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High-density lipoprotein (HDL) comprises a heterogeneous group of particles differing in size, density, and composition. HDL
cholesterol (HDL-C) levels have long been suggested to indicate cardiovascular risk, inferred from multiple epidemiological
studies. The failure of HDL-C targeted interventions and genetic studies has raised doubts on the atheroprotective role of HDL-
C. The current consensus is that HDL-C is neither a biomarker nor a causative agent of cardiovascular disorders. With better
understanding of the complex nature of HDL which comprises a large number of proteins and lipids with unique functions,
recent focus has shifted from HDL quantity to HDL quality in terms of atheroprotective functions. The current research is
focused on developing laboratory assays to assess HDL functions for cardiovascular risk prediction. Also, HDL mimetics
designed based on the key determinants of HDL functions are being investigated to modify cardiovascular risk. Improving HDL
functions by altering its composition is the key area of future research in HDL biology to reduce cardiovascular risk.

1. Introduction

The presence of water-soluble lipoproteins was reported for
the first time by Michael Macheboeuf in 1929 when he iso-
lated a class of proteins called alpha globulins, now recog-
nized as high-density lipoprotein (HDL). In 1949, Gofman
et al. proposed a new method for separation of lipoproteins
from serum. They isolated HDL by ultracentrifugation and
studied the association of lipoproteins with atherosclerosis
[1]. Since then, HDL and its role in cardiovascular diseases
(CVD) have been extensively studied.

HDL comprises heterogeneous particles varying in size,
density, composition, and biological properties. Compared
with other lipoproteins, HDL has the highest relative density
(1.063-1.21 g/ml) and its size varies from 6.5 to 15 nm. In this
review, we discuss the current evidence on the association of
HDL with CVD.

2. The HDL Hypothesis

The protective role of high-density lipoprotein cholesterol in
reducing the risk for CVD was reported for the first time in
the 1950s [2]. Later in the 1980s, the landmark epidemiologi-
cal study, Framingham Heart Study, reported lower incidence
of coronary artery disease (CAD) in individuals with higher
levels of HDL cholesterol [3]. The central proposed mecha-
nism for the protective effect of HDL against atherosclerosis
was the reverse transportation of cholesterol from the macro-
phages in the arterial wall back to the liver for removal from
the body. Many epidemiologic studies conducted in different
populations supported this inverse association of HDL levels
and CAD, earning the title of “good cholesterol” for HDL cho-
lesterol. Based on this epidemiological association in several
studies [4, 5], clinical attempts to decrease CAD risk by way
of pharmacologically increasing HDL-C levels were made.
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This would also help establish causality of the protective effect
of HDL on CAD. The agents used were niacin and CETP
inhibitors.

The Atherothrombosis Intervention in Metabolic Syn-
drome with Low HDL/High Triglycerides: Impact on Global
Health Outcomes (AIM-HIGH) trial that studied the addi-
tional effect of niacin in patients with CVD and low HDL-C
levels (<40mg/dl in men and <50mg/dl in women) in reduc-
ing cardiovascular disease involved 3414 high-risk patients
who were receiving statin therapy. The trial was stopped early
due to the lack of any additional clinical benefit of niacin over
statin in reducing the incidence of CVD events. This was
despite significant improvement in HDL cholesterol levels
(HDL cholesterol level increased by 25.0% vs. 9.8% at 2 years
in the niacin versus placebo group, P < 0:001, respectively) [6].

The Heart Protection Study 2-Treatment of HDL to
Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial
was designed to assess additional benefit of niacin-laropiprant
to statin-based therapy in 25,673 adults with known atheroscle-
rotic vascular disease. The addition of niacin-laropiprant had
no significant reduction in major vascular events as compared
with placebo (13.2% and 13.7% of participants had a cardiovas-
cular event, respectively; P = 0:29). Additionally, treatment
with extended-release niacin-laropiprant increased the risk of
serious adverse events [7, 8] including incident diabetes, gas-
trointestinal symptoms, musculoskeletal symptoms, skin disor-
ders, infection, and bleeding.

Another class of drugs—cholesteryl ester transfer protein
(CETP) inhibitors—increases HDL-C and decreases low-
density lipoprotein cholesterol (LDL-C) and was tested to
study the role of HDL cholesterol in reducing cardiovascular
events. The first CETP inhibiting drug torcetrapib markedly
increased HDL cholesterol levels in subjects with low HDL-C
(106 percent relative to placebo (34 ± 5mg/dl during the pla-
cebo phase to 70 ± 15mg/dl)) and decreased LDL (17 percent
relative to placebo (136 ± 24mg/dl during the placebo phase to
114 ± 20mg/dl)) cholesterol [9]. However, the clinical trial,
ILLUMINATE, was stopped prematurely as torcetrapib had
“off target” effects like rise in systolic blood pressure through
stimulation of aldosterone synthesis [10]. In the ILLUMI-
NATE study, majority of the torcetrapib treatment patients
showed no regression of coronary atherosclerosis despite 72%
increase in HDL-C [11]. Two other CETP inhibitors, dalcetra-
pib and evacetrapib, also failed to show significant reduction in
CVD risk [12, 13]. The REVEAL (Randomized Evaluation of
the Effects of Anacetrapib Through Lipid modification) study,
addition of CETP inhibitor anacetrapib to intensive statin ther-
apy, demonstrated a statistically significant reduction in com-
posite end point of coronary death or myocardial infarction
[14]. This was associated with 0.7mmHg rise in BP in inter-
vention arm. The first three trials with CETP inhibitors failed
to show any reduction in risk of CVD events, as a result of
which they were stopped. The manufacturers of anacetrapib
did not file for regulatory approval to market the drug in view
of probable anticipation of limited benefit/role of the drug in
CVD management.

The cardioprotective hypothesis of HDL was also ques-
tioned by genome-wide association studies on genetic deter-
minants of plasma lipid levels. Mendelian randomization

studies identified single nucleotide polymorphism (SNP) in
endothelial lipase gene (LIPG Asn396Ser) and 14 other SNPs
that exclusively raise plasma HDL cholesterol levels. Poly-
morphism of LIPG gene and genetic score of 14 SNPs
showed no association with risk of myocardial infarction as
performed in prospective and case control studies [15].

Additionally, the traditional understanding of inverse
relationship between HDL-C and CVD has also been chal-
lenged. According to the inverse linear relationship, those with
extremely high HDL-C should be the most protected from
CVD. However, recent prospective studies do not conform
to this dictum. Extremely high HDL-C was associated with
increased risk of mortality from CVD in both Japanese and
Danish cohorts [16, 17]. The Danish cohort showed increased
risk of all-cause mortality associated with extremely high
HDL-C levels. Similar to these studies, a multicohort study
also observed that CVD risk did not reduce further with
HDL-C values higher than 90mg/dl in men and 75mg/dl in
women [18].

Conflicting and inconsistent findings obtained from
different clinical trials, genetic studies, and traditional epide-
miological studies have led to the exploration of reasons for
these differences. One of these is the measurement of HDL
function rather than HDL-C level. The availability of tech-
nologies to explore different biological functions of HDL
has spurred an interest in measuring HDL function and
determining the most appropriate measure of HDL function
instead of absolute HDL-C levels.

3. HDL Functions and CVD

It is increasingly evident that HDL particles have pleiotropic
properties including cholesterol efflux capacity, antioxidant
activity, anti-inflammatory activity, antithrombotic activity,
and antiapoptotic activity. These contribute to the protective
effect of HDL against atherosclerosis, and thus, singular
HDL-C measurement may not be reflective of HDL role in
health and disease. Figure 1 summarizes different antiathero-
genic functions of HDL.

3.1. Cholesterol Efflux Capacity (CEC). HDL plays a crucial
role in the initial step of reverse cholesterol transport, that
is, the ability to accept cholesterol from peripheral cells
including adipocytes, macrophages, and endothelial cells.
This is considered to be the primary atheroprotective
function of HDL. Membrane-bound lipid transporter ATP-
binding cassette transporter A1 (ABCA1) transfers cellular
cholesterol and phospholipid to lipid-free apolipoprotein
A-I (apoA-I) forming discoidal pre-beta HDL. Besides
ABCA1, two other proteins, ATP-binding cassette trans-
porter (ABCG1) and scavenger receptor B1 (SR-B1), are also
involved in the efflux of cholesterol to HDL particles. ABCA1
and SR-B1 efflux cholesterol to mature HDL from peripheral
cells like macrophage and adipocytes [19]. Lecithin choles-
terol acyltransferase (LCAT) activity by its transesterification
property maintains the concentration gradient for choles-
terol between peripheral cells and HDL; therefore, there is a
unidirectional movement of cholesterol from cell to HDL
thus facilitating reverse cholesterol transport [20]. Recent
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studies have demonstrated that the CEC of HDL also depends
on the concentration of free cholesterol (FC) in HDL particles.
As the movement of FC among lipid surfaces is reversible, the
presence of high percentage of FC in HDL leads to the transfer
of excess FC from HDL to cells in vivo [21].

The capacity of HDL to promote cholesterol efflux from
macrophages was shown to have strong association with
carotid intima media thickness independent of HDL-C levels
[22]. Cholesterol efflux is mediated via different pathways to
different HDL fractions; therefore, the efficiency of serum
from an individual to take up cellular cholesterol is affected
by the distribution and composition of HDL particles despite
having similar levels of HDL cholesterol [23].

ABCA1-dependent serum CEC correlated inversely with
pulse wave velocity, an index of arterial stiffness, independent
of HDL-C serum levels in healthy individuals [24]. Cholesterol
efflux capacity has also revealed an inverse correlation with
noncalcified plaque burden, independent of traditional cardio-
vascular risk factors and HDL-C levels [25]. A large prospec-
tive study demonstrated that baseline CEC was significantly
associated with incident cardiovascular events independent
of HDL-C and apoA-I levels in the general population [26].

Studies performed in patients with metabolic syndrome
or diabetes have also reported impaired HDL cholesterol
efflux capacity to be an independent risk factor for the
development of atherosclerosis [27–29]. Several studies have
reported that impaired CEC is linked to the development of
cardiovascular outcomes in patients in the context of inflam-
matory diseases like rheumatoid arthritis [30], systemic lupus
erythematosus [31], and psoriatic arthritis [32].

Based on the observational studies that apoA-I is an effi-
cient cholesterol acceptor that transports cholesterol from foam
cells to the liver and aids regression of atherosclerosis, novel
formulations of apoA-I were designed to induce cholesterol
efflux from macrophages. One such recombinant molecule,
CSL112, is a population of disc-shaped lipoprotein particles
containing recombinant apoA-I and phosphatidylcholine
[33]. In phase 2 clinical trial, 4 weekly infusions of CSL112
among patients with acute myocardial infarction reduced
major adverse cardiovascular events without any significant
alterations in liver or kidney functions [34]. CSL112 is cur-
rently being tested in a large-scale phase 3 cardiovascular clin-
ical trial in patients with acute coronary syndrome (ACS) to
test its efficacy [35].

However, a recent study utilizing Mendelian randomiza-
tion found no association between apoA-I and incident
CAD. Thus, the authors have suggested a noncausal role of
HDL-CEC in the risk of CAD since apoA-I is the major
determinant of CEC of HDL [36].

3.2. Antioxidative Activity.Oxidized LDL has been shown to be
a major driving factor for the development of atherosclerosis
[37]. The reactive, prooxidant molecules generated in response
to cellular oxidative stress are responsible for the chemical
modification of LDL. LDL is modified in two steps. The first
step involves the formation of lipid hydroperoxides (LOOHs)
which in turn propagate further oxidation generating free
and core aldehydes and ketones that covalently modify ε-
amino groups of lysine residues present in apoB which is called
as oxLDL [38]. HDL protects LDL from oxidative stress
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Figure 1: Antiatherogenic functions of HDL. NO: nitric oxide; HDL: high-density lipoprotein; LDL: low-density lipoprotein; oxLDL:
oxidized LDL; SR-B1: scavenger receptor B1; ABCA1: ATP-binding cassette transporter A1; ABCG1: ATP-binding cassette transporter
G1; ICAM-1: intercellular adhesion molecule 1; VCAM-1: vascular cell adhesion molecule 1.
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induced by both one- and two-electron species by inhibiting
accumulation of primary and secondary peroxidation products
[39]. Hydroperoxides are transferred from LDL to HDL either
spontaneously or by the process mediated by CETP. LOOHs
are then removed from HDL via scavenger receptor class B1-
(SR-B1-) mediated transfer to the liver [40].

Inhibition and reduction of LOOH depend on the chemi-
cal and physical properties of HDL. Transfer efficiency of
hydroperoxides from LDL to HDL is governed by the fluidity
of the HDL surface phospholipid monolayer [41]. Besides
lipid content, protein composition of HDL affects its antioxi-
dative activity. There are several proteins on HDLwith antiox-
idative properties including apoA-I, apoA-II, apoA-IV, apoE,
apoM, apoD, apoF, PON1, LCAT, and PAF-AH [42, 43].

Apolipoprotein A-I plays a crucial role in preventing the
oxidation of LDL. Methionine residue at positions 112 and
148 in the apolipoprotein A-I reduces LOOH to their corre-
sponding hydroxides and thereby terminates the chain reac-
tion of lipid peroxidation. Tyrosine 115 is also involved in
such redox reaction [44].

ApolipoproteinM secreted by the liver and kidney is found
to be associated with HDL. It binds to oxidized phospholipids
and enhances the antioxidative activity of HDL [45]. apoM
also serves as a carrier of bioactive lipid, sphingosine-1-
phosphate (S1P). The apoM-S1P complex contributes to the
protective effects of HDL on endothelial cells by activating
the antiatherosclerotic signalling pathways [46, 47]. LCAT
has been shown to directly hydrolyze oxidized polar phospho-
lipids [48]. HDL also carries lipophilic components like
tocopherol, which make minor contribution to the HDL func-
tionality in terms of its antioxidative function.

Paraoxonase 1 (PON1), an HDL-associated antioxidant
enzyme, is capable of hydrolyzing lipid hydroperoxides and
cholesterol ester hydroperoxides present on HDL and LDL
[49]. PON1 has also been shown to have an ability to hydro-
lyze homocysteine-thiolactone to homocysteine. The natural
substrates of PON1 are lactones, and due to the similarity of
oxidized fatty acids with lactones, PON1 hydrolyzes fatty acids
as well. Overexpression of PON1 in transgenic mice inhibits
lipid hydroperoxide formation on HDL and thus protects
HDL from oxidation and maintains its integrity [50].

Observational studies have reported that HDL antioxi-
dant activity represents a strong and independent predictor
of all-cause mortality in patients with acute coronary syn-
drome [51] and chronic heart failure [52] and critically ill
patients [53] while one of the studies performed in cohort
of renal transplant patients observed no association between
HDL antioxidative activity and cardiovascular mortality [54].

3.3. Anti-Inflammatory Activity. During the genesis of ath-
erosclerosis, inflammation induces endothelial cells to
express adhesion molecules vascular cell adhesion protein 1
(VCAM-1), intercellular adhesion molecule 1 (ICAM-1),
and E-selectins which leads to the adhesion of monocytes
to endothelial cells. HDL inhibits the expression of the adhe-
sion proteins and monocyte chemoattractant protein 1
(MCP-1) induced by tumor necrosis factor alpha (TNF-α)
in endothelial cells [55] and macrophages. Studies done
in vitro have shown that HDL and reconstituted HDL con-

taining only apoA-I and phospholipids inhibit the expression
of VCAM-1, ICAM-1, and E-selectin by human umbilical
vein endothelial cells (HUVECs) in a concentration-
dependent manner [56]. HDL prevents increase in intracellu-
lar reactive oxygen species and activation of proteasome and
nuclear factor kappa B (NF-kappaB) triggered by ox-LDL in
smooth muscle cells [57]. In monocytes, HDL reduces the
expression of chemokines and their receptors via modulation
of NF-kappaB and peroxisome proliferator-activated
receptor gamma [58]. Apolipoprotein A-I prevents T cell-
mediated activation of monocytes by inhibiting the produc-
tion of TNF-alpha and interleukin 1. Apolipoprotein A-I also
inhibits the function of activated neutrophils [59].

3.4. Antithrombotic Activity. HDL inhibits activation and
aggregation of platelets, reduces vonWillebrand factor levels,
and enhances the activity of protein C and S [60]. In vitro, the
inhibitory effect of HDL on platelet activation was demon-
strated by incubation of isolated platelets with reconstituted
HDLs and native HDLs [61]. Inhibition of platelet aggrega-
tion is dependent on SR-B1 and endothelial nitric oxide
synthase (eNOS) [62].

3.5. Antiapoptotic Activity. In addition to possessing antioxi-
dative and anti-inflammatory activities, HDL inhibits apopto-
sis of macrophages and endothelial cells induced by oxidized
LDL [63]. HDL protects macrophages from apoptosis induced
by oxidized LDL by promoting the efflux of cholesterol [64].
Small dense HDL3 subfraction protects endothelial cells from
apoptosis and oxidative stress induced by oxLDL by reducing
the release of cytochrome c, inhibiting caspase-3 activity, and
preventing degradation of DNA [65]. Interaction of HDL with
ABCA1 and ABCG1 inmacrophages activates the antiapopto-
tic signalling pathway via AKT and NF-kappaB [66]. HDL
also exerts an antiapoptotic effect on pancreatic beta cells lead-
ing to decrease in progression of diabetes mellitus [67].

Though currently it is not clear which particular function-
ality of HDL is cardioprotective, meta-analyses have reported
a negative association of cholesterol efflux, antioxidant, and
anti-inflammatory capacities with major adverse cardiovascu-
lar events (MACE) and all-cause mortality [68–70].

4. Assessment of HDL Functions

Given the multiplicity and complex attributes of the pleiotro-
pic functions of HDL, many different assays have been devel-
oped to assess their utility as a marker for cardiovascular
health and delineate the quantum of their respective contri-
butions to cardiovascular health and disease. However, a
composite measure of HDL function still eludes researchers
and clinicians. The current measures of the various facets of
HDL function discussed are as follows.

4.1. Cholesterol Efflux Capacity. The cholesterol efflux assay is
aimed at quantifying the efflux of cholesterol from cultured
cells to an acceptor particle or to plasma. Cholesterol efflux
capacity of HDL is measured in vitro using a donor and a
cholesterol acceptor. The protocol for efflux assay used in
different laboratories differs by type of cell, acceptor, efflux
time, and specificity of the transporters [22, 71, 72]. In order
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to measure HDL’s ability to take up cholesterol, whole serum,
apoB-depleted serum, or isolated HDLs are used as acceptors.
apoB-depleted serum is preferred over other HDL sources as
removing LDL also reduces the exchange of cholesterol and
it prevents shedding of apolipoproteins. Different macrophage
cell lines like J774, THP-1, and RAW 264 have been used as
donors. Cholesterol is released from macrophages either by
aqueous diffusion or through transporters (ABCA1, ABCG1,
and SR-B1). Cell lines are treated with some inducers in order
to increase the expression of transporters or to identify the
contribution of a specific transporter to the efflux. Since cho-
lesterol efflux from cells depends on the intracellular lipid
metabolism, acyl-coenzyme A:cholesterol acyltransferase
(ACAT) inhibitors are used in some studies to prevent forma-
tion of cholesterol esters [73].

Initial cholesterol efflux assays employed radiolabelled
(3[H]) cholesterol probes to measure HDL cholesterol efflux
capacity. To avoid the use of radioisotopes in the assay, fluo-
rescently labelled cholesterol that is boron dipyrromethene
difluoride cholesterol probe (BODIPY-cholesterol) has been
used as an alternative. BODIPY-based CEC assays have
shown significant agreement with [(3)H] cholesterol-based
CEC assay [74].

Although the cholesterol efflux assay has great potential to
be used for cardiovascular risk assessment, there are several
limitations to the assay in its current form. As the assay is cell
based, it is time consuming and labor intensive. The current
CEC assay is difficult to apply in routine clinical practice
because of the lack of standardized protocol. Currently, cell-
free assay systems (liposome and antibody based) are being
explored to assess CEC of HDL in clinical settings [75, 76].

4.2. Antioxidative Activity. HDL antioxidant function assess-
ment involves cell-free assays of HDL oxidation [77–79]. The
cell-free assays utilized fluorescent molecules like dichlorodi-
hydrofluorescein diacetate (DCF-DA) and dihydrorhoda-
mine (DHR) molecules to study the ability of HDL to
prevent the formation of oxidative products. Suppression of
oxidation of the fluorescent molecules reflects the antioxida-
tive activity of HDL. The short self-life of the fluorescent
probes limits the clinical utility of this assay to evaluate
HDL antioxidative activity and needs improvisations.

The activity of HDL-associated antioxidative enzymes
(PON1, glutathione peroxidase) is also measured. Arylesterase
and paraoxonase activity of PON1 are measured using phenyl
acetate and paraoxon as substrate by spectrometry [80]. The
ability of HDL to inhibit LDL oxidation [81], expression of
monocyte chemoattractant protein 1 (MCP1), and adhesion
molecules are used to determine HDL anti-inflammatory
index. The application of HDL anti-inflammatory index as a
maker for HDL function in routine practice is limited due to
low reproducibility of the approach.

4.3. Endothelial eNOS and VCAM-1/ICAM-1 Assay. Endo-
thelial protective effects of HDL are analyzed by measuring
the production of nitric oxide by electron spin resonance
spectroscopy or by fluorescence-based techniques in cell sys-
tem. NO production is also analyzed by peripheral arterial
tonometry (Endo-PAT) [82] which measures nitric oxide-

dependent vasodilation in large vessels. Test based on elec-
tron spin resonance spectroscopy is also used in some clinical
laboratories to determine NO production ability of HDL
[83]. Vasoprotective activity of HDL is evaluated by measur-
ing the expression of adhesion molecules (VCAM-1and
ICAM-1) by western blot, real-time PCR [84], ELISA [85],
or flow cytometry [86]. The assay needs to be validated in
large-scale studies for its use in clinical settings.

4.4. Antiapoptotic Activity. For antiapoptotic property of
HDL on endothelial cells and pancreatic beta cells, expres-
sion of caspase-3 (as marker of apoptosis) and molecules
involved in the signalling pathway is analyzed by western blot
or by real-time PCR. The requirement of cultured cells limits
the assessment of antiapoptotic activity of HDL to research
usage only currently.

5. HDL Structure-Function Relationship

The HDL particle is a complex of proteins, lipids, micro-
RNAs (miRNA), and metabolites. It has high protein to lipid
ratio in which apolipoprotein A-I accounts for 70% of the
total protein of the particle. Apolipoprotein A-II is the
second most abundant protein. Besides these two proteins,
HDL particle comprises more than 90 proteins and 200
lipids. The lipid component of HDL particle comprises cho-
lesteryl esters (CE), free cholesterol (FC), triglycerides (TG),
and phospholipids (PL). PL and FC constitute the surface
lipid monolayer, while CE and TG form the hydrophobic
lipid core. HDL particles differ in composition and size and
exhibit a range of atheroprotective properties, and these
properties are exerted by the different protein and lipid com-
ponents of HDL [87, 88]. With recent research and evidence
available about HDL functionality, it is now being asserted
that the quality rather than quantity of HDL is more relevant
for its atheroprotective activity and the structural basis for
the functional aspects of HDL is being evaluated [89].

5.1. HDL Proteome. HDL carries a large number of proteins
which provide the structural and functional characteristics
unique to HDL particles. HDL proteins are divided into
subgroups based on functionality and include apolipopro-
teins, enzymes, lipid transfer proteins, proteinase inhibitors,
acute phase response proteins, and complement components
[90–93]. Around 110 proteins associated with HDL have
been identified using different approaches. Majority of the
studies have used ultracentrifugation to separate HDL from
the serum prior to proteome analysis.

Since HDL functionality is influenced by its associated
proteins, recent research is focused on identifying HDL-
associated proteins as surrogate markers for HDL functions.
Moreover, HDL proteins associated with its functions can
serve as viable targets for developing drugs that could lower
CVD risk.

5.2. HDL Lipidome. The lipid component of HDL particle
comprises cholesteryl esters (CE), free cholesterol (FC), tri-
glycerides (TG), and phospholipids (PL). PL and FC constitute
the surface lipid monolayer, while CE and TG form the hydro-
phobic lipid core. Phospholipids quantitatively predominate
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in the HDL lipidome accounting for 36%–40% of total lipid.
More than 200 lipid molecules have been identified on HDL
isolated from healthy normolipidemic individuals [94, 95].

HDL lipidome is significantly altered in pathological con-
ditions like dyslipidemia, coronary artery disease, and hyper-
tension. Nuclear magnetic resonance (NMR) analysis has
shown alteration in the composition of HDL fraction in sub-
jects with coronary artery disease, with higher percentage of
triglyceride and lower percentage of cholesterol esters, phos-
phatidylcholine, and sphingomyelin [96]. HDL phospholipid
composition affects SR-B1-mediated cholesterol efflux,
which thereby impacts the process of reverse cholesterol
transport [97]. HDL is a major carrier of sphingosine-1-
phosphate which plays a key role in endothelial functions
and the cardiovascular system [98]. HDL lipidome studies
using mass spectrometry or NMR techniques are cumber-
some to set up, limiting the translational value of these stud-
ies. Unlike HDL proteome, it is difficult to target HDL
lipidome for modulation of cardiovascular risk.

Distinct structural or biochemical changes in HDL parti-
cles that lead to alteration of HDL functions have been
reported in various studies. Some changes have shown a clear
relationship with alterations in HDL functionality, while the
mechanism underlying some others is yet to be completely
elucidated. Structural changes include the alteration in com-
position of the HDL-associated proteins and lipids. Proteo-

mic changes like an increase in the content of serum
amyloid A1, serum amyloid A2, and alpha-1 antitrypsin on
HDL and a decrease in the levels of apoA-I and paraoxonase
1 lead to the formation of dysfunctional HDL and attenua-
tion of its atheroprotective functions [99–101]. A higher
sphingomyelin to phosphatidylcholine ratio contributes to a
diminished HDL antioxidative activity by altering the rigidity
of the surface monolayer of HDL [102].

Biochemical changes like posttranslational modifications
of the structural components also impact the protective prop-
erties of HDL. Myeloperoxidase (MPO), a major constituent
of artery wall macrophages, induces MPO-catalyzed nitration,
chlorination, and oxidation of apoA-I [103, 104]. MPO-
mediated oxidative modification of methionine residue of
apoA-I at position 148 was observed in subjects with coronary
artery disease and was associated with decreased cholesterol
efflux capacity [105]. Modification at tyrosine residue of
apoA-I also showed impaired ABCA1-dependent cholesterol
transport [106]. The glycation of apoA-I alters the conforma-
tion of apoA-I in regions that are critical for LCAT activation,
reducing the cholesterol efflux capacity and the anti-
inflammatory activities of HDL [107, 108].

5.3. HDL Subclasses. Human HDL particles are highly hetero-
geneous consisting of several subclasses differing in density,
size, lipid composition, and protein composition. Figure 2

HDL3 (1.125–1.21 g/mL)
HDL2 (1.063–1.125 g/mL)

Density
Ultracentrifugation NMR spectroscopy Electrophoresis

Size (GGE)
HDL2b (9.7–12.0 nm)
HDL2a (8.8–9.7 nm)
HDL3a (8.2–8.8 nm)

HDL3b (7.8–8.2 nm)
HDL3c (7.2–7.8 nm)
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Figure 2: HDL subclasses characterized by different methods of separation. NMR: nuclear magnetic resonance; GGE: gradient gel
electrophoresis.
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shows different subclasses of HDL characterized by different
methods of separation.

It has been suggested that HDL subclasses, including the
different measures of HDL particle heterogeneity, are better
markers for CVD in comparison to static measures of HDL
mass like cholesterol content. In comparison to HDL choles-
terol, the profile of HDL particles showed stronger association
with atherosclerosis [109]. In a cross-sectional analysis per-
formed on the multiethnic study of atherosclerosis (MESA)
cohort, small- and medium-sized HDL particles assessed
using NMRwere found to be strongly and inversely associated
with carotid intima thickening [110]. A prospective study has
observed that baseline HDL3-C levels were an independent
protective factor against arterial stiffness, while no association
was observed between HDL2-C and carotid pulse wave veloc-
ity [111]. HDL particle size has also been shown to determine
the functions of HDL like cholesterol efflux capacity [112].

The distribution of proteins varies across the HDL frac-
tions. Small and dense HDL3 has higher protein content
which was confirmed by mass spectrometric analysis of
HDL subfractions. There are some proteins which are specif-
ically present on HDL3 particles like apoJ, apoL-1, apoF,
PON1/3, PLTP, and PAF-AH [113]. HDL3 fraction has
greater number of HDL-associated enzymes: LCAT, PON1,
and PAF-AH. apoE, apoC-I, and apoC-III are present on
larger HDL2. Specific protein-protein interactions, facilitated
by lipids, account for heterogeneity in the complement of
HDL proteins which provides distinct functionalities to
HDL fractions. These subfractions play a role not only in
lipid metabolism but also in acute phase response, innate
immune response, and plaque stability [91].

5.4. HDL Particle Number and Mean Particle Size. Concentra-
tion (number) of HDL particles in circulation and mean size
of HDL particles are emerging predictors of CVD risk. HDL
particle numbers are quantified through nuclear magnetic
resonance (NMR) spectroscopy, ion mobility assay, or gradient
gel electrophoresis [114]. In MESA cohort and JUPITER trial
(Justification for the Use of statins in Prevention: an Interven-
tion Trial Evaluating Rosuvastatin), elevated number of HDL
particles was associated with reduced risk of incident CVD
[115]. Mean HDL size measured using NMR or ion mobility
measurements is an integrative measure of HDL heterogeneity.
Mean HDL size shows an inverse association with CVD risk
[115, 116]. HDL particle size has also been demonstrated to
impact HDL functions like CEC and paraoxonase activity [117].

6. Conclusion

The future of HDL as a biomarker for CVD is rapidly evolving.
Simultaneously, new information regarding the structural and
functional complexity of HDL is emerging. Thus, there is an
emerging consensus that HDL structural components and
functional aspects may be better predictors of CVD risk than
static mass of HDLmeasured throughHDL-C. Recent research
findings advocate the use of HDL functions like CEC levels as
the predominant therapeutic targets rather than HDL choles-
terol mass. This could be the norm in the future clinical prac-
tice with the advent of standardized assays for HDL functions

like CEC. Additionally, research to identify HDL components
that manifest HDL functionality and whose assessment is
widely amenable in clinical setups may be in wider use. Thus,
an assay for composite measure of HDL function that is adapt-
able for clinical setup should be the goal for future HDL
research and should study its impact on the risk of CVD. Also,
HDL as a therapeutic agent for primary and secondary preven-
tion of CVD is emerging and being tested in clinical trials and
charters a path different from the earlier failures of HDL-C-
elevating drugs. Studies are focusing on improving the HDL
functions in individuals with supplementation of recombinant
HDL or HDL components like recombinant apoA-I. Under-
standing the complex nature of HDL and its role as a protective
agent, biomarker, and therapeutic target in CVD remains an
exciting area of research.
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