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Background. Approximately 70% of congenital deafness is attributable to genetic causes. Incidence of congenital deafness is known
to be higher in families with consanguineous marriage. In this study, we investigated the genetic causes in three consanguineous
Pakistani families segregating with prelingual, severe-to-profound deafness. Results. Through targeted next-generation
sequencing of 414 genes known to be associated with deafness, homozygous variants c.536del (p. Leu180Serfs∗20) in TECTA,
c.3719 G>A (p. Arg1240Gln) in MYO7A, and c.482+1986_1988del in HGF were identified as the pathogenic causes of enrolled
families. Interestingly, in one large consanguineous family, an additional c.706G>A (p. Glu236Lys) variant in the X-linked
POU3F4 gene was also identified in multiple affected family members causing deafness. Genotype-phenotype cosegregation was
confirmed in all participating family members by Sanger sequencing. Conclusions. Our results showed that the genetic causes of
deafness are highly heterogeneous. Even within a single family, the affected members with apparently indistinguishable clinical
phenotypes may have different pathogenic variants.

1. Background

Congenital hearing loss affects 1‰-2‰ of newborns world-
wide. Among them, approximately 70% of deafness is attrib-
utable to genetic causes [1]. The genetics of hearing loss is
extremely heterogeneous as, to date, more than 120 genes
are reported to cause nonsyndromic hearing loss (Hereditary
Hearing Loss Homepage; https://hereditaryhearingloss.org).

Similarly, numerous genes are known to cause syndromic
hearing loss [2–10]. In recent years, next-generation
sequencing (NGS) has been increasingly implemented in
the genetic diagnosis of heterogeneous diseases including
hearing loss, providing a high-throughput, efficient approach
to target hundreds of causative genes or even the whole
exome for the identification of pathogenic variants [11, 12].
Due to the extremely high heterogeneity of genetic hearing
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loss, however, determining the pathogenicity of the candidate
variants can be challenging in many cases. For example, rare,
benign variants are not always distinguishable from the true
pathogenic variants following general guidelines for sequenc-
ing data interpretation [13, 14]. Reporting of rare variants
with phenotypic cosegregation in large families, therefore,
will provide valuable references for genetic diagnosis of deaf-
ness in isolated cases [14].

The deafness-associated genes play diverse roles in the
development, function, and maintenance of the inner ear.
Variants in these genes correspondently lead to variable
auditory phenotypes in regard to onset, severity, progression,
audiogram profile, and accompanying syndromic features
[1]. In some cases, different variants in the same gene, such
as MYO7A, may result in distinct phenotypes in nonsyn-
dromic deafness DFNA11 and DFNB2 [15, 16] or syndromic
deafness USH1B [17]. Documentation and analysis of the
genotype-phenotype correlation covering a broad range of
novel or previously less characterized variants are therefore
necessary to facilitate genetic diagnosis of hearing loss.

Approximately 80% of genetic deafness are inherited in
an autosomal recessive manner [18]. In many cases, they
are closely related to consanguineous marriage, which is
common in regions of the Middle East, South Asia, South
America, and Africa [19, 20]. Studies in Iranian and Palestin-
ian populations, for example, showed that, respectively, 65%
and 58% of deaf children were born to parents having
consanguineous marriage [21, 22]. A number of deafness-
associated genes are discovered by linkage analyses based
on homozygosity mapping of large consanguineous deaf
families [23, 24].

In this study, we performed targeted NGS in three Paki-
stani consanguineous families and identified novel variants
in TECTA and POU3F4 and previously reported variants in
MYO7A and HGF as the pathogenic causes for prelingual,
severe-to-profound deafness. Interestingly, in a large, multi-
generational consanguineous family, we identified two sepa-
rated variants in HGF and POU3F4, illustrating the complex
genetic heterogeneity of deafness.

2. Materials and Methods

2.1. Subjects and Clinical Evaluations. Three consanguine-
ously married families (PK-DD-KA-01 (Figure 1), PK-DD-
RP-01 (Figure 2), and PK-DB-OKA-01 (Figure 3)) were
enrolled from three districts (Muzafargarh, Rajanpur, and
Okara, respectively) in Punjab (Pakistan) with multiple
individuals suffering from deafness. Written informed
consents were obtained from all participants and/or their
parents before their enrollment in this study. Family mem-
bers affected with deafness were examined in the ear, nose,
and throat (ENT) wards of their respective District Head
Quarter Hospital by medical specialists. Clinical evaluations
included complete medical history interview, comprehen-
sive physical examination, and pure tone audiometry
(PTA). Otoscopic examination was performed to exclude
hearing loss due to infections, trauma, or other environ-
mental factors. The vestibular function was evaluated by
medical history inquiry and behavioral testing. This study

was approved by the Research Ethics Committee of the
Peking University Shenzhen Hospital.

2.2. Genetic Analysis. Genomic DNA was extracted from
peripheral blood samples of the enrolled subjects by using the
QIAamp DNA BloodMini Kit (QIAGEN, Shanghai). Targeted
NGSwas performed in the proband fromeach family (arrows in
Figures 1(a), 2(a), and 3(a)) plus individual IV-5 from Family
PK-DB-OKA-01. The customized capture panel (MyGenostics,
Beijing) targeted the exonic region of 414 known deafness-
associated genes; in addition to the exonic region, the panel
also included all intronic, intergenic, and noncoding regions
containing variants that reported in HGMD (147 genes, 751
variants) (Supplementary Table S1). Candidate pathogenic
variants were defined as nonsynonymous (including
nonsense, missense, splice-site, and indels) variants with
minor allele frequencies (MAFs) less than 0.005 in public
databases including 1000 Genomes, dbSNP, and GnomAD.
Potential pathogenic effect of the candidate variants was
evaluated by in silico tools MutationTaster, PROVEAN,
SIFT, and PolyPhen-2. Cosegregation of the deafness
phenotype and the pathogenic variants was confirmed in
participating family members by PCR amplification and
Sanger sequencing; the results were shown in each pedigree
map. Pathogenicity of the variants was classified following
the guidelines of ACMG 2015 [13].

3. Results

3.1. Clinical Characterization. There are at least seven
subjects in family PK-DD-KA-01 (Figure 1(a)), 2 in PK-
DD-RP-01 (Figure 2(a)), and 22 in PK-DB-OKA-01
(Figure 3(a)) that were suffering from bilateral, prelingual,
severe-to-profound sensorineural hearing loss (Figures 1(c),
2(c), and 3(c)). All affected subjects in Families PK-DD-
KA-01 and PK-DD-RP-01 and half (11/22) of the affected
subjects in Family PK-DB-OKA-01 were born to parents
with consanguineous marriage. No ear malformation, vestib-
ular dysfunction, developmental abnormality, or syndromic
symptom were identified in enrolled subjects.

3.2. Identification of the Pathogenic Variants in Probands.
Targeted NGS of 414 known deafness genes was performed
on probands of the three families. Homozygous variants
c.536del (p. Leu180Serfs∗20) in TECTA (NM_005422.4),
c.3719 G>A (p. Arg1240Gln) in MYO7A (NM_
001127180.2), and c.482+1986_1988del in HGF (NM_
000601.6)were identified as the candidate pathogenic variants
in probands IV-4 of Family PK-DD-KA-01 (Figure 1(a)), IV-
4 of Family PK-DD-RP-01 (Figure 2(a)), and IV-24 of Family
PK-DB-OKA-01 (Figure 3(a)), respectively. All candidate
variants have minor allele frequencies lower than 0.0001 in
the public database gnomAD and are categorized as likely
pathogenic based on ACMG guidelines (Table 1).

3.3. Identification of a Second Pathogenic Variant in Family
PK-DB-OKA-01. Sanger sequencing confirmed that homozy-
gous variants c.536del (p. Leu180Serfs∗20) in TECTA and
c.3719 G>A (p. Arg1240Gln) in MYO7A segregated with
the deafness in all participating members in Families PK-
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Figure 1: Continued.
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DD-KA-01 (Figure 1(b)) and PK-DD-RP-01 (Figure 2(b)),
respectively. In Family PK-DB-OKA-01, however, five deaf
members (IV-4, IV-5, IV-6, III-10, and III-17, marked blue
in (Figure 3(a))) were either heterozygous or wild type for
variant c.482+1986_1988del in HGF (Figure 3(b)). A second
round of targeted NGS on subject IV-5 in this family identi-
fied a hemizygous c.706G>A (p. Glu236Lys) variant in the X-
chromosome gene POU3F4 (NM_000307.5), a causative
gene for X-linked nonsyndromic deafness DFNX2. The
c.706G>A (p. Glu236Lys) variant segregated with the deaf-
ness in the five aforementioned male family members, but
it was not detected in any other family members
(Figures 3(a) and 3(b)). This novel variant is not seen in the
gnomAD databases and has not been previously reported in
association with hearing loss. It substitutes an evolutionarily
conserved, acidic residue glutamic acid to an alkaline residue
lysine at position 236 (Figure 3(e)) and is predicted to be
deleterious or probably damaging by in silico tools Mutation-
Taster, PROVEAN, SIFT, and PolyPhen-2 (Table 1).

4. Discussion

Hearing loss is one of the major disabilities worldwide, which
is often induced by loss of sensory hair cells [25–29] and
spiral ganglion neurons [30–34] in the inner ear cochlea.
Hearing loss could be caused by genetic factors, aging, chronic
cochlear infections, infectious diseases, ototoxic drugs, and
noise exposure [35–42], and genetic factors account for around
70% of the hearing loss. In the present study, we are reporting
the genetic causes of the prelingual, severe-to-profound deaf-
ness in three consanguineous Pakistani families through tar-
geted NGS approach. Variants c.536del (p. Leu180Serfs∗20)

inTECTA and c.706G>A (p. Glu236Lys) in POU3F4 are novel,
while c.3719 G>A (p. Arg1240Gln) in MYO7A and c.482
+1986_1988del inHGFwere previously reported in only very
limited cases associated with deafness [43, 44]. In support of
their pathogenicity, all four variants segregated with multiple
affected and unaffected family members consistent with the
autosomal recessive or X-linked inheritance modes. Consid-
ering that homozygosity of rare variants is quite rare in the
general population, the data generated during the present
study will provide valuable genetic evidence regarding the
genetic basis of deafness.

The phenotypes of the three families in this study are all
characterized as prelingual, severe-to-profound sensorineu-
ral hearing loss. Consistently, a similar type of hearing loss
has also been associated with many variants in TECTA,
MYO7A, HGF, and POU3F4 in previous reports. TECTA
encodes α-tectorin, which is one of the main components
to comprise the tectorial membrane in the cochlea [45].
Unlike dominant TECTA variants, which are associated with
milder hearing loss DFNA8/12 (MIM 601543), the recessive
TECTA variants often result in prelingual, severe-to-
profound hearing loss (DFNB21, MIM 603629) [46–50]. Like
several other recessive, truncating variants in TECTA, the
c.536del (p. Leu180Serfs∗20) variant identified in this study
causes a frameshift; this will result either in an abortive
protein truncated in exon 4 or in no protein at all due to
nonsense-mediated mRNA decay [51] and likely results in
loss of function (Figure 4(a)). MYO7A is extensively
expressed in the hair cells and plays an important role in
maintaining stereocilia differentiation and morphology [52,
53]. The c.3719 G>A (p. Arg1240Gln) variant in MYO7A
locates in the highly conserved first MyTH4 domain
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Figure 1: Genetic and phenotypic characterization of Family PK-DD-KA-01. (a) Pedigree and genotype showing the c.536del (p.
Leu180Serfs∗20) variant in TECTA. (b) Sanger sequencing of the c.536del (p. Leu180Serfs∗20) variant in affected and unaffected family
members. (c) Pure tone audiometry showing the bilateral profound hearing loss in affected family member IV-4. (d) Multiple sequence
alignment showing the conservation of the L180 residue in different species.
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(Figure 4(b)). It has been previously reported to be associated
with Usher syndrome 1B (MIM 276900), characterized by
congenital, severe-to-profound hearing loss, and late-onset
retinitis pigmentosa before or after puberty [44, 54]. Since
the two affected children with the c.3719 G>A (p.
Arg1240Gln) homozygous variant in our study were 7 and
9 years old without apparent visual abnormality, the poten-
tial visual dysfunction remains to be determined at older
age. HGF encodes a hepatocyte growth factor and is
expressed in the stria vascularis of the mouse inner ear. The
c.482+1986_1988del variant identified in this study has been
previously reported to cause prelingual, profound deafness
(DFNB39, MIM 608265) [43]. AHgf 10 bp deletion in homo-
zygous mutant mice, which fully encompasses the 3 bp dele-
tion in humans, also displayed profound hearing loss at 4
weeks age (Figure 3(d)) [55]; Hgf 10 bp deletion in homozy-
gous mice causes low expression of Hgf in the cochlea, which
leads to developmental defect of the stria vascularis and

reduced endocochlear potential in the cochlea [55]. The
3 bp deletion in the intronic region possibly has a similar
mechanism to cause hearing loss. POU3F4 encodes a POU
domain transcription factor expressed in a spiral ligament
and spiral limbus [56]. Most DFNX2 (MIM 304400) patients
with POU3F4 variants have profound hearing loss with or
without developmental abnormality of the conductive com-
ponents [57, 58]. Although the temporal bone abnormities
could not be confirmed in this family, the PTA results of
affected males in the family only presented sensorineural
hearing loss, which is less common than mixed hearing loss
in patients with POU3F4 variants. The novel c.706G>A (p.
Glu236Lys) variant identified in this study is located in the
highly conserved POU-specific domain (Figure 4(c)), which
is similar to a previously reported c.707A>C; p. (Glu236Ala)
variant in a Turkey family [59]. Overall, our results are con-
sistent with known genotype-phenotype correlation of the
corresponding genes.
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Figure 2: Genetic and phenotypic characterization of Family PK-DD-RP-01. (a) Pedigree and genotype showing the c.3719 G>A (p.
Arg1240Gln) variant in MYO7A. (b) Sanger sequencing of the c.3719 G>A (p. Arg1240Gln) variant in affected and unaffected family
members. (c) Pure tone audiometry showing the bilateral profound hearing loss in affected family member IV-4. (d) Multiple sequence
alignment showing the conservation of the R1240 residue in different species.
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Figure 3: Continued.
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As summarized above, in this study, rare pathogenic var-
iants were identified in four separate deafness-associated
genes, TECTA, MYO7A, HGF, and POU3F4, which have
distinct expression profiles and functions in the inner ear.
Nevertheless, all four variants resulted in an almost uni-
formed type of prelingual, severe-to-profound deafness,
representing yet another example of extremely high genetic
heterozygosity for hearing loss. Interestingly, within the
large pedigree of Family PK-DB-OKA-01 with multiple
consanguineous marriages, five of the fifteen affected indi-
viduals actually have a hemizygous, X-linked variant as a
separate cause of hearing loss irrelevant to the consanguine-
ous marriage pattern (Figure 3(a)). Since most novel
deafness-causative genes were originally identified through

genetic analysis of such large pedigrees based on assumptions
that all affected family members share a single pathogenic
variant, our results suggested that caution should remain
against such complexed inheritance patterns involving two
or multiple genetic causes.

5. Conclusions

In summary, our study of three consanguineous families with
prelingual, severe-to-profound deafness revealed a rather
heterogeneous variant spectrum in the corresponding
Pakistani deaf communities. Next-generation sequencing
illustrates its advantages in resolving such complexed cases.
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Figure 3: Genetic and phenotypic characterization of Family PK-DB-OKA-01. (a) Pedigree and genotypes showing the 482+1986-1988del
variant in HGF (marked as -) and the c.706G>A (p. Glu236Lys) variant in POU3F4 (marked as X-). (b) Sanger sequencing of the 482
+1986-1988del and c.706G>A (p. Glu236Lys) variants. (c). Pure tone audiometry showing the bilateral profound hearing loss in affected
family members IV-24 and IV-6. (d) Position of the 3 bp deletion in human HGF and the 10 bp deletion in mouse Hgf that both lead to
profound hearing loss. (e) Multiple sequence alignment showing the conservation of the E236 residue in different species.
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p.Val281fs

p.Gly416fs

p.Cys912Ter

(a)

MYO7A

MyTH4
Motor Domain FERM

N C

2215aa1a

p.Arg1240Gln

MyTH4IQ
FERMSH3

(b)

c.249dup(p.Gly84fs)
c.346delG(p.Ala116Profs)
c.383delG(p.Gly128 fs)
c.410del (p.Pro137fs)
c.601–606delTTCAAA(p.Phe201/Lys202 del)
c.603_606CAAA (p.Gln203fs)
c.632C > T(p.Thr211Met)
c.647G>A (p.Gly216Glu)
c.648del (p.Leu217fs)
c.683C > T(p.Ser228Leu)
c.686A > G(p.Gln229Arg)
c.689C > T(p.Thr230Ile)
c.695T>C (p.Ile232Thr)
c.707A > C(p.Glu236Ala)
c.727_728insA(p.Asn244Lysfs⁎26)

c.249dup(p.Gly84fs)
c.293C > A (p.Ser98⁎)
c.341G>A (p.Trp114Ter)
c.346delG (p.Ala116Profs)
c.383delG (p.Gly128 fs)
c.385C>T (p.Gln129Ter)

POUS POUH
N C

361aa1a

p.Glu236Lys

del 2.6 kb, 6.5 kb, 7 kb, 4.4 kb
8 kb, l30 kb, 20 kb, 130 kb, 200 kb,
220 kb, 530 kb, 1200 kb
c.170G>A (p.Trp57Ter)
c.232C>T (p.Gln78Ter)
c.235C>T (p.Gln79Ter)

c.973T > A(p.Trp325Arg)
c.973delT(p.Trp325Glyfs⁎12)
c. 983A > C(p.Asn328Thr)
c.985C > G(p.Arg329Gly)
c.986G > C(p.Arg329Pro)
c.987T > C(p.Leu308Thr)
c.990A>T (p.Arg330Ser)
c.1000A>G (p.Lys334Glu)

c.772delG(p. Glu 258Argfs)
c.853_854del (p.Ile285fs)
c.862_865del (p.Val289fs)
c.877C>G (p.Leu293Val)
c.895delA(p.Lys298Serfs)
c.902C > T(p.Pro301Leu)
c.907C > T(p.Pro303Ser)
c.923T>A(p.Ile308Asn)
c.925T > C(p.Ser309Pro)
c.935C>T (p.Ala312Val)
c.950T>G (p.Leu317Trp)
c.950dup (p.Leu317fs)
c.967C>G (p.Arg323Gly)
c.968G>A (p.Arg323His)
c.971T>A(p.Val324Asp)

c.1069delA(p.Thr354Glnfs⁎113)
c.1086_⁎3del (p.Ter362TrpextTer?)

c.406C > T(p.Gln136⁎)
c.410del (p.Pro137fs)c.79C>T(p.Gln27⁎)
c.478C>T (p.Gln160Ter)
c.499C>T (p.Arg167Ter)

c.530C > A(p.Ser177⁎)
c.559G>T(p.Glu187⁎)

POU3F4

(c)

Figure 4: Domain structure and variant position of TECTA, MYO7A, and POU3F4 proteins. (a) α-Tectorin consists of entactin domain
(ENT), zonadhesin (ZA) domain, and C-terminal zona pellucida (ZP) domain. Previously reported autosomal recessive variants in
TECTA are presented, with the c.536del (p. Leu180Serfs∗20) variant highlighted by the red arrow. (b) Myosin VIIA consists of a motor
domain, five IQ motif repeats, two large repeats of MyTH4 and FERM domains, and an SH3 domain. The c.3719 G>A (p. Arg1240Gln)
variant is highlighted by the red arrow. (c) POU3F4 consists of a POU-specific domain (POUS) and a POU homeodomain (POUH).
Previously reported POU3F4 variants are presented, with the c.706G>A (p. Glu236Lys) variant highlighted by the red arrow.
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