 1.230233 0.012145

VSIG4 1.576657 5:22E − 06 1.696336 1:31E − 07 1.919467 0.003

CFB 1.720388 6:19E − 05 1.382782 5:74E − 05 1.365459 0.021665

IGFBP3 1.033501 9:66E − 05 1.23278 0.000966 2.409502 0.002813

LAPTM5 1.062031 0.00158 1.554621 9:52E − 08 1.238422 0.001673

MS4A6A 1.869037 6:81E − 06 2.054775 9:74E − 09 1.959976 0.00497

LUM 2.374619 4:49E − 05 1.843351 0.00363 3.496266 0.004413

VCAN 1.273776 0.00177 1.33971 4:88E − 05 1.440879 0.034958

MS4A4A 1.446755 2:65E − 05 2.039072 1:15E − 08 1.994681 0.00792

DOCK2 1.009537 0.0028 1.457016 1:34E − 09 1.181051 0.003642

Down
ALB -1.78623 0.00896 -2.38803 0.000092 -2.63068 0.007517

IGF1 -2.57456 7:11E − 05 -1.6702 1:25E − 05 -1.63423 3:29E − 05
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3.4. Association between the Hub Genes and Clinical Features
of DN. Of the overlapping DEGs identified in this study, 32
were recognized as hub genes. With the use of Nephroseq
v5, the expression of complement cascade-related hub genes
(C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU) showed
the difference between DN patients and healthy living donors
(Figure 9); we found all complement cascade-related hub
genes were downregulated in the DN renal tissues compared
with healthy kidney samples. In addition, the correlation
between the complement cascade-related hub genes and
GFR of DN patients was determined (Figure 10). The expres-
sion of CFB in DN renal tissue samples was positively corre-
lated with GFR. Thus, the expression of CFB may contribute
to the maintenance and improvement of renal function. The
expression of the C1QA, C1QB, C3, ITGB2, VSIG4, and CLU
was negatively correlated with GFR. Therefore, the expres-
sion changes of these six genes may result in the occurrence
and development of DN.

4. Discussion

The prevalence of type 2 diabetes has risen dramatically
worldwide, and DN is one of the most common complica-
tions of type 2 diabetes which has become the main cause
of ESRD [31]. DN is featured as glomerular injury, glomeru-
lar hypertrophy, and glomerular basement membrane thick-
ening [32]. Many cases of DN have a delayed diagnosis and
are complicated to treat, which may contribute to the poor
renal prognosis of patients with DN [33]. However, DN is
the result of multiple gene interactions and the molecular
mechanisms of DN remain poorly understood because of
the complexity of the etiology differences [34]. Therefore,
potential biomarkers for early diagnosis and targeted treat-
ments are urgently needed. Currently, collagen binding and
ECM-receptor interaction have already been verified to make
a considerable contribution to the development of DN [35,
36]. In addition, there are two main complement cascade-

Hub genes
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Figure 5: The coexpression network analysis of hub genes.
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associated mechanisms that have been reported to be
involved in the development and progression of DN [37].
First, hyperglycaemia is considered to cause glycation of
complement regulatory proteins which can lead to dysfunc-
tion of their regulatory capacity [38]. Second, the activation
of the lectin pathway in response to glycated proteins is
expressed on the surface of cells due to overexposure to glu-
cose [39].

The development of microarray technology enables us
to explore genetic alterations in DN and have a better
understanding of the molecular mechanisms, eventually
identifying the novel markers in DN [40–43]. In our
study, a set of 64 overlapping DEGs from the GSE30528,
GSE47183, and GSE104948 datasets were identified.
Among them, the expression of 32 hub genes (30 upregu-
lated genes and 2 downregulated genes) was selected for
performing GO and KEGG enrichment analyses to explore
the molecular mechanisms of hub genes involved in the
development of DN. The GO enrichment analysis revealed
that hub genes were involved in multiple biological pro-
cesses, including regulation of complement activation, reg-
ulation of humoral immune response, humoral immune
response, complement activation, regulation of immune
effector process, and macrophage activation. The hub
genes, such as C1QA, C1QB, C3, CFB, ITGB2, VSIG4,
and CLU, can participate in complement cascade [44–47].
CD163, CD44, CD48, CD52, and CD53 may involve in
humoral immune response and macrophage activation
[48, 49]. Thus, the biological processes of hub genes are rel-
atively consistent with the pathogenesis and mechanism of
DN. Additionally, cellular components constitute secretory
granule lumen, cytoplasmic vesicle lumen, vesicle lumen, blood

microparticle, collagen-containing extracellular matrix, endo-
plasmic reticulum lumen, platelet alpha granule lumen, specific
granule, collagen trimer, and platelet alpha granule. It indi-
rectly elucidates the complexity of the pathogenesis of DN
and its damage to several cellular components [5]. Moreover,
molecular functions are mostly enriched in collagen binding,
complement binding, extracellular matrix structural constitu-
ent, amyloid-beta binding, and extracellular matrix structural
constituent conferring compression resistance. It reveals that
hub genes may target these molecular functions to affect DN
progression and it is consistent with previous studies [50].

After performing KEGG enrichment analysis, we found
that hub genes were mainly enriched in the regulation of
IGF transport and uptake by IGFBPs, ECM proteoglycans,
and complement cascade-related pathways. ECM proteogly-
cans, one important ECM component, show a more complex
pattern of changes in DN, which could be mediated by TGF-
β [51]. IGF-IGFBP signaling components play an important
role in the maintenance of normal renal function and the
development of DN. IGF-I expression increases in the dia-
betic kidney in the autocrine/paracrine manner that pro-
motes matrix production, mesangial cell proliferation, and
migration, but this process can be opposed by IGFBPs [52].

Moreover, experimental and clinical evidence has
showed that multiple components of the complement sys-
tem involved in the pathogenesis of DN [37]. And we also
found hub genes were mostly enriched in complement
cascade-associated pathways, consisting of complement
and coagulation cascades, complement cascade, initial trig-
gering of complement, regulation of complement cascade,
human complement system, and complement activation. In
these 32 hub genes, we selected 7 complement cascade-
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according to the descending order of the P value.

9Journal of Diabetes Research



related genes, including C1QA, C1QB, C3, CFB, ITGB2,
VSIG4, and CLU. Among them, C3 is the central component
in the complementary system which plays an important role
in the classical complement pathway and alternative comple-
ment pathway [47, 53]. We found that C3 expression was
higher in DN renal samples compared with healthy renal
samples and was negatively correlated with GFR (P = 0:046,
r = –0:611). In addition, the classic complement pathway

was activated in DN renal tissues with significant increases
of C1QA and C1QB mRNAs [47]. We discovered that
C1QA and C1QB expressions were higher in DN renal sam-
ples and were negatively correlated with GFR ((P < 0:001,
r = –0:777) and (P = 0:014, r = –0:776), respectively). CFB
is a crucial factor for activating the alternative complement
pathway [54], which is elevated in adipose tissue and serum
from patients with type 2 diabetes [55], but the correlation
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Figure 9: The different expressions of complement cascade-related hub genes (C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU) in DN renal
tissues and healthy kidney tissues. (a) The expression of C1QA in DN renal tissues is higher than in healthy kidney tissues. (b) The expression
of C1QB in DN renal tissues is higher than in healthy kidney tissues. (c) The expression of C3 in DN renal tissues is higher than in healthy
kidney tissues. (d) The expression of CFB in DN renal tissues is higher than in healthy kidney tissues. (e) The expression of ITGB2 in DN renal
tissues is higher than in healthy kidney tissues. (f) The expression of VSIG4 in DN renal tissues is higher than in healthy kidney tissues. (g)
The expression of CLU in DN renal tissues is higher than in healthy kidney tissues.
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between CFB and DN has not been illustrated yet. We found
that CFB expression was higher in DN renal samples com-
pared with healthy renal samples and was positively corre-
lated with GFR (P = 0:012, r = 0:788). ITGB2 is implicated

in the network linking complement system to T cell activa-
tion [56], but it also remains poorly understood about the
relationship with DN. We found that ITGB2 expression
was higher in DN renal samples and was negatively
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Figure 10: The correlation analysis between complement cascade-related hub genes (C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU) and
the expression of GFR in DN patients. (a) The expression of C1QA was negatively correlated with GFR (P < 0:001, r = –0:777). (b) The
expression of C1QB was negatively correlated with GFR (P = 0:014, r = –0:776). (c) The expression of C3 was negatively correlated with
GFR (P = 0:046, r = –0:611). (d) The expression of CFB was positively correlated with GFR (P = 0:012, r = 0:788). (e) The expression of
ITGB2 was negatively correlated with GFR (P = 0:001, r = –0:650). (f) The expression of VSIG4 was negatively correlated with GFR
(P < 0:001, r = –0:783). (g) The expression of CLU was negatively correlated with GFR (P = 0:001, r = –0:639).

11Journal of Diabetes Research



correlated with GFR (P = 0:001, r = –0:650). Besides, VSIG4
is a B7 family-related protein and acts as a complement
receptor for C3 [57]; it has been reported that VSIG4 can
induce the epithelial-mesenchymal transition of renal tubu-
lar cells when exposing to high-glucose condition [58], but
how VSIG4 affect DN through the complement system is still
unknown. We found that VSIG4 expression was higher in
DN renal samples and was negatively correlated with GFR
(P < 0:001, r = –0:783). CLU is a kind of complement regula-
tory protein which can bind to C5b-7 and inhibit the gener-
ation of membrane attack complex [59] and was found
upregulated in the glomerular of both DN patients and
streptozotocin-induced diabetic mice [46]. We found that
CLU expression was higher in DN renal samples and was
negatively correlated with GFR (P = 0:001, r = –0:639). Tak-
ing these findings together will offer novel potential targets
in future DN research.

Independent microarray analysis always induces false-
positive rates [60]. Due to the heterogeneity of the tissues
or samples in independent studies or a single cohort study,
gene array results are always either limited or inconsistent.
In this study, we reanalyzed three microarray datasets
(GSE30528, GSE47183, and GSE104948) and combined
various bioinformatics methods and expression profiling
techniques to identify candidate DEGs and predict hub
genes in DN. In addition, we also used a clinical database
(Nephroseq v5 platform) to analyze correlations and per-
form subgroup analysis among the hub genes and clinical
manifestations of DN.

However, there are some limitations of this study. Firstly,
the predictions above were not confirmed by experiments
and are rather preliminary in silico studies; these are only
useful for an initial screening. It is required to be validated
by in vitro/vivo experiments and large-group cohort before
any valid conclusion could be taken. Secondly, because of
the heterogeneity of detailed demographic data, it is difficult
to obtain the more convincing association between hub genes
and the severity of diabetic glomerular injury using the sam-
ples from different datasets. Thirdly, this study had a rela-
tively small sample size; in future studies, we also need to
combine and analyze more clinical samples based on similar
demographic data to validate these results.

5. Conclusions

The microarray and bioinformatics technology have pro-
vided new perspectives for researchers to study the potential
molecular mechanisms and regulatory targets of DN. A total
of 64 DEGs and 32 hub genes were identified as biomarkers
for the clinical diagnosis of DN and as potential targets for
novel treatments. However, predictions were not verified by
experiments, and the number of samples used for analysis
was limited. Thus, the specific molecular mechanisms and
biological functions of hub genes need further exploration.
In conclusion, our study found hub genes which might be
involved in the pathogenesis of DN especially in complement
cascade-related signaling pathways. At the same time, we also
linked the expression of hub genes with the clinical manifes-

tation of DN, which may provide the novel methodologies
for DN early diagnosis and targeted therapies.
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