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Bioactive peptides (BPs) are fragments of 2-15 amino acid residues with biological properties. Dietary BPs derived from milk, egg,
fish, soybean, corn, rice, quinoa, wheat, oat, potato, common bean, spirulina, and mussel are reported to possess beneficial effects on
redox balance and metabolic disorders (obesity, diabetes, hypertension, and inflammatory bowel diseases (IBD)). Peptide length,
sequence, and composition significantly affected the bioactive properties of dietary BPs. Numerous studies have demonstrated
that various dietary protein-derived BPs exhibited biological activities through the modulation of various molecular mechanisms
and signaling pathways, including Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant
response element in oxidative stress; peroxisome proliferator-activated-y, CCAAT/enhancer-binding protein-«, and sterol
regulatory element binding protein 1 in obesity; insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B and
AMP-activated protein kinase in diabetes; angiotensin-converting enzyme inhibition in hypertension; and mitogen-activated
protein kinase and nuclear factor-kappa B in IBD. This review focuses on the action of molecular mechanisms of dietary BPs

and provides novel insights in the maintenance of redox balance and metabolic diseases of human.

1. Introduction

Dietary food proteins contain short sequences of amino acids
(AAs) that possess various biological activities. The short
chains of AAs with biological properties are known as bioac-
tive peptides (BPs). BPs usually contain 2-15 AA residues.
The BP sequences present in the food proteins are generally
hidden in the inner core of the parent proteins [1]. However,
bioactive peptides can be released from food proteins with
the help of several techniques including proteolysis, micro-
bial fermentation, and gastrointestinal (GI) digestion [2-4].
Among these methods, in vitro enzymatic hydrolysis using
commercial proteolytic enzymes is the widely employed
method in recent times. The proteases cleave the specific sites
on the dietary proteins and release the short chains of BPs
[5]. Enzymatic hydrolysis of dietary proteins enhances the
nutritional value, bioactivity, and functionality and reduces
the allergenicity [6]. Several commercial proteases, namely,
thermolysin, bromelain, trypsin, alcalase, papain, pepsin,

neutrase, pancreatin, corolase, protamex, and pronase, have
been employed to generate biologically active peptides from
various dietary proteins. Among the above-mentioned prote-
ases, alcalase, trypsin, pepsin, and pancreatin are the most
widely used proteases for the preparation of peptides, with
various health benefitting properties, from numerous food
sources [7-10]. These enzymes are routinely used due to their
broad specificity to produce smaller peptides with various
bioactivities and easily availability.

Dietary BPs have been shown to positively affect the var-
ious systems of the human body including the immune, car-
diovascular, GI, and nervous systems [11]. The BPs must
cross the GI barrier and reach the target tissue or organ in
order to exhibit health benefits. Dietary peptides exert bioac-
tivities through the modulation (either enhance or decrease)
of various molecular mechanisms and pathways. Bioactive
properties of dietary peptides are affected by the peptide
sequence, length, hydrophobicity, and composition [12-14].
Dietary peptides are easily absorbable across the intestinal
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border via peptide transport 1 (PepT1) and possess excellent
functional properties (solubility, foaming, and emulsification
properties) [15-18]. Additionally, dietary BPs are generally
safer than synthetic drugs. Hence, BPs obtained from dietary
sources could be used as health foods/nutraceuticals in the
management/prevention of various diseases. Numerous BPs
derived from whey, casein, milk, soybean, shark, bonita,
pacific whiting, porcine, and bovine have been on the market
in various countries for human use as functional foods/health
foods/nutraceuticals [19].

Redox homeostasis (balance) is an important cellular
process that plays a vital role in the maintenance of a normal
physiological steady state [20]. Disturbance of balance
between oxidants and antioxidants results in the oxidative
stress. Recently, many BPs prepared from various food
sources such as walnut, egg, fish, quinoa, soybean, millets,
corn, wheat, rice, potato, milk, and spirulina have shown to
possess beneficial effects in the maintenance of redox homeo-
stasis and prevention/management of metabolic diseases
[21-26]. However, reviews describing the role of dietary
BPs in the modulation of molecular mechanisms of redox
balance and metabolic diseases are scanty in the literature.
Hence, the current review focuses on the recent literature
related to the effects of dietary BPs on various molecular
mechanisms and signaling pathways involved in the redox
homeostasis and metabolic diseases (obesity, diabetes, hyper-
tension, and inflammation), as shown in Figure 1.

2. Roles of Dietary Bioactive Peptides in
Maintaining Redox Balance

Redox reaction is a chemical reaction that involves the trans-
fer of electrons from the reducing agent to the oxidizing
agent [27]. Redox homeostasis (balance) plays a significant
role in the maintenance of ordinary physiological functions
of the human body. Redox balance is considerably affected
by reactive oxygen species (ROS) that are generated during
aerobic cellular metabolism [28]. Reactive oxygen species
are unstable and highly reactive in the redox reactions due
to the presence of unpaired electrons in the outer shells.
Under normal physiological conditions, redox balance is
maintained through careful regulation of ROS generation
and elimination from the body [29]. However, excess pro-
duction of ROS during oxidative stress conditions could alter
the intracellular redox balance and promote the development
of numerous diseases such as cancer, diabetes, atherosclero-
sis, cardiovascular, and neurodegenerative diseases. The
body’s natural antioxidant defense system, namely, superox-
ide dismutase (SOD), glutathione peroxidase (GPx), and cat-
alase (CAT), plays a vital role in the maintenance of balance
between ROS formation and elimination [30].

Several studies have demonstrated that a number of pep-
tides identified from various dietary sources have shown the
ability to suppress oxidative stress and maintain the redox
balance through multiple molecular mechanisms such as
scavenging free radicals; chelating transition metals; enhanc-
ing the production of endogenous antioxidant enzymes SOD,
CAT, and GPx; and stimulating the nuclear factor erythroid
2-related factor 2 (Nrf2) antioxidant defense mechanism
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[12, 15,17, 26, 31-34]. The antioxidant mechanisms showed
by the dietary peptides mainly depend on the peptide
sequence, length, composition, and hydrophobicity [12, 34,
35]. The food-derived antioxidant peptides usually contain
3-15 AA residues [12, 32]. Table 1 shows the AA sequences
and molecular mechanisms of antioxidant peptides produced
from various dietary proteins.

The Kelch-like ECH-associated protein 1- (Keapl-) Nrf2-
antioxidant response element (ARE) is the main antioxidant
signaling pathway that prevents oxidative stress and helps
maintain the optimum redox steady state in the body [36].
The Nrf2 is a vital leucine zipper transcription factor, which
controls the expression of several antioxidant proteins in
response to ROS stress. Keapl is a suppressor protein for
Nrf2, and under a normal ROS steady state, Keap1 binds with
Nrf2 and helps proteasome to degrade the Keap1-Nrf2 com-
plex. However, Nrf2 separates from Keapl during oxidative
stress and migrates to the nucleus where it attaches to ARE
and thereby promotes the expression of several antioxidant
enzymes/proteins [32, 37, 38]. Endogenous antioxidant
enzymes such as SOD, GPx, and CAT scavenge different
kinds of ROS and thereby protect the cells from oxidative
stress-induced damage. SOD catalyses the transformation
of superoxide anion to O, and H,0,. CAT converts H,0,
to H,0 and O,. GPx helps in the reduction of H,O, to
H,0 and O, [39]. Hence, it is important to stimulate the
Nrf2 antioxidant signaling pathway to suppress/prevent the
oxidative stress in the body.

Recently, numerous novel antioxidant peptides that stim-
ulate the Keapl-Nrf2-ARE antioxidant signaling pathway
and antioxidant enzymes have been isolated from different
dietary sources such as casein [40], milk protein concentrate
[41], corn gluten [31], soybean [42], walnut [43], potato,
Moringa oleifera seeds [25], watermelon seeds [39], Crassos-
trea rivularis [44], krill [38], turtle [45], Mytilus coruscus
[46], Channa argus [3], and silver carp muscle [12]. Snake-
head (Channa argus) soup was hydrolyzed using pepsin
and pancreatin and identified four antioxidant peptides,
IVLPDEGK, PGMLGGSPPGLLGGSPP, SDGSNIHFPN,
and SVSIRADGGEGEVTVFT [3]. The authors performed
molecular docking studies for the peptides and indicated that
peptides could bind to the active site of Keapl and thereby
activate the cellular antioxidant Keap1-Nrf2 signaling path-
way. A peptide RDPEER isolated from alcalase hydrolysate
of watermelon seed reduced the oxidative stress by reducing
ROS and increasing the antioxidant enzymes, SOD, CAT,
and GSH-Px, in HepG2 cells [39]. Four casein-derived pep-
tides, ARHPHPHLSFM, AVPYPQR, NPYVPR, and
KVLPVPEK, were shown to decrease the oxidative stress in
Caco-2 cells by enhancing antioxidant enzymes, namely,
SODI, Trx1, GR, TrxR1, and NQO1, through the activation
of the Keapl-Nrf2 signaling mechanism. It was found that
the peptides bound to the Nrf2 and prevented the binding
between Keapl and Nrf2 and thereby stimulated the
increased expression of antioxidant enzymes [32]. In a study,
a peptide, AMVDAIAR, isolated from pepsin hydrolysate of
krill enhanced antioxidant enzymes SOD, CAT, and GPx and
thereby suppressed the oxidative stress in H,O,-induced
hepatocytes through increasing the expression of Nrf2 [38].
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Modulation of important mechanism by dietary
peptides in redox balance and metabolic disorders

1

Redoxbalance
Stimulation o f KEAP1-NRF2-ARE signaling
pathway

Obesity
Downregulation o f PPAR-y, C/EBPa,
SREBP1 pathway

Diabetes
Activation of IRS-1/PI3K Akt and AMPK pathway

Hypertension
Inhibition o f ACE and reduction o f
systolic blood pressure (SBP)

Inflammation
Inhibition o f activation o f NF-«xB and M APK
pathways

FiGure 1: Effects of dietary bioactive peptides on molecular mechanisms involved in redox balance and metabolic disorders. ACE:
angiotensin-converting enzyme; Akt: protein kinase B; AMPK: AMP-activated protein kinase; ARE: antioxidant response element; C/EBP:
CCAAT-enhancer-binding proteins; IRS-1: insulin receptor substrate; PPAR: peroxisome proliferator-activated receptor; Keap1l: Kelch-like
ECH-associated protein 1; MAPK: mitogen-activated protein kinase; NF-xB: nuclear factor-«B; Nrf2: nuclear factor erythroid 2-related
factor 2; PI3K: phosphatidylinositol 3-kinase; SREBP1: sterol regulatory element-binding protein 1.

Peptide EDYGA derived from soft-shelled turtle enhanced
the Nrf2 level through the binding of the glutamate residue
of the peptide to Arg 415 of the Kelch receptor pocket [45].
Dipeptide IF identified from potato exhibited antioxidant
effects by increasing the antioxidant enzymes GPx 4, SOD1,
HO-1, SOD2, and peroxiredoxin 2 in the kidney tissues of
the spontaneously hypertensive rats (SHRs) [33]. The
authors concluded that the dipeptide showed antioxidative
activity through preventing Nrf2 degradation by protein
kinase B (Akt) activation and GSK-3 phosphorylation.

3. Role of Dietary Bioactive Peptides in Obesity

Obesity is a public health issue worldwide and characterized
by excessive body fat accumulation due to the difference
between energy intake and energy spending, which enhances
the risk of metabolic disorders, namely, type 2 diabetes mel-
litus (T2DM), hypertension, and cardiovascular disorders
[47, 48]. It is estimated that globally, 18% men and 21%

women will suffer from obesity by 2025 [49]. Adipocytes
are fat cells and the main function of adipocytes is the storage
of energy as fat. Preadipocytes differentiate into mature adi-
pocytes through a process known as adipogenesis. Hypertro-
phy and hyperplasia of adipocytes are two mechanisms that
contribute to the obesity and obesity-related metabolic disor-
ders [50, 51].

Several recent studies demonstrated that various dietary
peptides from soybean, quinoa, common bean, camel whey,
spirulina, blue mussel, skate, tuna, Alaska pollock, sardinella,
hazelnut, and kefir exhibited antiobesity effects through
modulation of multiple molecular mechanisms including
the reduction of adipogenesis through downregulation of
the expression of peroxisome proliferator-activated receptor-
(PPAR-) y, CCAAT/enhancer binding protein alpha
(C/EBP-a), sterol regulatory element binding protein-
(SREBP-) 1, and HMGCR, enhancing lipolysis, reducing
body weight (BW) and food intake, inhibiting lipase activity,
decreasing the accumulation of triglycerides, and blocking
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TaBLE 1: Molecular mechanisms of action of dietary peptides in redox balance.

Enzyme used

Dleta'ry to produce Peptide sequence or Object IC,/ECs, values Act1v1ty/mthanlsms of Reference
protein source . molecular weight - action
peptides
Peptides scavenged ABTS
Ziziphus Papain and DPPH, ABTS, and DPPH and showed
L . . VGQHTR and GWLK and metal — . [114]
jujuba fruits trypsin chelating assavs strong metal chelating
& Y activity
Peptides reduced ROS and
H,0,-induced increased SOD, CAT
Corn gluten Alcalase <1kDa and GLLLPH HepG2 — activities, and GSH levels [115]
and GR activity
Peptides enhanced the
. . activities of CAT, SOD and
Milk protein Trypsin — H.ealth.y and — reduced glutathione, [41]
concentrate diabetic rats .
glutathione-S-transferase,
and GPx
. Peptide showed strong
Plennzzzla ORAC and oxygen radical absorbance
fn acroaleal Corolase PP SDITRPGGNM FRAP assavs — capacity and ferric- [116]
rotein & 4 reducing antioxidant
P power activity
Peptide exhibited high
. . DPPH and DPPH IC,, 0.15 DPPH free radical
Rice bran Trypsin YSK reducing power . . [1]
assavs mg/mL scavenging activity and
¥ reducing power
GPA activated the
expression of antioxidant
response element-driven
T . . antioxidant enzyme genes
Nlhle tllapl'a Ginger GPA H,0,-induced . HO-1, NAD(P)H quinone [37]
skin gelatin protease IPEC-J2 cell .
oxidoreductase-1, and
glutamyl cysteine ligase
modulator and suppressed
ROS production
Manchurian Peptides increased the
walnut Alkaline antioxidant capacity by
(Juglans rotease <3kDa Mice — enhancing SOD, GSH-Px, [43]
mandshurica P and CAT activities and
Maxim.) reducing the MDA content
. Peptides displayed DPPH
iﬁ?;&?;f:i radical scavenging activity
Soybean Alcalase <3KkDa in Caco-2 cell DPPH IC,, 2.56 and decreasefi intracellular [42]
and DPPH mg/mL ROS and stimulated the
assa antioxidant enzymes CAT,
Y GP, and GR
Oyster Peptides showed
antioxidant capacity by
5g;flzssgrea Alcalase <3kDa Norﬁ?iemale — increasing the activities of [44]
meat GSH-Px, SOD, and CAT
and reducing MDA levels
YFYPQL showed
antioxidant and inhibited
H,0, induced ROS generation and
. Caco-2 cell and decreased cellular oxidative
Buffalo casein o YFYPQL ABTS and - products, MDA, and [40]
ORAC assays protein carbonyls and

increased CAT, SOD, and
GPx by stimulating Nrf2
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TasLE 1: Continued.
Dietary Enzyme used Peptide sequence or Activity/mechanisms of
. to produce . Object IC,,/ECs, values . Reference
protein source . molecular weight action
peptides
stress signaling and
scavenged ABTS and
ORAC free radicals
TVGGAPAGRIVME,
Wheat germ Alcalase, VGGIDEVIAK, Peptides exhibited strong
. pepsin, and GNPIPREPGQVPAY, ABTS assay — ABTS radical scavenging [117]
protein proteinase K SGGSYAD ELVSTAK, and activity
MDATALHYENQK
Carp Peptides showed
(Cyprinus Healthy adult antioxidant activity by
carpio) skin Protamex B Wistar rats B increasing the glutathione (18]
gelatin reductase activity
Y RvNaeE SYPTECRMR exhibited
Sesame Alcalase and RENIDKPSRA ’ DPPH and DPPH IC,, 0.105 the highest DPPH and
(-icum L.) calase ? and ABTS IC, ABTS free radical [34]
seed protein trypsin SYPTECRMR, ABTS assays 0.004 mg/mL scavenging antioxidant
GGVPRSGEQEQQ, and ' -
AGEQGFEYVTER activity
Peptides exhibited DPPH
and ABTS radical
Fingermillet  Trypsin i CTOOMRSASYR AN b ppy asay  DPPH 75-g0y,  SCAvengingactivities by )
threonine residues of
peptides with free radicals
Peptides increased the
antioxidant enzymes HO-
1, GPx, SOD, and
peroxiredoxin 2 through
Potato — Dipeptide IF SHR rats — the Akt pathway to regulate ~ [33]
Nrf2 activity and prevented
Nrf2 degradation by Akt
activation and GSK-33
phosphorylation
Peptides reduced the
accumulation of ROS and
MDA production and
increased the levels of the
05 Gt it
Mytilus HUVEC and ities through
Coruscus Trypsin <1kDa OH, O,, and — Tapacm}els t r;)ug(;i . [46]
mussel ferric-reducing reguiating the Nri2-driven
assays ant10x1fiant defegse
mechanisms. Peptides
showed strong OH, O,
radical scavenging
activities and ferric-
reducing power
Mackerel Peptide showed strong
(Scomber p DPPH radical scavenging
) . rotamex ~ ALSTWTLQLGSTSFSASPM  DPPH assay DPPH 36.34% . . [120]
japonicus) activity with 36%
muscle inhibition
Neutrase, EDYGA modulated the
papain, Nrf2/ARE pathway by
fsrfttl_;heued proteinase, EDYGA HepG2 cells — enhancing the Nrf2 level [45]
pepsin, and via Nrf2 stabilization and
trypsin decreasing the level of
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TaBLE 1: Continued.

Enzyme used

Dietary Peptide sequence or Activity/mechanisms of

protein source o prqduce molecular weight Object 1C50/ECso values action Reference
peptides
Keapl and glutamate
residues of EDYGA bound
to the Arg 415 of Kelch
domain receptor pocket
Foxtail millet H,0,-induced Peptides decreased the
(Setaria human roduction of ROS and
italica) Alcalase PFLF and [ALLIPF keratinocyte o I\I;IDA and enhanced the [121]
prolamins HaCaT cells GSH level
Peptide reduced oxidative
stress by enhancing SOD,
H,0,- CAT, and GPx. Peptide
Krill Pepsin AMVDAIAR stimulated DPPHnIl%O 0.87 increased Nrf2 and HO-1 [38]
hepatocytes expression and activated
Nrf2/HO-1 by activating
the ERK pathway
RDPEER reduced the
H.O--induced _ oxi.dative stress by
Watermelqn Alcalase RDPEER oéd;tive stress — increasing CAT, SOD.’ and [39]
seed protein in HepG2 cells GSH-Px, and reducing
MDA production and ROS
accumulation
(Patinopecten di d <3KkDa assavs and EC.. 0.75-1.98 radicals of DPPH, HO*, [122]
yessoensis) 15pase, an Y 50 7 77 ABTS, and inhibited ROS
<hellfish alcalase H,0,-induced  and OH EC;, sccumulation
PC-12 cells  1.07-1.43 mg/mL
Peptides enhanced the
expression of SOD1, Trx1,
TrxR1, GR, and NQO1 by
Peroxide- activating the Keapl-Nrf2
ARHPHPHLSEM, induced pathway. Peptides
Milk casein — AVPYPQR, NPYVPR, and oxidative stress — inhibited the interaction [32]
KVLPVPEK Caco-2 cells between Keapl and Nrf2,
by binding to Nrf2 in the
Keapl pocket and
increased antioxidant
enzyme expression
Ferr.nentattlon Peptides increased
mice with e
Corn gluten Bacillus . activities of total SOD,
. <10kDa Aging rats — CAT, GPx, and total [31]
meal subtilis - .
MTCC5480 antioxidant capacity and
(BS5480) decreased MDA
H,0, induced Peptides exhibited strong
oxidative scavenging activities on
. DPPH EC .
Moringa Flavor  GY, PFE, YTR, FG, QY, IN, dﬁmagf. 075208 mgiml, T rfrd‘fals P PEH and
oleifera seeds protease SF, SP,YFE, IY, and LY Chang liver and ABTS EC,, ABTS". SFand QY [25]
cells and DPPH 0.32-1.03 mg/mL scavenged ROS by
and ABTS ’ ’ increasing SOD and CAT
assays and reducing MDA
ECso of DPPH VTYM showed
. N potent
Ginger Pi‘;;)‘ls ;lnd VTYM A%l}zli;‘;;is All?"i%_zié f;‘; DPPH and ABTS radical 9]

pmol/L

scavenging activity
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TasLE 1: Continued.
. Enzyme used . . .
Dleta'ry to produce Peptide sequence or Object IC,/ECs, values Act1v1ty/mthanlsms of Reference
protein source . molecular weight - action
peptides
Peptides exhibited strong
DPPH and Fe** chelating
2+ 9
Snakehead IVLPDEGK, ]c)hpeill;lir? njsls:: s DPPHIC; 1,39 (;(l))clﬁz a?r?d?cl;)tleesutl}?;t
Pepsinand ~ PGMLGGSPPGLLGGSPP, §a%SAYS MM and Fe** N8 A
(Channa : and H,0, . . peptides can bind to the
argus) soup pancreatin SDGSNIHEPN, and induced HepG2 chelating ability active site of Keapl and
SVSIRADGGEGEVIVET cells 1C5 4.60mM thereby activate the cellular
antioxidation Keapl-Nrf2
pathway
Peptides showed
H,0, induced antioxidant activity by
Silver car Papain and oxidative stress DPPH EC.. 0.65 enhancing the activity of
N P ﬁcalase <1kDa and LVPVAVE Caco-2 cells oy 77 SOD, CAT,and GSH-Px  [12]
and DPPH & and reduced ROS and
assay showed strong DPPH

scavenging activity

ARE: antioxidant response element; ATBS: 2,2'-azino-bis (3-ethylbenzothiazoline-6 sulphonic acid) diammonium salt; Akt: protein kinase B; CAT: catalase;
DPPH: 2,2-diphenyl-1-picrylhydrazyl; ERK: extracellular signal-regulated kinases; FRAP: ferric reducing antioxidant power; GPx: glutathione peroxidase;
GSH: glutathione; GR: glutathione reductase; H,O,: hydrogen peroxide; HO-1: heme oxygenase 1; IC5,: 50% inhibitory concentration; ROS: reactive oxygen
species; SHR: spontaneously hypertensive rats; SOD: superoxide dismutase; MDA: malondialdehyde; NQO1: NAD(P)H quinine dehydrogenase 1; Nrf2:
nuclear factor erythroid 2-related factor; HUVEC: human umbilical vein endothelial cells; Keap 1: Kelch-like ECH-associated protein 1; HO: heme
oxygenase; Trx1: thioredoxin 1; TrxR1: thioredoxin reductase 1; ORAC: oxygen radical absorbance capacity.

lipogenesis by reducing the fatty acid synthase [2, 10, 52, 53].
Various molecular mechanisms of antiobesity peptides are
shown in Table 2.

During maturation of preadipocytes into adipocytes, sev-
eral transcriptional factors are involved. PPAR and C/EBP
are two transcription factors that stimulate adipocyte differ-
entiation [50]. Lipid and carbohydrate metabolism is regu-
lated by the PPARs. SREBP1 is a lipogenic transcription
factor upon activation by PPAR-y which promotes the adi-
pogenesis and lipogenesis. SREBP1 stimulates lipoprotein
lipase and fatty acid synthase and thereby enhances the lipid
accumulation in the adipocytes [50]. Therefore, inhibition of
the PPARs, C/EBP, and SREBP1 transcriptional factors
involved the adipogenesis and lipogenesis using dietary-
derived BPs is an efficient approach in the prevention or
treatment of obesity and related diseases. It has been revealed
that numerous dietary peptides from soy bean, quinoa, hazel-
nut, canola, tuna, ark shell, and blue mussel showed antiobe-
sity activities by inhibiting the expression of PPAR-y, C/EBP,
and SREBP1 transcriptional factors [10, 51, 54].

It was found that the antiobesity effects of dietary BPs are
related to the peptide sequence, length, composition, and
protein source [13]. Peptides with < 1kDa from blue mussel
by pepsin hydrolysis exhibited antiobesity effects by enhanc-
ing lipolysis and downregulating adipogenic transcription
factors, such as PPAR-y, C/EBP-a, and SREBP1 [10]. An
antiobesity pentapeptide RLLPH was isolated from alcalase
hydrolysate of hazelnut (Corylus heterophylla Fisch) and
found that the pentapeptide could decrease adipogenesis
through reducing the expression of PPAR-y, C/EBP-a,
SREBP-1c, adipocyte protein (aP2), FAS, acetyl-CoA carbox-
ylase 1 (ACC1), and HMGCR in 3T3-L1 adipocytes [13].

Additionally, the authors indicated that the hydrophobic
AAs, proline, and leucine, of the peptide, might have contrib-
uted to the antiobesity effects of the peptides. Peptides with
more hydrophobic AAs can easily penetrate the cell mem-
brane and increase lipid solubility. In a study, peptides < 1
kDa from ark shell (Scapharca subcrenata) protein inhibited
intracellular lipid buildup and enhanced the lipolysis [51].
The authors were also demonstrated that ark shell peptides
inhibited adipogenesis by decreasing the expressions of
PPAR-y, C/EBP-a, SREBP-1c, lipoprotein lipase, and FAS
in mouse mesenchymal stem cells. Moreover, the expression
of PPAR-y, C/EBP-a, and aP2 was decreased by tuna skin
collagen-derived peptides in obese mice, which resulted in
the decrease of adipocyte size [55].

In addition to the downregulation of vital transcriptional
factors (PPAR-y, C/EBP-a, and SREBP-1c) of adipogenesis,
several in vivo studies demonstrated that the antiobesity
activity of dietary peptides is due to the decrease of BW and
food consumption. Oral administration of peptides (10
mg/mL), produced from smooth hound (Mustelus mustelus)
muscle by alkaline crude enzyme from M. mustelus intes-
tines, for 21 days reduced the BW and food intake in rats
[5]. The authors suggested that BW reduction was probably
due to the regulation of appetite. The antiobesity effect of
Alaska pollack-derived peptides was investigated, and it was
found that peptide administration (100 or 300 mg/kg BW)
to rats for 3 days decreased the weight of white adipose tissue
and reduced the food intake [56]. The authors suggested that
the decrease in food intake and white adipose tissue weight of
rats after peptide treatment was due to downregulation/sup-
pression of gene expressions of neuropeptide-Y and agouti-
related peptide in hypothalamus, which may reduce the
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appetite. In a study, it was found that antiobesity effects of
sardinella- (Sardinella aurita-) derived peptides were medi-
ated by reducing the BW gain, food intake, and the relative
epididymal adipose tissue weight in Wistar rats after 10
weeks of peptide treatment [2]. It was demonstrated that Spi-
rulina platensis-derived peptides exhibited antiobesity effects
by reducing BW (39.8%) and lowering serum glucose
(23.8%) through altering the gene expressions of Acadm,
Retn, Fabp4, Ppard, and Slc27al in the brain and liver of
mice fed with peptides (2g/kg BW) for 4 weeks [57].
Recently, it was reported that walleye pollock skin collagen-
derived peptides considerably reduced the BW gain in obese
mice after 8 weeks of peptide treatment [58]. The authors
also pointed that peptides inhibited the growth of adipocytes
and the accumulation of adipose tissue in obese mice. Fur-
thermore, in a placebo-controlled, randomized clinical inves-
tigation, salmon fish-derived peptide supplementation (16
g/d) for 42 days notably decreased (5.6%) the BMI in obese
humans [59].

Pancreatic lipase is an important enzyme that aids in the
hydrolysis of dietary fat in the small intestine. Therefore,
inhibition of pancreatic lipase is an efficient approach in the
management and treatment of being overweight and obesity
[2, 24]. Apart from inhibition of adipogenesis and lipogene-
sis, some dietary peptides exhibited pancreatic lipase inhibi-
tory activity. Peptides produced from camel milk by using
alcalase-, bromelin-, and papain-inhibited porcine pancreatic
lipase [24]. It was also found that sardinella peptide adminis-
tration to rats for 10 weeks decreased the pancreatic lipase
activity [2].

4. The Role of Dietary Bioactive Peptides in
Diabetes Mellitus

Diabetes mellitus (DM) is a complex metabolic disorder with
increased blood sugar levels and T2DM accounts for 90% of
diabetes patients. T2DM results from insulin resistance (cells
less responsive to the insulin actions) and/or insufficient
insulin production from pancreatic beta cells. Obesity
(BMI > 30 kg/m?) has been reported to greatly increase the
risk of developing T2DM [60]. Uncontrolled T2DM can
cause severe complications such as high blood pressure,
stroke, heart attack, atherosclerosis, retinopathy, nephropa-
thy, neuropathy, and dementia.

Recently, several peptides derived from a variety of die-
tary protein sources including egg white, whey, casein, egg
yolk, rice bran, quinoa, soybean, wheat, corn, black bean,
oat globulin, walnut, potato, common bean, millets, spiru-
lina, bovine, porcine, Atlantic cod, Atlantic salmon, halibut
skin, Styela clava, boarfish, tilapia skin, largemouth bass,
zebra blenny, blue whiting, and sea cucumber have shown
antidiabetic effects by altering several molecular mechanisms
of diabetes such as inhibition of enzymes including a-amy-
lase, dipeptidyl peptidase- (DPP-) IV, and a-glucosidase;
reduction of FBG and HbA1C; enhancement of HOMA-IR;
stimulation of secretion of glucagon-like polypeptide-1
(GLP-1) and insulin levels; upregulation of phos-
phatidylinositol 3-kinase (PI3K), p-GSK-3, p-Akt, and glu-
cose transporter (GLUT)2/4 signaling pathways; blocking of
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glucose transporters GLUT2 and SGLT1; decreasing of the
activation of p38 and c-Jun N-terminal kinase (JNK)1/2;
enhancement of the stimulation of insulin receptor
substrate-1 (IRS-1) tyrosine residue and Akt; and decreasing
of gluconeogenesis through activation of IRS-1/PI3K/Akt
and AMP-activated protein kinase (AMPK) [6, 21, 61-64].
The isolated peptide sequences and molecular mechanisms
of dietary antidiabetic peptides are shown in Table 3.

a-Amylase is an important enzyme in the carbohydrate
digestion that breaks down a-1,4 glycosidic linkages of starch
and produces oligosaccharides. a-Glucosidase is present in
the brush borders of the small intestine and hydrolyzes the
disaccharides and starch to glucose by acting upon a(1 — 4)
glycosidic bonds. Therefore, inhibition of a-amylase and a-
glucosidase prevents carbohydrate digestion and thus dimin-
ishes the postprandial increase of blood glucose. Several
chemical a-glucosidase and a-amylase inhibitors (acarbose,
voglibose, and miglitol) have been in use for the management
and treatment of T2DM [65]. However, side effects associ-
ated with these inhibitors limited their use [63]. Recently,
many peptides isolated from several food sources including
egg white, corn, oat, egg yolk, spirulina, quinoa, soybean,
Phaseolus vulgaris, and zebra blenny have exhibited a-amy-
lase and a-glucosidase inhibitory activities [61, 62, 66, 67].
Egg white albumin was hydrolyzed using alcalase, and a pen-
tapeptide KLPGF was isolated with a-glucosidase (50%
inhibitory concentration (IC;) 59.5 ymol/L) and a-amylase
(IC;, 120uM) inhibitory activities [66]. Three peptides,
GVPMPNK, LRSELAAWSR, and RNPFVFAPTLLTVAAR,
were extracted from spirulina platensis, and it was found that
peptide LRSELAAWSR strongly inhibited a-amylase with
IC,, of 313.6 ug/mL and a-glucosidase with IC;, of 134.2
ug/mL [68]. A a-glucosidase inhibitory peptide,
LAPSLPGKPKPD, was identified from egg yolk hydrolysate
produced by proteinase from Asian pumpkin with an IC,,
value of 1065.6 ymol/L [67]. Three peptides, LLPLPVL,
SWLRL, and WLRL, produced from soy protein showed a-
glucosidase inhibitory activity with IC, 162.2-237.4 ymol/L
[63]. A study reported isolation of a-glucosidase inhibitory
peptide, QHPHGLGALCAAPPST, from quinoa with an
IC;, of 1.0-1.45mg/mL [62]. Recently, corn germ protein
was hydrolyzed by using alcalase, trypsin, and flavourzyme
and it was found that the peptide fraction (2-10 kDa) showed
strong a-amylase inhibition (71.3%) and a-glucosidase inhi-
bition (37.1%) activities [61].

Another strategy for the management and treatment of
T2DM is to inhibit the DPP-IV that degrades and inactivates
incretin hormones, namely, glucose-dependent insulinotro-
pic peptide (GIP) and GLP-1. Therefore, inhibition of DPP-
IV by dietary-derived BPs can enhance the half-life of GLP-
1 and thereby increase the release of glucose-dependent insu-
lin from pancreatic cells [61]. For inhibition of DPP-IV activ-
ity, several synthetic drugs such as saxagliptin, linagliptin,
sitagliptin, and vildagliptin are presently used. However, side
effects (diarrhea, nausea, stomach pain, headache, and sore
throat) associated with these drugs have forced researches
to search for DPP-IV inhibitors from natural dietary sources
without any side effects [69]. Many recent studies have
reported that dietary protein-derived peptides are an
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excellent source of DPP-IV inhibitors. Peptides obtained
from millet, corn, quinoa, egg yolk, oat, whey, casein, Spiru-
lina platensis, porcine, Atlantic salmon, sea cucumber, large-
mouth bass, blue whiting, and Capros aper inhibited the
DPP-IV activity [67, 70-72]. It has been found that dietary
peptides inhibit DPP-IV through attaching the peptides to
the active sites of DPP-IV via hydrogen bonds and hydro-
phobic interactions and thereby prevent the enzyme action
[14, 21]. Two peptides NDWHTGPLS and TYPHQQPPILT
derived from papain hydrolysates of millet proteins inhib-
ited DPP-IV activity (75%) [21]. It was demonstrated that
both the peptides inhibited DPP-IV activity by occupying
the active sites of DPP-IV via hydrogen and pi bonds. In
a recent study, Atlantic salmon skin was hydrolyzed by
using trypsin and isolated a new DPP-IV inhibitory pep-
tide, LDKVFR, with IC, of 128.7uM [14]. Additionally,
it was found that 6 H bonds and 8 hydrophobic interac-
tions played a significant role in the inhibition of DPP-
IV by LDKVEFR. A peptide, LDQWLCEKL, obtained from
trypsin hydrolysate of a-lactalbumin-rich whey proteins
inhibited DPP-IV (IC,, 131 uM) through a noncompetitive
mode of inhibition.

The PI3K/Akt signaling pathway regulates the glucose
uptake. When cells are resistant to insulin, glucose uptake is
impaired in the liver and skeletal muscles. Insulin activates
IRS after binding to IRS and the activated IRS phosphorylates
IRS-1. Phosphorylation of IRS-1 results in the activation of
PI3K. The activated PI3K phosphorylates Akt, and the acti-
vated Akt helps in the migration of intracellular GLUT2/4
to the plasma membrane and therefore increases the glucose
absorption into cells. But insulin resistance weakens the
PI3K/Akt signaling pathway [73, 74]. Hence, stimulation of
the PI3K/Akt molecular pathway is an efficient approach in
the management of insulin resistance. In a study, the authors
hydrolyzed walnut protein using alcalase and isolated an
antidiabetic peptide LPLLR with a molecular weight of
610.4 Da. The authors reported that the identified peptide
improved hepatic insulin resistance (IR) through enhancing
glycogen synthesis and glucose uptake and reducing gluco-
neogenesis via activating the IRS-1/PI3K/Akt and AMPK sig-
naling pathways in hepatic HepG2 cells [75]. Two hundred
forty-two peptides, with a molecular weight ranging from
203 to 1907 Da, were isolated from the hydrolysate of sea
cucumber and found that the peptides showed antidiabetic
effects by upregulation of PI3K, p-Akt, p-GSK-3f3, and
GLUT2/4 signaling pathways, while decreasing p-IRS1
expression in diabetic rats [73].

In addition to the peptides described above, the antidia-
betic activities of dietary peptides have also been investigated
in human subjects. In a randomized and crossover clinical
trial, whey peptide (<5000 Da) (1400 or 2800 mg/kg BW)
administration to 21 prediabetic human subjects decreased
under the curve (1IAUC) of glucose as well as showed a minor
insulinotropic effect and reduced HbAlc [76]. A double-
blind crossover clinical trial conducted using peptides
(<2000 Da) derived from Atlantic cod showed that a single
dose of 20 mg/kg BW considerably decreased the postpran-
dial insulin in 41 healthy individuals [77]. Moreover, pep-
tides derived from Styela clava have also been shown to
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decrease the hemoglobin Alc and plasma insulin levels after
4 weeks of administration in patients with T2DM [78].

5. The Role of Dietary Bioactive
Peptides in Hypertension

Hypertension is an important risk factor that can increase the
chance of developing heart attack or stroke. Clinically, sys-
tolic blood pressure (SBP) 140 mmHg or above and/or DBP
90 mmHg or above are considered as hypertension [79]. It
is estimated that over a billion people (1 in 5 women and 1
in 4 men) are suffering from hypertension.

Food-derived peptides play a significant role in the pre-
vention of hypertension. Recently, numerous antihyperten-
sive peptides are isolated from different food sources such
as milk [80], casein [81, 82], egg white ovotransferrin [22],
rice bran [1], wheat [83], soybean [84], potato [85], turmeric
and ginger [9], quinoa [62], black cumin [86], coix [87], pis-
tachio [88], hazelnut [89], mung bean [90], lentil [91], sea-
horse [92], egg white from ostrich [93], chum salmon [94],
skate [95], cuttlefish [96], Sipuncula [97], bighead carp [98],
shrimp (Pandalus borealis) [79], and beef [99]. The isolated
dietary protein-derived peptides have been demonstrated to
exhibit antihypertensive activities through influencing vari-
ous molecular mechanisms including inhibition of
angiotensin-converting enzyme (ACE), reduction of SBP,
decrease of angiotensin II levels and ATIR expression,
enhancing vasodilation, improving central blood pressure
and arterial stiffness, and inhibition of vasoconstriction via
PPAR-y expression [9, 79, 84, 90]. Table 4 shows the molec-
ular mechanisms of antihypertensive peptides isolated from
various dietary sources.

Human blood pressure is regulated by ACE (EC 3.4.15.1).
ACE cleaves the dipeptide, HL, from angiotensin I and con-
verts the inactive angiotensin I into angiotensin II and
thereby enhances the blood pressure. Angiotensin II is a
powerful vasoconstrictor, and ACE inactivates the bradyki-
nin, which is a potent vasodilator. Therefore, inhibition of
ACE is an important molecular target in the prevention
and management of hypertension. Currently, several peptide
drugs, namely, captopril, lisinopril, and enalapril, are used as
ACE inhibitors for the management of high blood pressure
[80,97, 100]. Due to the side effects (cough, fatigue, dizziness,
headaches, and loss of taste) associated with these synthetic
drugs, there is an increasing interest to search for safe ACE
inhibitors from natural food sources. Various food sources
are an excellent source of ACE inhibitory peptides. Most die-
tary ACE inhibitory peptides contained 3-15 AA residues.
Recently, several peptides have been isolated with ACE inhib-
itory activity from numerous dietary sources such as milk [80],
casein [82], egg white [93], soybean [84], rice bran [1], wheat
[83], pistachio [88], potato and rapeseed [85], turmeric and
ginger [9], quinoa [62], black cumin [86], hazelnut [89], lentil
[91], seahorse [92], chum salmon [94], skate [95], cuttlefish
[96], Sipuncula [97], bighead carp [98], and beef [99].

It has been demonstrated that hydrogen bonds play a
vital role in the binding of BPs to the ACE catalytic pocket
and thereby facilitate ACE inhibition. Three ACE inhibitory
peptides, LLSGTQNQPSFLSGF, NSLTLPILRYL, and
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TLEPNSVFLPVLLH, were isolated from lentil seeds with
IC,, of 44-120 uM, and it was found that the peptides inhib-
ited ACE through interactions by hydrogen bonds with three
residues of the ACE catalytic site [91]. A tripeptide YSK with
ACE inhibition was identified from trypsin hydrolysate of
rice bran, and ACE inhibition of YSK was due to the forma-
tion of hydrogen bonds with the binding site of ACE [1]. The
molecular interactions between dipeptide, YV, obtained from
ostrich egg white and ACE were studied and it demonstrated
that YV inhibited ACE (ICs, 63.97 ug/mL) by binding to S1
and S2 pocket sites of ACE through hydrogen bonds [93].
A pentapeptide, ACKEP, purified from pistachio kernel
hydrolysates was shown to inhibit ACE (IC;, 126 uM) by
binding with seven AAs of the ACE catalytic site (His383,
His387, Glu384, Arg522, Asp358, Ala356, and Asn70) and
two atoms of ACKEP [88]. In a study, three ACE inhibitory
peptides, AVKVL, YLVR, and TLVGR, were identified from
alcalase hydrolysate of hazelnut. The authors found that all
the three peptides exhibited ACE inhibition (IC,, 5.42-
249.3 uM) via a noncompetitive inhibition through the for-
mation of cation-pi interactions [89]. In another study, four
ACE inhibitory peptides, EDEVSFSP, SRPFNL, RSPFNL,
and ENPFNL, were purified from fermented soybean with
IC,, of 0.131-0.811 mg/mL [84]. It was suggested that the
N-terminal sequence and the location of AAs in the peptides
play an essential role in ACE inhibition. Recently, a peptide,
VTPVGVPK, produced by a-chymotrypsin hydrolysis from
black cumin seed was shown to inhibit ACE (IC;, 1.8 M)
through a noncompetitive inhibition [86]. A peptide,
QHPHGLGALCAAPPST, identified from chymotrypsin
hydrolysate of quinoa inhibited ACE by binding to the num-
ber of active hotspots of the ACE enzyme [62]. Moreover,
two peptides, SAGGYIW and APATPSFW, were isolated
from wheat gluten with ACE inhibition of IC,, 0.002-0.036
mg/mL [83]. The authors concluded that two peptides with
proline and negatively charged residues inhibited ACE
through the modulation of ionic and hydrophobic connec-
tions of the ACE active site.

In addition to ACE inhibition, several in vivo studies
(animal and human) have reported the blood pressure-
lowering effects of numerous peptides isolated from various
food sources. Peptides, SLVSPSAAAAAAPGGS and
KKRSKKKSFG, generated from potato and rapeseed were
found to reduce (154.7 mmHg) the mean arterial blood pres-
sure of treated rats compared to the control (177 mmHg)
group [85]. Two antihypertensive peptides, IQW and LKP,
were identified from thermolysin and pepsin hydrolysates
prepared from egg white ovotransferrin and demonstrated
that tripeptide (IQW and LKP) administration reduced the
mean blood pressure by 19 and 30 mmHg, respectively, com-
pared to control SHRs [22]. Administration of a peptide,
VELYP, produced from Sepia officinalis muscle, to SHR
exhibited antihypertensive effects by decreasing SBP [96].
In a study, a beef myofibrillar protein-derived peptide LIV-
GIIRCV at 400 and 800 mg/kg BW decreased SBP by 28
and 35mmHg in SHRs, respectively [99]. A randomized
and double-blind human trial conducted on level 1 hyperten-
sive patients demonstrated that eight-week supplementation
of casein-derived tripeptides, VPP and IPP, ameliorated cen-
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tral blood pressure and arterial stiffness [81]. In a recent ran-
domized, double-blind clinical trial, the administration of
shrimp-derived peptides (1200mg/d) for eight weeks
reduced the BP in mild- or moderate-hypertension patients
[79]. Additionally, the authors suggested that the reduction
of BP was probably due to the decrease of angiotensin II
levels in hypertension patients.

6. The Role of Dietary Bioactive Peptides in
Inflammatory Bowel Diseases (IBD)

Inflammation is a complex and natural response of the body
in an attempt to resolve harmful stimuli such as pathogens,
tissue injuries, infections, or toxins. However, uncontrolled
and chronic inflammation has been reported to be linked
with several diseases such as T2DM, metabolic syndrome,
IBD, cardiovascular disease, cancer, asthma, arthritis, and
chronic obstructive lung disease [101]. IBD symptoms such
as diarrhea, abdominal pain, fever, vomiting, BW loss, and
rectal bleeding affect the quality of life of patients [102].
Crohn’s disease (DC) and ulcerative colitis (UC) are two
major forms of IBD [103]. UC is the inflammation of colon.
Chronic inflammation in the intestine produces excessive
and uncontrolled proinflammatory cytokines including
tumor necrosis factor-alpha (TNF-«), interleukin- (IL-) 1,
IL-6, IL-8, IL-12, interferon-gamma (IFN-y), and IL-17
[102, 103].

The mechanism of anti-inflammation by food protein-
derived BPs is that they can inhibit the phosphorylation of
signaling pathways including nuclear factor-kappa B (NF-
kB), mitogen-activated protein kinase (MAPK), Janus
kinase-signal transducer and activator of transcription
(JAK-STAT), and peptide transporter PepT1 as shown in
Figure 2 [26, 104, 105]. The NF-«B pathway contains IKKs,
IxBs, and p65/p50, while the MAPK pathway contains p38,
JNK, and extracellular signal-regulated kinases (ERK). BPs
can inhibit the NF-«B receptor, resulting in the inhibition
of the activation of inhibitory xB kinases (IKKa/f3/y), which
can lead to phosphorylation of cytoplasmic transcription fac-
tor (IxBa/B/y) and IxBa degradation. BPs can inhibit the
MAPK receptor and inhibit MAP3K phosphorylation, which
can mediate the phosphorylation of the downstream MAP2K
and MAPK. The inhibition of phosphorylation of MAPK and
JAK2-STATs by BPs can alleviate the release of cytokines.
The BP inhibition of translocations of the above transcrip-
tion factors in nucleus (ATF-2, AP-1, and c-Jun) can cause
the gene change, reducing the productions of proinflamma-
tory cytokines, such as IL-1p, IL-6, IL-8, TNF-«, and IFN-
y, resulting in the inflammation suppression (Figure 2). In
addition, the PepT1 can transport small BPs to the blood-
stream; therefore, the role of PepT1 is vital to the bioactivity
of BPs and needs further investigation [15, 26].

Peptides isolated from a variety of dietary protein sources
(e.g., soy bean, common bean, corn, egg white, whey, casein,
salmon, and crucian carp) have shown to inhibit intestinal
inflammation through multiple molecular mechanisms.
These include downregulation of the expression of IL-8, IL-
1B, IL-6, TNF-a, IFN-y, IL-12, and IL-17; upregulation of
IL-10; and inhibition of activation of the NF-xB and MAPK
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TaBLE 4: Molecular mechanisms of action of antihypertensive peptides isolated from various food sources.
Dietary protein Enzyme used to Peptide sequence or IC,/EC
P produce P quen Object 50 750 Activity/mechanisms of action ~ Reference
source . molecular weight values
peptides
. . SHR and clinical Peptides (100 and 200 mg/kg
Pea protein Thermolysin <3kDa trial — BW) reduced SBP [140]
VPP and IPP improved central
Casein — VPP and IPP Clinical trial — blood pressure and arterial [81]
stiffness
Pistachio Pepsin and ACKEP ACE inhibition ~ ACE IC;, ACKEP inhibited ACE by [88]
kernel trypsin assay 126 uM binding with ACE active site
Chum salmon . ACE inhibition  ACE ICs, GLP exl_nb1ted ACE inhibition
(Oncorhynchus Trypsin GLPLNLP and antihypertensive effect by [94]
: assay and SHRs ~ 18.7 uM .
keta) skin decreasing SBP
Peptides inhibited ACE and
decreased SBP and inhibited
?gzllct;me'ei Alcalase and LGPLGHQ and ACE inhibition ?(?QE_ZIICZSZO vasoconstriction via PPAR-y [95]
keno‘ei)] skin protease MVGSAPGVL assay and SHRs ™ M. expression, activation, and
] H phosphorylation of eNOS in
lungs
Egg white ' Thermoly'sm IQW and LKP SHRs . Peptides reduced mean blood [22]
ovotransferrin and pepsin pressure
Curey e oo VELX? shovdstong
(Sepia . L VELYP, AFVGYVLP, ACE inhibition ACE IC,, . u g
o mojavensis and noncompetitive inhibition and [96]
officinalis) and EKSYELP assay and SHRs ~ 5.22uM . .
cuttle fish had antihypertensive effects by
muscle .
hepatopancreas decreasing SBP
Goldblatt rat  ACE IC,,
Potato and Alcalase and ~ SLVSPSAAAAAAPGGS h with . 324 E.e?tldes H?Elblted A,CE arflfd
rapeseed potato autolysis and KKRSKKKSEG ypertension ug/mL  exhibited antihypertensive effects [85]
and ACE and 156 by reducing SBP
inhibition ug/mL
YSK showed ACE inhibition
Rice bran . ACE inhibition ACE IC,, through the formation of
protein Trypsin YSK assay 76 mM hydrogen bonds with active (1]
pockets of human ACE
ACEIC;, Three peptides inhibited ACE
Sipuncula Pepsin and RYDE, YASGR and ACE inhibition 235uM, noncompetitively. GNGSGYVSR
(Phascolosoma trvDsin GNGSGYVSR assav and SHRs 185 uM, (5 mg/kg BW) showed [97]
esculenta) P Y and 29 antihypertensive effect by
uM decreasing SBP
Lentil seeds LLSGTQNQPSELSGE, -\ o jnhibition  ACE Cso intein}:ltlit:rtleg Ahcflr?r:r? lg;}énds
(Lens culinaris Savinase NSLTLPILRYL, and roen 44-120 i oo ACE ros B e Lol
var.) TLEPNSVFLPVLLH Y Y S res
catalytic site
. .. ACEICs,
Bighead carp Pepsin YNLKERYAAW and - ACE inhibition 1.35-3.42  Peptides inhibited ACE activity [98]
muscle YNRLPEL assay M
Peptide inhibited ACE via
. . Pepsin and ACE inhibition =~ ACE IC;, competitive inhibition and
Bovine casein trypsin YQKFPQYLQY assay and SHRs  11.1uM  exhibited antihypertension by [82]
decreasing SBP
Hazelnut ACEIC, via Zie;f?frf lzetiit;jec oo viy
(Corylus eal AVKVL, YLVR,and  ACE inhibition 50 he £ P £ cati .
heterophylla Alcalase TLVGR assay and SHRs 15.42— the formation of cation—pi [89]
. 2493 uM  interactions and YLVR reduced
Fisch.)
SBP
YV (93]
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TaBLE 4: Continued.
Dietary protein Enzyme used to Peptide sequence or IC5/EC
P produce P quen Object 0750 Activity/mechanisms of action ~ Reference
source . molecular weight values
peptides
. . o ACEIC;, YV showed ACE inhibition by
E?glﬁl ite from hAill:lll nseis ACE ;lshalbltlon 63.97  binding to SI and S2 ACE pocket
yaroy ¥ pug/mL sites via hydrogen bonds
, ACE IC,, e .
Soybean pevtoscens EDEVSFSPSRPENL, AR nhibidon 0131 (SPES IR T
Y P RSPENL, and ENPENL assay 0.811 rerminat seq
SDL1409 and amino acid position
mg/mL
Randomized,
Shrimp double-blind, Peptides (1200 mg/d) reduced the
(Pandalus placebo- .
. — — blood pressure due to a reduction [79]
borealis) controlled, 8- . .
. . of angiotensin II levels
protein week clinical
study
Beef (Bos
taurus . S Peptides (400 and 800 mg/kg
coreanae) ‘:ﬂ‘(";h‘fﬁf LIVGIIRCV aiSCaE ;’ﬁ?ﬁ‘;{; - BW) inhibited ACE by 74.29% [99]
myofibrillar pap Y and decreased SBP
proteins
Fermented ACE IC
. o 50 I .
Milk using L. ) LPYPY ACE inhibition 12.87 LPYPY inhibited ACE with IC,, (80]
delbrueckii assay /L 12.87 pg/mL
QS306 s
LPRL, YADLVE, . .o..  ACEIC,, . s
Mung bean Bromelain  LRLESF, HINVVHEN, ACF Inhibition © s 5o " Peptides showed ACE inbibition 14
P and PGSGCAGTDL Y 1912 uM
Seahorse Peptides exhibited
(Hippocampus Protamex APTL, CNVPLSP, and  ACE inhibition ACEIC,, antihypertension by lowering [92]
b drc)) ﬂlm lif) PWTPL assay and SHRs 0.044 uM  blood pressure via vasodilation
a a and ACE inhibition
. AP ACE IC;, o .
Black cumin a- ACE inhibition VTPVGVPK inhibited ACE via a
. VTPVGVPK value 1.8 e e [86]
seed Chymotrypsin assay M noncompetitive inhibition
. . . ACE inhibition Peptide displayed ACE inhibition
Quinoa protein  Chymotrypsin QHPHGLGALCAAPPST assay — by binding to ACE active hotspots [62]
White VTYM, RGPFH, AEPPR,
turmeric Pepsin and GSGLVP, KM, 5PV, ACE inhibition ACEIC,
¢ rmeric’ and tp sin CACGGV, DVDP, assa 16.4-36.5 Peptides showed ACE inhibition [9]
" > an TYp CGVGAA, HVVV, and Y uM
ginger proteins RSC
. ‘ . ACE inhibition ACEIC,, " DME reduced ACE and ATIR
Coix prolamin Pepsin VDMF assa 382,28 uM expression in AnglI-injury [87]
¥ S HUVECs
Peptides and negatively charged
ACE G, amino acids inhibited ACE via
Alcalase and SAGGYIW and ACE inhibition ~ 0.002- S
Wheat gluten modulating ionic and [83]
PaproA APATPSFW assay 0.036 hvdrophobic i .
mg/mL ydrophobic interactions on ACE

catalytic sites

ACE: angiotensin-converting enzyme; BW: body weight; IC;: 50% inhibitory concentration; SBP: systolic blood pressure; SHR: spontaneously hypertensive rat;

PPAR-y: peroxisome proliferator-activated receptor y.

pathways via suppression of phosphorylation of p65,
ERK1/2, p38, JNK1/2, and Syk signaling molecules [102,
103, 106, 107]. The isolated peptides and their molecular
mechanisms of anti-intestinal inflammatory effects are pre-
sented in Table 5.

Dietary anti-intestinal inflammatory peptides are short
chains of AAs that generally contain 2-10 AAs. The common
AAs of these peptides are alanine, valine, leucine, serine,
methionine, tyrosine, and phenylalanine [102, 103, 108].
Pepsin and pancreatin are the two most commonly employed
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F1GURE 2: The mechanism of anti-inflammation of dietary protein-derived bioactive peptides: NF-xB, MAPK, JAK2-STAT, and PepT1. ERK:
extracellular signal-regulated kinases; MAPK: mitogen-activated protein kinase; NF-«B: nuclear factor-kappa B; JAK-STAT: Janus kinase-
signal transducer and activator of transcription; JNK: c-Jun N-terminal kinase; p: phosphorylation; PepT1: peptide transport 1.

proteolytic enzymes to produce anti-inflammatory peptides
from various food proteins [103, 109, 110]. The TNF-a-
treated Caco-2 cell is a widely used human intestinal cell
model for the investigation of the anti-inflammatory prop-
erty of dietary peptides. TNF-« activates the both NF-«B
and MAPK signaling pathways in Caco-2 cells and thereby
produces large quantities of proinflammatory mediators
[110]. Excess and uncontrolled production of proinflamma-
tory cytokines plays a vital role in the progression of intesti-
nal inflammation [103].

Numerous recent studies reported that dietary BPs could
inhibit the intestinal inflammation through the reduction of
proinflammatory —mediators. Four peptides, DEDT-
QAMPFR, MLGATSL, SLSFASR, and MSYSAGEF, isolated
from egg white exerted anti-inflammatory activities in colitis
mouse by inhibiting the production of TNF-«a and IL-6 as
well as reducing the mRNA-expressions TNF-a, IL-6, IL-
17, IL-1B, IFN-y, and MCP-1 [111]. Tripeptide VPY from
soybean inhibited IL-8 secretion in Caco-2 cells [108]. The
peptide was also found to decrease the mRNA expressions
of inflammatory mediators TNF-a, IL-6, IL-1f3, IFN-y, and
IL-17 in the peptide-treated mice colon. Dipeptides (CR,
FL, HC, ILL, and MK) produced from egg white ovotransfer-
rin, by using pepsin and trypsin hydrolysis, decreased the
gene expression of TNF-a, IL-8, IL-6, IL-1f3, and IL-12, while
enhancing IL-10 expression, in Caco-2 cells [103]. Crucian
carp-derived 178 peptides (<1500 Da) at 50, 100, and 150
ug/mL considerably reduced the secretion of TNF-«, IL-6,

and IL-13 in IEC-6 small intestine cells as well as in dextran
sodium sulfate-induced ulcerative colitis mice [106].

Several recent reports demonstrated the role of NF-xB in
the pathogenesis of IBD [106]. Activation of NF-«B has been
shown to be involved in the IBD patients [112]. The NF-«xB
and MAPK pathways are two vital proinflammatory signal-
ing pathways that majorly regulate cellular inflammatory
responses by secreting various cytokines after activation by
various inflammatory stimuli [113]. Transcription factor
NEF-«B regulates the inflammatory responses by stimulating
the production of various proinflammatory cytokines and
chemokines. Phosphorylation of IxB by inflammatory stim-
uli (LPS and TNF-a) releases the NF-«B that migrates to
the nucleus and activates expression of the numerous genes
connected with inflammation [110, 112]. The MAPK family
contains three components such as p38 MAPK, ERK1/2,
and JNK/SAPK. Phosphorylation of MAPK components
stimulates the other kinases and migrates to the nucleus
where they induce the transcription of several inflammatory
genes and thereby enhance the secretion of proinflammatory
mediators [110].

Peptides derived from egg, milk, fish, and beans exhibited
the anti-intestinal inflammatory activity through the inhibi-
tion of MAPK and NF-xB molecular pathways [102, 103,
110]. A tetrapeptide, IPAV, isolated from whey proteins
exhibited anti-inflammatory activity in Caco-2 cells by inhi-
biting IL-8 expression and by suppression of phosphoryla-
tion of p65, ERK1/2, p38, JNK1/2, and Syk signaling
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molecules [102]. Bean milk- and yogurt-derived LLV, y-E-S-
(Me)C, and y-EL inhibited TNF-a-induced IL-8 production
and gene expression of inflammatory mediators, TNF-q,
IL-1p,IL-8, and IL-6, through the inhibition of phosphoryla-
tion of IxB-a of NF-xB and JNK of MAPK signaling path-
ways in Caco-2 cells [113]. Four peptides DEDTQAMPEFR,
DEDTQAMPE, MLGATSL, and MSYSAGEF isolated from
egg considerably suppressed the phosphorylation of JNK,
p38, and IxB of NF-«B and MAPK signaling pathways and
thereby reduced the gene expression of IL-8, IL-1f3, IL-6,
TNF-a, and IL-12 in TNF-a-stimulated Caco-2 cells [110].
These results indicated that dietary BPs had the potential to
treat inflammation or IBD via NF-xB or MAPK or other sig-
naling pathways.

7. Conclusions and Further Perspectives

Numerous dietary peptides showed beneficial effects on
redox balance and metabolic disorders (obesity, T2D, hyper-
tension, and inflammation). Dietary peptides modulated sev-
eral molecular mechanisms (e.g., KeapI-Nrf2-ARE signaling
pathway in oxidative stress, PPAR-y, C/EBP-a, SREBP1
pathway in obesity, IRS-1/PI3K/Akt and AMPK signaling
pathways in T2D, ACE inhibition in hypertension, and
MAPK in IBD) and thereby exerted positive effects in redox
balance and metabolic disorders. Most of the studies are con-
ducted using cell and animal models. Although substantial
evidence from cell and animal investigations is available for
the BPs as described in this review, scientific evidence from
clinical studies is still meager. Hence, more clinical investiga-
tions are needed to get in-depth knowledge about the BP’s
efficacy, absorption, distribution, metabolism, excretion,
toxicity, and effect on gut microbiome in the human body
in the future. In the future, the benefits and risks of long-
term and large-quantity consumption of BPs on human
health need to be addressed. The interaction of BPs with
other drugs in the human body has to be investigated com-
prehensively. Additionally, newer technologies are needed
to produce BPs cost effectively from dietary sources. The
BPs should be produced with consumer-acceptable taste,
quality, and stability. Although there are several challenges
for future growth, the dietary BPs could be used as health
foods in the management/prevention of metabolic disorders
(obesity, T2DM, hypertension, and inflammation) and
oxidative stress-related diseases (e.g., cancer and IBD). We
hope that the BP’s industry will have a bright future in the
coming years as people are increasingly aware of health
benefits of dietary BPs.
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